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COMMENT

Milestones in chemoinformatics: global view 
of the field
Jürgen Bajorath1,2* 

Abstract 

Over the past ~ 25 years, chemoinformatics has evolved as a scientific discipline, with a strong foundation in phar-
maceutical research and scientific roots that can be traced back to the late 1950s. It covers a wide methodological 
spectrum and is perhaps best positioned in the greater context of chemical information science. Herein, the chemo-
informatics discipline is delineated, characteristic (and partly problematic) features are discussed, and a global view 
of the field is provided, emphasizing key developments.
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Introduction
Discussing chemoinformatics (in the US mostly referred 
to as cheminformatics) as a scientific discipline immedi-
ately raises a question: what is it? Or, in other words, how 
should one best define it? The term itself first appeared 
in the literature in 1998, when the late Frank K. Brown 
introduced chemoinformatics as follows: “The use of 
information technology and management has become 
a critical part of the drug discovery process. Chemoin-
formatics is the mixing of those information resources to 
transform data into information and information into 
knowledge for the intended purpose of making better deci-
sions faster in the area of drug lead identification and 
organization” [1]. This original definition reflects a strong 
foundation of chemoinformatics in drug discovery and 
also emphasizes a close link between chemoinformat-
ics and information science. Notably, the related term 
chemical informatics (which might be a little dubious 

semantically: can informatics be “chemical”?) was also 
used at that time and more generally understood as the 
application of information technology to chemistry. In a 
similar vein, chemoinformatics has been designated as 
the “application of informatics methods to solve chemi-
cal problems” [2] or the “manipulation of information 
about chemical structures” [3]. Hence, going beyond drug 
discovery, chemoinformatics might be positioned in the 
broader context of chemical information science, cover-
ing all computational methods for the representation and 
analysis of chemical structures and data and retrieval of 
chemical information from any source [4, 5]. Importantly, 
in chemoinformatics, information associated with chem-
ical structures mostly relates to molecular properties, in 
particular, biological activities [3, 6]. From the early days 
of chemoinformatics on, molecular similarity analysis has 
been a central theme in the field [7, 8], and similarity of 
compounds was for the most part quantified as an indi-
cator of similar properties [7, 9]. In addition, molecular 
diversity analysis, based on the assessment of distance 
relationships in chemical reference spaces, substantially 
impacted combinatorial chemistry and compound library 
design [10]. Taking these aspects into consideration, the 
chemoinformatics spectrum should also cover methods 
for deriving and navigating chemical space, the predic-
tion of biological activity (and other molecular proper-
ties) from chemical structure, and compound design [6, 
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11], rendering the boundaries between chemoinformat-
ics, molecular modeling, and drug design rather fluid.

In drug discovery, in addition to data analysis and 
warehousing, chemoinformatics covers all computational 
approaches contributing to the efficiency and quality of 
hit identification and early-phase compound develop-
ment such as virtual screening, data mining via machine 
learning, molecular design, and quantitative structure-
activity relationship (QSAR) methods. Furthermore, 
more specialized approaches such as computational 
polypharmacology or the prediction of adverse drug  side 
effects also fall into the chemoinformatics spectrum.

Furthermore, computational synthesis planning was 
from the beginning a part of chemoinformatics [12]. 
Accordingly, scientific origins of chemoinformatics can 
be traced back to the late 1950s and early 1960, long 
before the discipline was formally established, when sub-
structure-based similarity, QSAR, and synthesis design 
methods were beginning to be introduced [3, 9, 12].

Discussion
Two characteristic features of the chemoinformatics 
field are its conceptual link to chemical information sci-
ence and wide methodological sprectrum, as described 
above. A third one is its data-oriented nature, essentially 
paralleling the development and growth of bioinformat-
ics. Unprecedented volumes of compound structures and 
data became first available in the heydays of combina-
torial chemistry during the 1990s. The ensuing need to 
manage large amounts of chemical data, quickly exceed-
ing the capacity of traditional data infrastructures in 
drug discovery environments, was one of the driving 
forces behind the inception and development of chemo-
informatics as a discipline [1, 11]. The early data deluge 
in the 1990s was followed by exponential growth in pub-
licly available compounds and activity data beginning 
in the mid 2000s [13] and, more recently, the wealth of 
data originating from artificial intelligence (AI)-driven 
approaches such as generative modeling [14], advanced 
synthesis design [15], or screening of ultra-large virtual 
libraries [16]. The generation of computational workflows 
and infrastructures for data processing and design of 
databases have always been an integral part of chemoin-
formatics, as much as the analysis of chemical space and 
the search for new active compounds using a variety of 
methods including machine learning. Notably, machine 
learning has been a key component of this evolving field 
since the early 1990s.

The foundation of chemoinformatics in drug discovery, 
as reflected by Frank Brown’s original definition, largely 
resulted from the need of the pharmaceutical indus-
try to conduct drug discovery research in the presence 
of strong data growth, build more extensive database 

structures, and increase the efficiency of compound 
and data processing, especially with the advent of high-
throughput technologies [11]. Therefore, much of the 
groundbreaking work in chemoinformatics including 
method development was carried out in drug discovery 
settings, often with limited publication opportunities, 
due to the dominant proprietary nature of pharmaceuti-
cal research. This had consequences for the development 
of chemoinformatics as a scientific discipline. Aca-
demic institutions and major funding agencies perceived 
chemoinformatics mostly as an industrial affair, lead-
ing to reluctance of (traditionally conservative) chemis-
try departments to establish new faculty positions and 
integrate chemoinformatics into their curricula. Equally 
important, the early pharma-centric view of chemoinfor-
mations also led to the absence of stable public funding 
sources for this evolving field, expecting pharma compa-
nies to pay the price for what they were for the most part 
interested in. While collaborations between industry and 
academia are a part of the chemoinformatics culture, 
reluctance of accepting chemoinformatics as an evolving 
discipline in academic settings and the absence of sta-
ble funding sources have made it difficult to this date for 
young investigators to pursue an academic career in this 
field and have also limited opportunities for chemoinfor-
matics education. While the academic chemoinformatics 
community expanded over time, partly through investi-
gators moving from drug discovery to academia, com-
pared to bioinformatics, it remained small, with limited 
impact on the development of new academic initiatives 
and structures, especially in chemistry. Over time, chem-
oinformatics has entered new territories such as material 
and nano science or industrial process control, but this 
has not substantially changed its image as a niche disci-
pline (albeit a scientifically exciting one!), which must be 
taken into consideration when judging the development 
of this field.

Any of the scientific areas comprising the chemoinfor-
matics spectrum has its milestone events, as discussed 
in separate contributions composing this special issue. 
Moreover, viewing the chemoinformatics field globally, 
there are a number of developments and initiatives that 
have been -and continue to be- critically important for 
its development. While pharma companies have their 
own and mostly proprietary data, academic research 
in chemoinformatics and published methodological 
advances largely depend on the availability of data in 
the public domain. Accordingly, major public reposito-
ries of compounds and activity data such as ChEMBL 
[17], BindingDB [18], PubChem [19], or ZINC [20], 
complemented by large protein information resources 
such as UniProt [21], have been critically important for 
advancing chemoinformatics. Furthermore, open science 
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initiatives involving collaborative efforts between indus-
try and academia are crucial for further increasing the 
impact of chemoinformatics. Noteworthy examples 
include the pharma-driven generation of joint public 
compound data sets for protein kinase research [22, 23], 
the European Research EU-OPENSCREEN platform for 
collaborative biological screening and hit identification 
[24], or Boehringer Ingelheim’s open innovation portal 
opnMe.com that makes extensively characterized tool 
compounds available for academic research [25]. Equally 
important to databases and open science initiatives are 
open source collections of software tools and libraries 
such as RDKit [26], Scikit-learn [27], PyTorch [28], Ten-
sorFlow [29], or Keras [30], including major contribu-
tions from companies such as Google [29, 30].

For the evolving chemoinformatics field, establishing 
a publication culture was another essential requirement. 
The Journal of Chemical Information and Computer Sci-
ences (JCICS), which succeeded the Journal of Chemical 
Documentation in 1975, became for long the core pub-
lication venue, with a strong focus on chemical infor-
mation. In 2005, it was transformed into the Journal of 
Chemical Theory and Computation and the Journal of 
Chemical Information and Modeling that substantially 
widened its scope compared to JCICS. Other core jour-
nals for chemoinformatics include Molecular Informat-
ics (succeeding QSAR & Combinatorial Science in 2010) 
and the Journal of Cheminformatics that was launched in 
2009, became an open access journal in 2015, and argu-
ably has the strongest impact on the field at present.

Education in chemoinformatics represents a critical 
issue, as mentioned above. Trained chemoinformaticians 
are in high demand by the pharmaceutical and chemi-
cal industries, but educational opportunities are limited. 
Beginning in the early 2000s, master programs in chemo-
informatics were initiated [31, 32], the first one at the Uni-
versity of Sheffield (Prof. Peter Willett), another one at the 
University of Strasbourg, and one in the US at Indiana 
University, accompanied by programs at smaller schools, 
also for undergraduate education [31, 32]. However, most 
of the bachelor and master programs in chemoinformat-
ics have not been sustainable, with the exception of the 
program at the University of Strasbourg (Prof.  Alexandre 
Varnek), which has further expanded over the years. While 
chemoinformatics courses are offered in a few chemistry 
or chemical engineering programs, or as a specialization in 
bioinformatics curricula, most of  the scientific training is 
carried out during PhD studies in a limited number of aca-
demic centers worldwide. Furthermore, interfacing educa-
tion and research, schools in chemoinformatics established 
in Obernai/Strasbourg (Prof. Alexandre Varnek) [33] and 
Tokyo/Nara (Prof. Kimito Funatsu) [34], bringing together 
students and investigators from academia and industry, 

have been cornerstones for the further development of the 
chemoinformatics field and recently been complemented 
by an online school covering Latin America (Prof. José L. 
Medina-Franco) [35].

Conclusion and outlook
Chemoinformatics has evolved as a scientific discipline at 
interfaces between drug discovery, chemistry, computer 
science, and information technology. A hallmark of this 
field is its wide methodological spectrum. A global view of 
chemoinformatics reveals a number of developments that 
have been of critical importance for shaping this field and 
sustaining its development. Although the methodological 
foundations of and challenges for chemo- and bioinformat-
ics are very similar, despite the diversity of applications, 
chemoinformatics has essentially remained to be a niche 
discipline, much smaller than bioinformatics on a global 
scale. This is largely a consequence of its roots in pharma 
environments and the ensuing reluctance of chemistry 
departments to integrate chemoinformatics into their 
traditional curricula, in contrast to theoretical chemis-
try. However, the times are changing. In particular, in the 
AI era, it is no longer conceivable how next generations 
of chemists (or other scientists) might be able to function 
without at least basic skills in informatics and data science. 
Hence, while research in chemoinformatics continues to 
be as exciting as it has been over the years, if not more so, 
there are good reasons to anticipate that the field and its 
academic presence will further expand in the near future 
and increase its impact on chemistry and beyond.
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