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Abstract 

In the field of chemical structure recognition, the task of converting molecular images into machine-readable data 
formats such as SMILES string stands as a significant challenge, primarily due to the varied drawing styles and con-
ventions prevalent in chemical literature. To bridge this gap, we proposed MolNexTR, a novel image-to-graph deep 
learning model that collaborates to fuse the strengths of ConvNext, a powerful Convolutional Neural Network vari-
ant, and Vision-TRansformer. This integration facilitates a more detailed extraction of both local and global features 
from molecular images. MolNexTR can predict atoms and bonds simultaneously and understand their layout rules. It 
also excels at flexibly integrating symbolic chemistry principles to discern chirality and decipher abbreviated struc-
tures. We further incorporate a series of advanced algorithms, including an improved data augmentation module, 
an image contamination module, and a post-processing module for getting the final SMILES output. These modules 
cooperate to enhance the model’s robustness to diverse styles of molecular images found in real literature. In our test 
sets, MolNexTR has demonstrated superior performance, achieving an accuracy rate of 81–97%, marking a significant 
advancement in the domain of molecular structure recognition.

Scientific contribution
MolNexTR is a novel image-to-graph model that incorporates a unique dual-stream encoder to extract complex 
molecular image features, and combines chemical rules to predict atoms and bonds while understanding atom 
and bond layout rules. In addition, it employs a series of novel augmentation algorithms to significantly enhance 
the robustness and performance of the model.

Keywords  Chemical structure recognition, Deep learning, ConvNext, Transformer

Introduction
In recent years, with the widespread development of 
deep neural networks, the performance of optical rec-
ognition tasks has significantly improved. However, the 
recognition of graphical or weakly structured informa-
tion, such as molecular structure images, remains a chal-
lenging problem. In chemical literatures, molecules are 
usually represented in the form of 2D images. First, the 
drawing styles of molecules (atomic label fonts, bond 
drawing styles, etc.) are very diverse and not fully stand-
ardized among publishers. Figure 1 shows three different 
drawing styles of the same molecule. Second, molecules 
are often drawn as Markush structures. There are no gen-
eral guidelines for the Markush structure, which leads 
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to much variation in the Markush representation. Third, 
there are instances where authors of chemical papers 
employ an artistic flair in representing chemical struc-
tures. Even experienced chemists can sometimes strug-
gle to understand these more unusual representations. 
For the reasons mentioned above, the existence of a wide 
variety of styles in molecular images makes the task of 
translating these images into machine-understandable 
molecular structures complex and challenging.

Previous work has demonstrated that it is possible to 
train convolutional neural network (CNN)-based or 
vision-transformer (ViT)-based models [1–8] to perform 
well in some specific styles. However, their robustness 
and generalization are not guaranteed across so many 
drawing styles. Moreover, it is impossible to guarantee 
that the training data contains all possible styles and pat-
terns. Furthermore, ViT-based methods have limitations 
in translation invariance and local feature representa-
tion, and CNN-based methods have limitations in global 
feature representation. Both local and global features are 
crucial components for molecular structure recognition, 
since both the information of the atoms themselves and 
the information between the atoms are essential. In the 
medical imaging field, some advanced CNN–ViT hybrid 
architectures have been proposed to address this problem 
[9–13]. However, such methods have not yet emerged in 
the field of molecular structure recognition.

In this work, we aim to enhance the robustness and 
generalization of the molecular structure recogni-
tion model by enhancing its feature extraction ability 
and augmentation strategies, which can deal with any 
molecular images that may appear in the real literature. 
We propose MolNexTR (Molecular convNext-TRans-
former), which is defined as a graph generation model. 
The model follows the encoder-decoder architecture, 
takes three-channel molecular images as input, outputs 
molecular graph structure prediction, and can be eas-
ily converted to machine-readable data formats such as 

simplified molecular-input line-entry system (SMILES) 
[14]. The detailed steps are as follows. First, in the data 
pre-processing stage, we propose an image contami-
nation augmentation strategy to simulate the interfer-
ence molecular images (containing other words or other 
molecular fragments) from real literature. We also pro-
pose a series of data augmentation strategies to generate 
images with different drawing styles during training. Sec-
ond, in the encoder stage, we propose a novel combined 
CNN and ViT molecular image encoder network that 
is aware of both local atom information representation 
and long-range interatomic feature dependencies in the 
learning process. Third, in the decoder stage, we com-
bine the Pix2seq and Relationformer architecture [15, 
16], using an autoregressive decoder to predict atoms and 
their coordinates as a sequence and predict the chemical 
bonds between the atoms, composing the 2D molecular 
graph. Finally, we include chemical knowledge as sym-
bolic constraints to the model, such as determining the 
chirality of atoms from the predicted pattern, so that it 
can accurately recognize complex chemical molecules. 
An algorithm is used to resolve abbreviated functional 
groups commonly found in molecular images. We also 
designed an error correction algorithm to improve the 
accuracy of the model for more complex abbreviated 
functional groups.

MolNexTR combines the advantages of deep learn-
ing model-based and chemical rule-based approaches. It 
combines the advantages of CNN and ViT for local infor-
mation representation extraction and global informa-
tion extraction, making it better able to deal with various 
styles of molecular images. It is also more robust to vari-
ous disturbances of the image. The chemical rule-based 
approach allows the model to effectively enforce chemi-
cal constraints at inference time. This design allows Mol-
NexTR to robustly identify local atoms and atomic bonds 
and make the most correct predictions using chemical 
rules.

Fig. 1  The same molecule represented by three different styles. a depicts the full molecular structure and does not contain chirality information. b 
and c specify the chirality and use different abbreviations and colors
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Experiments show that MolNexTR outperforms prior 
image-to-SMILES or image-to-graph-based models on 
both in-domain and out-of-domain images and achieves 
strong recognition accuracy (81–97%) on five public 
benchmarks. Meanwhile, on a previously constructed 
new benchmark containing molecular images from jour-
nal publications, MolNexTR significantly outperforms 
the existing methods, which illustrates the excellent 
generalization of MolNexTR. In addition, MolNexTR is 
more robust than existing methods in handling other dis-
turbances such as low-quality images and input perturba-
tions. The main contributions of this paper are:

•	 We propose a novel combined CNN and ViT molec-
ular image encoder network that leverages both local 
atom information and long-range intermolecular 
dependencies in the learning process.

•	 We propose a transformer-based decoder network 
with two predictive tasks that enable the model to 
not only identify the components of molecules but 
also understand the complex layout rules between 
them.

•	 We propose a series of image and molecular augmen-
tation algorithms that increase the generalization and 
robustness of the model.

•	 Our proposed MolNexTR uniquely integrates deep 
learning model-based techniques with chemical 
rule-based methods in the post-processing part. This 
enables the effective processing of molecular images 
and the enforcement of chemical constraints during 
inference.

•	 Our proposed MolNexTR demonstrates exceptional 
performance on multiple challenging datasets includ-
ing Indigo, ChemDraw, RDKit, CLEF, UOB, JPO, 
USPTO, Staker and ACS.

Related work
Molecular structure identification is a key task in the 
fields of cheminformatics and computational chemistry 
with origins dating back to the last century [17]. It is also 
known as optical chemical structure recognition (OCSR). 
Initially, scholars relied on conventional image-process-
ing methodologies and rule-based systems to discern and 
analyze chemical structures. These basic systems [18–27] 
depended on image binarization, line smoothing, vec-
torization techniques, and optical character recognition 
(OCR) to identify atoms and bonds within molecular 
images. Nonetheless, these frameworks typically needed 
manual rules and heuristic approaches created by chem-
ists to tackle diverse scenarios, constraining their wide-
spread applicability and accuracy to some extent. As time 
progressed, the open-source community contributed 

several tools [18, 28], addressing newfound challenges 
in molecular recognition, such as bridge bond identifica-
tion. Though these systems demonstrated commendable 
performance on patent images, their accuracy decreased 
when dealing with the multifaceted images of journal 
articles.

With the rapid evolution of deep learning and neural 
network technologies in recent years, researchers have 
embarked on exploring novel methodologies for molecu-
lar structure recognition. Notably, by employing a convo-
lutional neural network and a recurrent neural network 
(RNN), researchers devised a novel image-to-SMILES 
string generation model [1], facilitating automated rec-
ognition of molecular structures. After that, a plethora 
of neural network-based model architectures, such as 
the Inception network [2], ResNet [8], Transformer [4], 
Swin Transformer [3, 5] and pretrained-decoder [7], have 
been proposed to augment the recognition accuracy and 
robustness of these systems.

Despite the success of neural network-based 
approaches, several challenges persist. Prevailing neural 
models often struggle with minuscule image variations 
and noise, and encounter difficulties when grappling with 
stereochemistry and abbreviated structures issues. Con-
currently, since these models predominantly operate on 
SMILES strings rather than explicitly recognizing atoms 
and bonds, integrating chemical rules and constraints 
within them proves challenging.

To mitigate these issues, novel systems like ChemG-
rapher [29] and MolMiner [30] have adopted distinctive 
approaches. They train separate modules to detect atoms, 
bonds, and texts, followed by heuristic-based graph con-
struction, thus allowing the integration of chemical con-
straints during the construction phase. Qian et  al. and 
Yoo et al. have adopted an end-to-end model to generate 
molecular graphs [3, 6]. This approach eschews reliance 
on heuristic methods for connecting local predictions, 
simplifying the model architecture, and paving new ave-
nues for the future evolution of molecular structure rec-
ognition technology.

Our model followed this streamlined architecture, 
further enhancing model performance while bolstering 
robustness and generalization capabilities.

Methods
Problem definition
Molecular structure recognition aims to transfer 
images of individual molecules into their correspond-
ing molecular structures with information of atoms 
and bonds. In our work, we define this problem as a 
graph sequence formulation. Given an image I of a 
single molecular, we transfer it into graph sequence 
SG = (SM , SN ) that represents molecular structures, 
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where SM = [M1,M2, . . . ,Mn] is the atoms sequence and 
SN = [N1,N2, . . . ,Nn] is the bond sets sequence. Spe-
cifically, Mn = (ln, xn, yn) is the definition of each atom, 
ln is the corresponding SMILES string of the atom and 
(xn, yn) is the 2D coordinates of the atom in the image. 
Nn = [mn,1T ,mn,2T , . . . ,mn,nT ] is the set of bonds of 
each atom, mn,1T  means the nth atom is connected to the 
1st atom with bond T, where T is the set of bond types 
that represents a different type of bonds (e.g., single, dou-
ble, solid wedge, dashed wedge, or none). Finally, it can 
be easily converted into molecular graphs and standard 
data formats.

Data augmentation
We first design a series of data augmentation methods 
for both images and molecules before the train data is 
fed into the model. The train data construction details 
can be found in “Dataset” section. The data augmentation 
include several augmentation methods and an image con-
tamination algorithm, which allowed the training data to 
cover a wide variety of styles and chemical patterns in the 
real literature, as well as possible interference.

Rendering augmentation
In the process of rendering molecular images, we ran-
domly render changes in the style and geometry of the 
molecules. It provides coverage for different drawing 
styles, improving the robustness of the model.

To ensure the variety of rendering styles, we randomly 
selected one of RDKit [31] and Indigo [32] as the ren-
dering tools and modified the source code to obtain the 
atomic coordinates. We randomly use options in both 
tools such as various relative thicknesses, various bond-
line widths, various font families and sizes various dis-
tances between lines in double and triple bonds and 
different label modes, and visible implicit hydrogens.

Image augmentation
After completing Render Augmentation, we further 
applied some perturbations to the molecular images. We 
applied the following image augmentation methods:

•	 Rotate by a random angle,
•	 Crop each side of the image,
•	 Pad one side of the image,
•	 Blur the image,
•	 Downscale the image,
•	 Randomly compress, and enlarge Images,
•	 Add Gaussian noise to the image,
•	 Add salt-and-pepper noise to the image.

Similar to rendering-based augmentation, this step also 
aims to increase the style diversity of the training data 
and improve the robustness of the model.

Molecular augmentation
In most chemistry literature, authors map molecules with 
various functional groups abbreviations and R-group 
substituents. However, when rendering images using 
RDKit or Indigo, functional groups or R-groups are 
never included. To generate molecules with such abbre-
viations and substituents, we created a list of more than 
100 common functional groups with their corresponding 
abbreviations. Augmenting algorithms randomly replace 
functional groups with abbreviations in molecules to 
generate augmented datasets. Specifically, in the process 
of molecular augmentation, if a functional group exists 
in a molecule, we randomly replace this functional group 
with the corresponding abbreviation in the list accord-
ing to a given probability. The original structure branch 
is removed from the molecular graph. To provide a vari-
ety of R-groups, we also have a list of R-group labels and 
randomly add them to the molecule. We also randomly 
added noise keys to simulate possible interference in real 
images. Furthermore, another possible style of abbrevia-
tions is chain abbreviations such as CH3CH2NH2, which 
are longer and more complex than the abbreviations in 
the list and are impossible to list completely, but convert-
ing them to SMILES is easy as long as the right characters 
are identified. Therefore, for the model to generalize bet-
ter to those not covered in the list, we also have a col-
lection of chained abbreviation components (e.g., CH3, 
CH2, NH2, OH) that are randomly combined to form a 
complex abbreviation. We believe that this method can 
improve the model capability of OCR so that the model 
can recognize such unseen abbreviations and will not 
ignore abbreviations whose length and complexity are far 
beyond the known abbreviations in the list. The process 
of our molecular augmentation is illustrated in Fig. 2.

 Image contamination algorithm
When capturing images of molecules in real literature, 
they often appear as part of a chemical reaction, so the 
molecular images are often contaminated with other 
details, such as parts of other molecules, text, arrows, 
lines, and other elements. Sometimes these objects are 
too close to the main molecule, or even cross or overlap 
with the main molecule, or they are inside the outline of 
the molecule and cannot be eliminated when the molecu-
lar image is captured. Experiments show that molecular 
predictions often fail because of these contaminations. 
However, the model should be robust to such contami-
nation. To solve this problem, we propose an image con-
tamination algorithm that simulates on typical pollution. 
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The illustration of our image contamination algorithm 
is in Fig.  3. Our algorithm randomly renders common 
pollution noise types: (1) atom noise, (2) bond noise, (3) 
incomplete structural noise, (4) line noise, (5) incomplete 
atom noise, and (6) arrow noise. In order to prevent the 
pollution from overlapping with the main molecule or 
being too close to the main molecule, which leads to the 
instability of the model, when applying the algorithm, we 
first detect the effective pixels of the main molecule and 
then set a minimum distance from all the effective pixels 
to generate all the pollution outside this distance.

These data augmentations ensure that our model is 
trained with data that can cover a wide variety of style 
and chemical patterns as well as possible interference in 
real literature, thus better generalizing to practical usage 
scenarios.

Network overview
The Overview of our MolNexTR is illustrated in Fig. 4. It 
follows the encoder–decoder architecture and consists 
of three main components: (1) For the encoder network, 
we propose a dual-stream encoder (ref.  ″Dual-stream 
encoder network” section), which concurrently com-
bines a CNN and a vision transformer network to cap-
ture local feature dependencies and long-range feature 

dependencies, respectively. Such a design can avoid the 
problems of incomplete atom information (lack of local 
features) and incomplete relationships between atoms 
(lack of global features) as much as possible. (2) After 
the input image is encoded into a feature representation, 
we use a transformer-based decoder with a two-stage 
prediction (atom prediction and bond prediction) as 
the structure decoder network, so that our decoder can 
predict each atom and bond in the molecule, as well as 
their geometric arrangement. (3) Afterward, we employ 
a post-processing module to ensure that the model can 
accurately and comprehensively reconstruct structures of 
various molecular styles. Finally, these structures can be 
easily converted into a SMILES string, a smiles arbitrary 
target specification (SMARTS) string, or a MOLfile [33].

Dual‑stream encoder network
The CNN stream
The CNN stream is utilized to capture short-range feature 
dependencies of the given image. To this end, we choose 
ConvNext [34], an efficient and powerful backbone that 
comprises of one convolutional stem and four Con-
vNext modules, where each module has a scale dimen-
sion of 4. As illustrated in the top of Fig.  4a, ConvNext 
is a variant of the classical ResNet [35] that employs the 

Fig. 2  The illustration of the molecular augmentation. The Molecular Augmentation consists of four main actions: (1) replace functional group, (2) 
add complex abbreviations, (3) add C bond, (4) add R-group

Fig. 3  The illustration of the image contamination algorithm. The Contamination Algorithm consists of six main actions which are (1) add atom 
noise, (2) add bond noise, (3) add incomplete structural noise, (4) add line noise, (5) add incomplete atom noise, and (6) add arrow noise
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split attention mechanism to capture multi-scale fea-
ture representations. Based on ConvNext, the convolu-
tional backbone network can generate feature maps Fk

c  
with a spatial resolution of H/4 ×W /4 , H/8×W /8 , 
H/16×W /16 , and H/32×W /32 , respectively. Unless 
stated otherwise, we follow the default architecture of the 
ConvNext backbone as described in the referenced paper.

The ViTs stream
In addition to short-range feature dependencies, long-
range feature dependencies between image patches also 
matter for molecular recognition. To this end, the long-
range feature dependencies in different feature scales 
are captured by the ViTs stream [36], which is com-
posed of multiple parallel transformer blocks that 
receive feature patches under different scales as input. 
All transformer blocks share a similar structure, con-
sisting of patch embedding layers and transformer 
encoding layers. As illustrated in the bottom of Fig. 4a, 
it shows the implementation process of ViT on the 
input feature map Fc1 ∈ R

H
4 ×

W
4 ×C . Firstly, the input fea-

ture map is divided into HW
16p2

 patches with size p× p , 
and each patch is flattened into a vector vn ∈ R

p2×C . In 
this work, four parallel transformer blocks are used, 
which receive feature patches of size p = 4, 8, 16, 32 . 
Then, a linear projection layer is applied to each patch 

vector to obtain the patch embedding en ∈ R
C . The 

patch embeddings, together with position embeddings, 
are then fed into the transformer encoding layers to 
obtain the output. Each encoding layer comprises a 
lightweight multi-head self-attention (MHSA) layer and 
a feed-forward network (FFN). The MHSA layer 
receives a truncated query Q, key K, and value V as 
input and computes the attention score A ∈ R

N×N  as 
follows:

where N is the size of the patch number and dk is the 
dimension of the key. Empirically, truncating the fea-
ture vectors within a certain range does not diminish the 
model’s recognition performance. Instead, it can signifi-
cantly reduce the computational cost. The output of the 
MHSA layer is then fed into the FFN to obtain the output 
Ft:

where FFN is the feed-forward network with two 3× 3 
convolutional layers with the ReLU activation function. 
Finally, Ft is reshaped into the same size as F1c to obtain 
the output. The other transformer blocks are processed 
similarly. All outputs of the transformer blocks are con-
catenated along the channel dimension and fed into the 
convolutional layer to obtain the final output.

(1)A = softmax

(

QKT

√

dk

)

V ,

(2)Ft = FFN(A),

Fig. 4  Overview of our MolNexTR model. The molecular image is first encoded with the dual-stream encoder. Then a transformer-based decoder 
is applied for sequential atom and bond prediction. Finally, the post-processing modules ensure that the various molecular structures can be 
accurately converted to SMILES, SMART or MOLfile formats
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Structure decoder network
Transformer decoder
As Shown in Fig.  4b, we chose the classic transformer 
decoder as our main decoder. Specifically, it has 6 Trans-
former blocks with 8 attention heads, a hidden dimension 
of 256, and Sinusoidal position embedding.

During the decoding phase, we formulate the transfor-
mation from image to graph sequence as an autoregres-
sive conditional probability generation:

where P(SM | I) and P(SN | SM , I) represent the atom 
prediction and bond prediction respectively.

Atom prediction
The atom prediction is crucial because it establishes the 
foundation of the molecular structure by identifying the 
types of atoms present and their coordinates, which is a 
precursor to understanding the molecule’s geometry. As 
Shown in Fig.  4c, our model predicts atoms and their 
corresponding coordinates simultaneously by two heads. 
First we construct a sequence of specific tokens as the 
output:

where each atom Mi is represented by three tokens 
li, xi, yi . li is the SMILES string of the atom itself, includ-
ing the element symbol, implicit hydrogen, charge, and 
all necessary information. xi and yi represent the 2D 
coordinates of this atom in the original molecular image. 
Then the model generates the sequence autoregressively 
by a product of conditional probabilities:

Bond prediction
The bond prediction stage builds upon the atom predic-
tion by determining how the identified atoms are con-
nected. This step is fundamental to understanding the 
molecule’s topology and its chemical properties. Our 
model predicts the bonds between each pair of atoms 
as illustrated in Fig.  4d. Similar to the atom prediction, 
we also construct a sequence as the output of bond 
prediction:

where Ni represents the set of bonds between the 
ith atom and every other atom. It can also be viewed 

(3)P(SG | I) = P(SM | I)P(SN | SM , I)

(4)
SM = [M1,M2, . . . ,Mn] = [l1, x1, y1, l2, x2, y2, . . . , ln, xn, yn]

(5)P(SM | I) =

S
M

∏

i=1

P
(

S
M

i | SM<i, I
)

(6)
SN = [N1,N2, . . . ,Nn],
Nn = [mn,1T ,mn,2T , . . . ,mn,nT ]

as an n× 1 vector. For each atom Mi , Ni is the hid-
den state derived from the final token in the decod-
er’s output. mi,jT  denotes that the ith atom is 
connected to the jth atom by a type of bond T. 
T = {“None”, “single”, “double”, “triple”, “aromatic”, “s.w”, “d.w”} 
which contains all types of bonds that may appear in the 
image, where “None” means no bond, “s.w” and “d.w” 
mean solid wedge and dashed wedge respectively.

For the bond prediction between each pair of atoms Mi 
and Mj , we formulate it as a product of conditional prob-
abilities in an autoregressive generation manner:

The combination of these two predictive tasks within a 
multi-task learning framework ensures that the model 
not only identifies the components of the molecule but 
also understands the intricate relationships between 
them, leading to a comprehensive and accurate molecular 
graph. This graph is then post-processed to correct any 
inconsistencies and translated into a SMILES string.

Post‑processing module
After the molecular graph is obtained, the final SMILES 
prediction is obtained through the utilization of a post-
processing module. In the context of graph-to-SMILES 
translation, our focus lies on two crucial aspects: stereo-
chemistry and abbreviations.

Stereochemical discrimination module
The stereochemistry of organic molecules exerts a signifi-
cant impact on their structure and properties. However, 
recognizing stereochemistry poses challenges for neural 
models. In SMILES notation, chirality is indicated as an 
atomic property, with “@” or “@@” following an atom 
label to describe the relative spatial arrangement of con-
nected bonds, following their order of listing. There’s no 
direct mapping between image patterns and the presence 
of “@” or “@@”. Furthermore, it becomes even more chal-
lenging to discriminate when there are complex func-
tional groups connected to the chiral center.

The comprehension of stereochemistry necessitates 
the application of geometric reasoning in three-dimen-
sional space and chemical knowledge, skills that are not 
well-suited for conventional two-dimensional neural 
networks. We propose a stereochemical discrimination 
module that applies chemical rules to explicitly define 
stereochemistry using predicted atoms, coordinates, and 
bonds.

For a chirality prediction, we (1) first get atom labels 
and corresponding coordinates and every chiral center, 
(2) then identify bonds linked to each chiral center, (3) if 

(7)P(SN | SM , I) =

n
∏

i=1

n
∏

j=1

P(mi,jT | SM , I)
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a functional group exists around chiral center, expand its 
first two atoms, (4) and finally infer their relative order 
using predicted atom coordinates, and explicitly assign 
chirality types. This step can be easily accomplished using 
RDKit tools. Therefore, our approach, which combines 
neural networks with traditional chemical rules, can 
more accurately recognize stereochemistry compared to 
using a standalone neural network.

Abbreviation expansion and self‑correction module
Abbreviations are also a challenging part of molecu-
lar recognition. When describing molecular structures, 
abbreviations are commonly used to represent complex 
functional groups, such as “Ph” for phenyl, “Ac” for acetyl, 
and “Bn” for benzyl. These abbreviations act as “super-
atoms” in molecular diagrams.

To deduce the complete molecular structure from 
these abbreviated forms, additional processing steps are 
required. Current methodologies, whether rule-based or 
machine learning-driven, typically involve creating a list 
of common abbreviations along with their correspond-
ing functional group structures and SMILES, using this 
list to substitute the superatoms during model inference. 
However, due to the combinatorial nature of chemical 
abbreviations, relying solely on a list to cover all possible 
combinations is impractical. For instance, combinations 
such as “BnO” or “OBn” refer to the same structure but 
in a different order, or more random and longer abbrevia-
tions such as “NHCOOH”, although considered hypera-
tomic, are almost impossible to enumerate exhaustively.

In practice, we also found that if the model makes 
minor mistakes in recognizing hyperatomic characters 
such as identifying “OTBMS” as “OTTBMS”, it can lead 
to incorrect prediction of the entire molecular structure.

We propose an abbreviation expansion and self-cor-
rection module, which is more generalized and robust 
than previous methods. Although we also have a list of 
common abbreviations and their corresponding SMILES, 
our approach can also be extended to unseen forms. In 
an abbreviation expansion process, we first (1) check 
whether the superatom is in the list, and if so, we directly 
output the corresponding SMILES; (2) otherwise, we 
split the superatom symbol into atomic characters, such 
as expanding “O2CH3” into “OOCHHH”. (3) After deriv-
ing the list of atoms, we greedily connect them based on 
valence bonds according to the SMILES formalism until 
their valence bonds are full, at which point the output is 
the final SMILES. (4) If SMILES cannot be successfully 
output, we will compare the original abbreviation sym-
bol with every abbreviation in the list, find the abbrevia-
tion with the highest similarity, and replace it with the 

corresponding SMILES if the similarity is greater than 
the set threshold σ = 0.8.

For the prediction of a single molecule, the final 
SMILES is output after the stereochemistry of all chiral 
centers have been discriminated and all abbreviations 
have been expanded.

Experiments
Dataset
Train data
Training data in a variety of styles can help improve the 
robustness of the model, so our training dataset contains 
both Synthetic and real data, which comes from two 
main sources.
PubChem PubChem database [37] contains about 

100M molecules. We use this database as the synthetic 
training data. However, they are not all required, we esti-
mate that we need about 1M structures. We randomly 
select 1M molecules from the database and render their 
images using chemical tools.
USPTO Following previous work [3], we collect 0.68M 

examples from USPTO [38] which contain molecular 
images and structure labels. We use this dataset as the 
real training data. Coordinate annotations of the data are 
obtained by normalizing the relative coordinates avail-
able in MOLfiles according to the image size. This dataset 
is noisy and contains a variety of styles, which is closer to 
the actual use of the model than the synthetic data.

Test data
We evaluate our MolNexTR on six public realistic data-
sets, which are CLEF, UOB, JPO, USPTO, Staker, and 
ACS. The ACS dataset is a new dataset collected by [3] 
with 331 molecular images taken from ACS publications. 
Compared to other datasets, it is more diverse in terms of 
drawing styles and the use of abbreviations. Furthermore, 

Table 1  Summary of the test datasets

✓ means inclusion, ✗ means no inclusion

Dataset Type Total number 
of images

Abbreviations Chirality

Indigo Synthetic 5719 ✗ ✓
ChemDraw Synthetic 5719 ✗ ✓
RDKit synthetic 5719 ✗ ✓
CLEF Real 992 ✓ ✓
UOB Real 5740 ✓ ✗
JPO Real 450 ✗ ✗
USPTO Real 5719 ✓ ✓
Staker Real 50,000 ✓ ✓
ACS Real 331 ✓ ✓
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we created three synthetic datasets, generated by indigo, 
RDKit, and ChemiDraw, respectively. They were ren-
dered from the same dataset of 5719 molecules. Table 1 
presents the details of the test sets we used.

Evaluation metrics
Following [1, 6, 7], the SMILES sequence exact match-
ing accuracy is used as the primary accuracy evaluation 
metric. Specifically, we first transform both the final 
predicted SMILES and the ground truth into canonical 
SMILES, a unique molecular representation, and then 
calculate their exact sequence matching accuracy. For 
R-groups, we use (*) instead of R, and for other R-groups 
such as R1, we use (1*) instead. For stereochemistry, we 
only consider matching tetrahedral chirality and ignore 
other forms of stereoisomerism, as the information is 
usually not present in the ground truth.

Implementation details
We optimized our model using the ADAM optimizer 
with a maximum learning rate of 3e−4 and a linear 
warmup for 5% steps. The default batch size was set to 
256 with the image size of 384 × 384 . The CNN stream 
encoder was initialized with the pre-trained weights 
of ConvNext on ImageNet and then fine-tuned for 
40 epochs on 10 NVIDIA RTX 3090 GPUs. The decoder 
was a 6-layer Transformer [39] with 8 attention heads, 
a hidden dimension of 256, and sinusoidal positional 
encoding. The dropout probability was set to 0.1.

Results and discussion
Comparison with current methods
We compare our MolNexTR with the current meth-
ods including rule-based OSRA (Version 2.1.3) [18] and 
MolVec (Version 0.9.8) [40], and deep learning-based 

models Img2Mol [7], DECIMER (Version 2.1.0) [4], 
SwinOCSR [5], MSE-DUDL [1], ChemGrapher [29], 
Image2Graph [6], and MolScribe (The best checkpoint) 
[3]. We directly use the results reported in previous 
works. The results are shown in Table 2. The rules-based 
systems MolVec and OSRA achieve good performance 
on CLEF, UOB, and USPTO, but decline on JPO due to 
the Japanese characters involved. The performance on 
ACS decreases more due to the extremely diverse draw-
ing styles of this dataset. However, they dropped signifi-
cantly on Staker, possibly due to the low resolution of this 
dataset. Among deep learning methods, we can observe 
that for synthetic datasets, MolNexTR achieves 97.8% in 
Indigo, 95.1% in ChemDraw and 96.4% in RDKit, which 
outperforms the second-best method by 0.3%, 1.3% and 
1.8% respectively. On realistic datasets, our MolNexTR 
achieves 90.4% in CLEF, 88.5% in UOB, 82.1% in JPO, 
93.8% in USPTO, and 88.3% in Staker, respectively, which 
outperforms the second-best method by 1.1%, 0.3%, 4.4%, 
1.2% and 1.4%, respectively, validating the superior per-
formance of our innovative model architecture. Notably, 
our MolNexTR achieves 81.9% in ACS, which outper-
forms the second-best method by 10.0%, which is a sig-
nificant improvement. Compared with other datasets, the 
ACS has more diverse image styles and contains much 
more contamination. This proves that our series of data 
augmentation methods solve these problems well and 
improve the generalization and robustness of the model.

We also evaluate the model on perturbed datasets 
with some image transform following the setup of Clev-
ert et  al., the results are shown on the left of Table  3. 
MolNexTR performs better than the current methods, 
and the accuracy decays less. We further construct 
another perturbed dataset with curved arrows on it 
to simulate the molecules in the mechanism images, 

Table 2  Comparison of our model’s results with current methods across various test sets

Scores are in overall SMILES sequence exact matching accuracy (%). “–” denotes that the results are unavailable. Bold represents the best performance and underline 
represents the second-best performance

Base Methods Synthetic Realistic

Indigo ChemDraw RDKit CLEF UOB JPO USPTO Staker ACS

Rule-based MoIVec [40] 95.4 87.9 88.7 82.8 80.6 67.8 88.4 0.8 47.4

OSRA [18] 95.0 87.3 88.2 84.6 78.5 55.3 87.4 0.0 55.3

Deep learning-based MSE-DUDL [1] – – – – – – – 77.0 –

ChemGrapher [29] – – – – 70.6 – – – –

Image2Graph [6] – – – 51.7 82.9 50.3 55.1 – –

SwinOCSR [5] 74.0 79.6 77.3 30.0 44.9 13.8 27.9 – 27.5

Img2Mol [7] 58.9 46.4 44.2 18.3 68.7 16.4 26.3 17.0 23.0

DECIMER [2] 69.6 86.1 82.3 62.7 88.2 55.2 41.1 40.8 46.5

MolScribe [3] 97.5 93.8 94.6 88.3 87.9 77.7 92.6 86.9 71.9

Ours 97.8 95.1 96.4 90.4 88.5 82.1 93.8 88.3 81.9
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which is also a molecular pattern commonly found in 
the real literature, the results are shown on the right of 
Table 3. MolNexTR can better recognize such molecu-
lar patterns without being affected by the arrows in the 
molecules though we haven’t included such molecules 
in the training process. These results further demon-
strate that our model has excellent robustness to deal 
with disturbances.

We further compare the performance on molecules 
with chirality and abbreviation between MolNexTR and 
the MolScribe, which performs the best on multiple 
test datasets on average among current methods. The 
results are shown in Fig.  5. MolNexTR shows better 
performance, especially on datasets with more diverse 
drawing styles. This is because we consider the pres-
ence of functional groups when judging chirality, and 
obtain the information of functional groups before 
judging chirality, which is not considered by MolScribe. 
When expanding abbreviations, the self-correction 
mechanism can improve the accuracy of judgment. On 

the other hand, our data augmentation method enables 
the model to have a better OCR ability.

Ablation study
We conduct an ablation study to investigate the effective-
ness of the dual-stream encoder and the effectiveness of 
each component of the data augmentation algorithm in 
MolNexTR. All ablation studies are conducted on Indigo, 
ChemDraw, CLEF, and ACS.

Effectiveness of dual‑stream encoder
We conduct ablation studies to explore the effective-
ness of each component in the encoder in MolNexTR. 
In Table  4, we compare the performance of MolNexTR 
variants on four datasets: (1) CNN, only the convolution 
stream; (2) +Single ViT, single patches ViT; (3) +Multiple 
parallel ViTs, the final dual-stream encoder with convo-
lution and Transformer. All the components consistently 
boost the performance by 0.3% and 0.8% in Indigo, 0.7% 
and 0.6% in ChemDraw, 0.6% and 0.8% in CLEF, 0.5% and 

Table 3  Comparison of our model’s results with current methods across various perturbed test sets

Scores are in overall SMILES sequence exact matching accuracy (%). “–” denotes that the results are unavailable. Bold represents the best performance and underline 
represents the second-best performance

Base Methods Perturbed by img transform. Perturbed by curved arrows

CLEF UOB JPO USPTO Staker ACS CLEF UOB JPO USPTO Staker ACS

Rule-based MoIVec [40] 43.7 74.5 22.5 29.7 5.0 10.6 40.8 72.6 20.6 22.9 4.1 5.3

OSRA [18] 11.5 68.3 10.8 4.0 4.6 12.3 – – – – – –

Deep learning-based SwinOCSR [5] 32.2 – – – – – 31.5 – – – – –

Img2Mol [7] 21.1 74.9 8.9 29.7 51.7 8.6 – – – – –

DECIMER [2] 70.6 87.3 34.1 46.4 47.9 20.1 59.8 – 38.5 – – 42.4

MolScribe [3] 90.4 86.7 52.0 92.5 65.0 53.1 87.1 81.6 56.7 88.9 73.0 62.8

Ours 90.4 88.4 71.9 93.2 78.9 68.8 89.5 84.3 67.7 91.2 73.2 70.8

Fig. 5  Comparison of our model’s results with MolScribe on molecules with chirality or abbreviations
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1.1% in ACS, respectively. These findings indicate that the 
evaluated MolNexTR variants can effectively enhance the 
molecular prediction performance of the baseline model. 
Furthermore, our results show that adding multiple 
parallel ViTs on top of a CNN model leads to improved 
performance compared to CNN alone or adding single 
patches ViT. This finding suggests that combining differ-
ent models can lead to better performance than using a 
single model.

Effectiveness of data augmentation algorithm
In this study, we conducted an experimental analysis 
to explore the effectiveness of each component in the 
data augmentation algorithm. The evaluated variants 
include +Render Augmentation, +Image Augmentation, 
+Molecular Augmentation, and +Image Contaminate 
Algorithm. Our results, presented in Table   5, demon-
strate that each of these data augmentations can signifi-
cantly improve the baseline performance. Specifically, 
when applied to the MolNexTR, +Render Aug. (Render 
Augmentation), +Image Aug. (Image Augmentation), 
+Mol Aug. (Molcular Augmentation), and +Img Con-
tam Alg. (Image Contamination Algorithm) led to per-
formance gains of 1.8%, 1.6%, 1.4% and 1.0% in Indigo, 
4.7%, 3.5%, 5.8% and 1.5% in ChemDraw, 4.0%, 2.6%, 
6.9% and 1.3% in CLEF, 4.2%, 3.9%, 6.2% and 6.7% in 
ACS, respectively. We can observe that for the in-domain 
dataset Indigo(which uses the same tools as the training 
data), the data augmentation method does not improve 
the accuracy much. However, once applied to the out-
of-domain dataset, most components of the data aug-
mentation can greatly improve the prediction accuracy, 

especially in the ACS dataset. Although the application 
of the image contamination algorithm has only slight 
improvement on indigo, ChemDraw, and CLEF, it has 
great improvement on ACS datasets with more diverse 
styles and more pollution. It can be said that ACS data 
sets are more closely related to real-world situations, so 
it is still necessary to apply the image contaminate algo-
rithm. The above demonstrates the effectiveness of our 
data augmentation methods. They improve the robust-
ness and generalization of the model that can be better 
applied in the real world.

Qualitative results
Visual comparison with current methods
In Fig. 6, we show some visualizations of the ACS data-
set compared to the second-best method MolScribe. The 
experimental results show that the proposed MolNexTR 
method can accurately predict molecular structure from 
a variety of molecular images with various styles, espe-
cially those with contamination or complex abbrevia-
tions compared to MolScribe. The results demonstrate 
the importance of our series of data augmentation algo-
rithms and abbreviation expansion and self-correction 
modules.

Generalization of MolNexTR
To further verify the generalization of our model, we also 
compared the model with the second-best method on 
some out-domain real hand-drawn molecules and mol-
ecules in mechanism images. Figure 7 shows the visuali-
zations of some hand-drawn molecule images compared 
to the second-best method. Although the pattern of 

Table 4  Ablation study results on the superiority of the dual-stream encoder

✓ means inclusion, ✗ means no inclusion. * means the component achieves significant performance improvement over 0.8% with p < 0.05 via paired t-test

CNN Single ViT Multiple parallel ViTs Indigo ChemDraw CLEF ACS

✓ ✗ ✗ 96.7 93.8 88.8 80.3

✓ ✓ ✗ 97.0+0.3 94.5+0.7 89.4+0.6 80.8+0.5

✓ ✗ ✓ 97.8∗+0.8
95.1+0.6 90.2∗+0.8

81.9∗+1.1

Table 5  Ablation study results on the effectiveness of the data augmentation algorithm

✓ means inclusion, ✗ means no inclusion. * means the component achieves significant performance improvement over 2% with p < 0.05 via paired t-test

Render Aug. Image Aug. Mol Aug. Img Contam 
Alg.

Indigo ChemDraw CLEF ACS

✗ ✗ ✗ ✗ 92.0 80.6 75.4 60.8

✓ ✗ ✗ ✗ 93.8+1.8 85.3∗+4.7
79.4∗+4.0

65.0∗+4.2

✓ ✓ ✗ ✗ 95.4+1.6 88.8∗+3.5
82.0∗+2.6

68.9∗+3.9

✓ ✓ ✓ ✗ 96.8+1.4 93.6∗+5.8
88.9∗+6.9

75.1∗+6.2

✓ ✓ ✓ ✓ 97.8+1.0 95.1+1.5 90.2+1.3 81.9∗+6.7
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hand-drawn molecules is very different from the pattern 
of common molecular images (more random structures, 
more ambiguous atomic symbols, etc.), and we did not 
include any hand-drawn molecules in training, the exper-
imental results show that our model performs better at 
recognizing all the bonds and atomic symbols compared 
to the current methods.

Figure  8 shows the visualizations of some molecules 
in mechanism images compared to the second-best 
method. MolNexTR can better recognize arrow symbols 
present in such molecules and is not affected by them, 
while the other method often obfuscates additional arrow 
or atom symbols as the main part of the molecular and 
outputs wrong predictions. These results prove that Mol-
NexTR has stronger generalization compared to the cur-
rent methods.

Error cases analysis
We selected several cases with incorrect predictions for 
analysis. It is shown in Fig. 9. We can see that MolNexTR 

tends to make wrong predictions for extremely complex 
molecules. The main reasons are these molecules have 
some rare structures, and the number of pixels assigned 
to each atom is low compared to other molecules. There 
are also cases where the drawing style causes the model 
to fail to recognize chirality, such as when dashed and 
solid wedges are replaced by broken lines. In addition, for 
some more complex hand-drawn molecules and mole-
cules in mechanism images, MolNexTR still cannot guar-
antee the output of completely correct prediction results, 
though we did not include such molecules in training. 
We hope that future work can continue to address these 
issues.

Conclusions
In this study, a new network architecture named Mol-
NexTR is proposed for molecular image recogni-
tion. Compared with the advanced molecular image 

Fig. 6  Visualization of our model on the ACS dataset compared to MolScribe
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recognition architectures, MolNexTR achieves bet-
ter recognition accuracy, and has better generalization 
and robustness. The main contribution of this paper is 
the development of a novel two-stream encoder and 
advanced data augmentation algorithms, integrated with 
chemical knowledge, to significantly improve the model’s 
feature extraction capabilities, robustness, and accuracy 
in predicting molecular structures. Experimental results 

on six public datasets verify the performance of the Mol-
NexTR method and the effectiveness of its components.

One limitation is that there is still a lot of room for 
improvement in the accuracy of our model in Recog-
nizing hand-drawn molecules and molecules in mecha-
nism images as we mentioned before. Another is that 
in real literature, R-group information in molecular 
images often appears in other places, such as texts or 
tables [41, 42]. Future work may need to integrate this 

Fig. 7  Visualization of our model on some hand-drawn molecule images compared to MolScribe
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Fig. 8  Visualization of our model on some molecules in mechanism images compared to MolScribe
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information to obtain a more complete molecular 
prediction.
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