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Abstract 

In this work, inspired by the graph transformer, we presented an improved protocol, termed GT-NMR, which inte-
grates 2D molecular graph representation with Transformer architecture, for accurate yet efficient prediction of NMR 
chemical shifts. The effectiveness of the GT-NMR was thoroughly examined with the standard nmrshiftdb2 dataset, 37 
natural products and structural elucidation of 11 pairs of natural products. Systematical analysis affirms that GT-NMR 
outperforms traditional graph-based methods in all aspects, achieving state-of-the-art performance, with the mean 
absolute error of 0.158 and 1.189 ppm in predicting 1H and 13C NMR chemical shifts, respectively, for the standard 
nmrshiftdb2 dataset. Further scrutiny of its practical applications indicates that GT-NMR’s efficacy is closely tied 
to molecular complexity, as quantified by the size-normalized spatial score (nSPS). For relatively simple molecules 
(nSPS < = 27.71), GT-NMR performs comparably to the best density functional while its effectiveness significantly 
diminishes with complex molecules characterized by higher nSPS values (nSPS > = 38.42). This trend is consist-
ent across other graph-based NMR chemical shift prediction methods as well. Therefore, while employing GT-NMR 
or other graph-based methods for the rapid and routine prediction of NMR chemical shifts, it is advisable to utilize 
nSPS to assess their suitability. The source codes and trained model of GT-NMR are publicly available at GitHub.

Scientific contribution
GT-NMR, which combines the 2D molecular graph representation with the Transformer architecture, was imple-
mented for the first time to predict atom-level NMR chemical shifts, achieving state-of-the-art performance. More 
importantly, the reliability of the GT-NMR and graph-based methods was assessed for the first time in terms of molec-
ular complexity, as quantified by the size-normalized spacial score (nSPS). Systematical scrutiny demonstrated that GT-
NMR offer a valuable way for routine application in structural screening and elucidation of relatively simple molecules.

Keywords NMR chemical shifts, Machine learning, Graph transformer, Transformer, Graph neural network, Molecular 
complexity

Introduction
Over the past few decades, nuclear magnetic resonance 
(NMR) spectroscopy has become one of the most pow-
erful tools for the structural elucidation of organic com-
pounds [1, 2]. However, interpreting NMR spectra is 
often complex and heavily reliant on the expertise of 
individual scientists. Consequently, misinterpretations 
of NMR spectra, which subsequently result in incorrect 
structural assignments, have persisted as a recurring 
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challenge [3–5]. In the absence of crystal structures, 
total synthesis has been unequivocally established as a 
key tool for structure elucidation. However, identifying a 
structure via total synthesis is a difficult task, presenting 
significant challenges and costs, especially for molecules 
with complex structure [3]. Quantum chemical calcula-
tions, which serve as an invaluable complement to exper-
iments, can offer sufficient accuracy to discriminate the 
correct structure from a set of putative structures [6–10]. 
Despite their utility, these calculations often require con-
siderable computational resources and time, particularly 
for complex molecules [7, 8]. Hence, there is a pressing 
need to develop methods capable of accurately and effi-
ciently predicting NMR chemical shifts, particularly 
when rapid screening of structures is desired.

It has been generally accepted that the local molecu-
lar environment around a nucleus determines its chemi-
cal shifts. Thus, the empirical Hierarchical Organization 
of Spherical Environments (HOSE codes) [11], by sys-
tematically encoding the local and extended environ-
ment in a spherical manner, has achieved great success 
in the rapid prediction of NMR chemical shifts. In recent 
years, with the support of big data, deep learning (DL) 
techniques have demonstrated superior efficiency and 
accuracy compared to traditional empirical methods, 
and have achieved considerable successes in predict-
ing various properties of molecules [12–17]. By encod-
ing the local and extended environments of a nucleus 
into vector representations, Meiler et  al. developed an 
artificial neural network with a mean deviation as low 
as 1.8 ppm for the prediction of 13C chemical shifts [18]. 
However, a more natural and intuitive representation of 
a molecule in chemistry is a two-dimensional molecular 
graph, where atoms and bonds are treated as nodes and 
edges, respectively. Consequently, graph neural networks 
(GNNs), which have demonstrated substantial improve-
ment in predicting various chemical properties of mol-
ecules [19–24], can be readily applied in the prediction 
of NMR chemical shifts. Jonas and Kuhn [25] reported 
the first instance of utilizing GNN to predict the 1H and 
13C NMR chemical shifts of organic molecules, demon-
strating that GNNs can indeed improve the prediction 
of NMR chemical shifts beyond the capability of con-
ventional approaches. Kwon et al [26] applied a message 
passing neural network [19] (MPNN) with enhanced 
molecular graph representation and achieved better 
prediction performance for the 1H and 13C NMR chemi-
cal shifts of small molecules. Recently, they developed 
a scalable GNN (SG) with sparse graph representations 
and more effective messaging techniques, achieving the 
state-of-the-art (SOTA) performance with mean absolute 
error (MAE) of 0.216 and 1.271 ppm for 1H and 13C NMR 
chemical shifts, respectively [27].

Although chemical shifts are primarily considered as 
local property, long-range effects due to substitutions or 
structural changes can still have non-negligible impacts, 
particularly in conjugated systems [27–29]. Hence, accu-
rate predictions of NMR chemical shifts require con-
siderations of both local chemical environments and 
long-range effects. It is known that popular MPNNs are 
primarily designed to capture local relationship in graph 
structures, and their ability to capture long-range corre-
lations is not as effective as their ability to handle local 
interactions [30, 31]. Moreover, traditional MPNNs 
inherit the limitations of the 1-Weisfeiler-Lehman 
(1-WL) test [32, 33], implying that they may struggle 
with graph structures that 1-WL test cannot differentiate, 
such as cycles with different size or certain types of tree 
structures.

Benefitting from the success of Transformers across 
various fields, extensions of Transformers for graph rep-
resentation, namely Graph Transformers (GTs), have 
achieved significant success [33–37]. A primary motiva-
tion for adopting GTs is to address limitations associ-
ated with classic MPNNs. By integrating the transformer 
architecture into graph-based learning, GTs can inher-
ently capture long-range correlations between nodes 
through the self-attention mechanism while also effec-
tively describing local relationships as in traditional 
MPNNs. This makes them particularly suited for tasks 
where understanding the overall structure of the graph 
is crucial. To date, GTs have been extensively used in 
graph-based tasks [38–40], such as graph-level regres-
sion/classification, node-level classifications and link pre-
dictions. However, node-level regression has not yet been 
implemented to the best of our knowledge. In an effort 
to rapidly predict 1H and 13C NMR chemical shifts, we 
adopted GT to predict atom-level NMR chemical shifts 
by learning from the data, denoted as GT-NMR. The 
effectiveness of the GT-NMR model was thoroughly 
examined in the blind tests, compared with the density 
functional theory (DFT) calculations. More importantly, 
the reliability of the GT-NMR and GCN was assessed for 
the first time in terms of molecular complexity, repre-
sented by the size-normalized spacial score [41] (nSPS). 
This assertion concerning molecular complexity can be 
extended to other graph-based method, providing a val-
uable metric for evaluating their reliability in complex 
molecular systems.

Methods
Dataset
The nmrshiftdb2 used by Jonas and Kuhn [25] was 
employed in this work and can be accessed via https:// 
jchem inf. biome dcent ral. com/ artic les/https:// doi. org/ 10. 
1186/ s13321- 019- 0374-3. Molecules with more than 64 

https://jcheminf.biomedcentral.com/articles/
https://jcheminf.biomedcentral.com/articles/
https://doi.org/10.1186/s13321-019-0374-3
https://doi.org/10.1186/s13321-019-0374-3


Page 3 of 10Chen et al. Journal of Cheminformatics          (2024) 16:132  

atoms were excluded, and the remaining molecules were 
identified with annotated 1H or 13C chemical shifts, con-
taining only the elements of H, C, O, N, P, S, F, and Cl. 
In total, this dataset consists 12,806 molecules annotated 
with 1H chemical shifts and 26,905 molecules annotated 
with 13C chemical shifts. For model training, we used the 
same training set as Jonas and Kuhn [25]. The original 
test set was randomly split into validation and test sets in 
a 1:1 ratio. Consequently, the model was trained on the 
training set, selected against the validation set, and finally 
evaluated on the test set to assess the its effectiveness. 
The statistics of the data sets are listed in Table 1.

GT‑NMR
GT-NMR is a graph-transformer-based architecture 
designed for node-level regression task. It enables end-
to-end learning from graph representation of organic 
molecules to predict the 1H and 13C chemical shifts. For 
the 13C chemical shifts, labels are directly associated with 
the corresponding carbon atoms, while for the 1H chemi-
cal shifts, we used the same implicit treatment [26, 27] 
as adopted in the literature. Specifically, characteristics 

of the carbon atom attached to the hydrogen atom were 
used to train and make predictions of both 1H and 13C 
chemical shifts. Correspondingly, labels of hydrogen 
atoms on methylene were averaged. GT-NMR comprises 
four main modules as shown in Fig.  1: feature encoder, 
positional encoding, graph transformer block and node 
regression prediction head.

Feature encoder
Each molecule is represented as an undirected graph 
G = (V , E) , where V and E denote the set of atoms 
(nodes) and bonds (edges), respectively. The node vec-
tors xi ∈ V and edge vectors ei,j ∈ E are associated with 
heavy atoms and their all possible pairs in the molecule 
since the implicit model is employed. To construct the 
node vectors, atom features used by Jonas and Kuhn [25] 
were adopted. Edge_index instead of traditional adjacency 
matrices was employed to represent bond features as 
edge_index is a preferred choice for implementing GNN 
in PyTorch Geometric [42](PyG), particularly when deal-
ing with complex and large-scale graph data. These features 
were calculated using RDKit [43], and details can be found 

Table 1 Data Statistics

Nmol number of molecules, NnonH number of heavy atoms per molecule, Nbond number of bonds without C-H per molecule

Data set Nmol NnonH Nbond

Train. set Val. set Test set Range Avg. Range Avg.

1H NMR 10,252 1277 1277 [1, 46] 17.01 [0,48] 17.95
13C NMR 21,516 2694 2695 [1, 44] 14.18 [0,48] 14.81

Fig. 1 Model architecture of GT-NMR. It contains permutation-equivariant graph encoding (feature encoder in green box and positional encoding 
in yellow box), graph transformer block (purple box) and node regression prediction head (blue box)
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in the supplementary information (see Tables S1 and S2). 
The atom and bond encoders (Fig. 1, block in green box) 
then encode these vectors xi and ei,j , in which each integer 
feature is embedded independently and aggregated to form 
the input vectors xi ∈ R

d and ei,j ∈ R
d , where d repre-

sents the dimensionality of the embedding space.

Positional encoding
It has been demonstrated that the integration of rela-
tive random walk probabilities (RRWP) into Transform-
ers when applied to graph is crucial, which can lead to 
improvements in performance across a range of tasks and 
applications involving complex graph structures [37]. In 
this work, the RRWP-based initial positional encoding [37] 
(PE) was employed.

Let A ∈ R
n×n represents the adjacency matrix (generated 

from edge_index in PyG) of the graphG = (V , E) with n 
nodes, and D denotes the diagonal degree matrix of G The 
probability of reaching one node from another through a 
random walk can be defined by the matrix (M), M: = D−1A, 
in which Mi,j represents the probability that a random walk 
moves from node i to j in one step of a simple random walk. 
Hence, the initial edge PE for each pair of nodes i, j ∈ V can 
be defined as:

where, I is the identity matrix, and the hyperparameter 
K ∈ N controls the maximum length of the random 
walks under consideration. For any node i ∈ V , the diago-
nal element Pi,i can be utilized as an initial node encod-
ing. The tensor P can be updated by an elementwise 
MLP:RK → R

D to get new relative PEs.

Graph transformer block
A similar transformer layer proposed by Ma et al. [37]. was 
adopted in this work. The attention computation is defined 
as follows:

(1)Pi,j =
[

I,M,M2,M3, . . . . . .MK−1
]

i,j
∈ R

K

(2)êi,j = σ
{

ρ
[(

WQxi +WKxj
)

�WEwei,j
]

+WEbei,j
}

∈ Rd′

(3)αi,j = Softmaxj∈V
(

WAêi,j
)

∈ R

(4)x̂i =
∑

j∈V

αi,j
(

WVxj +WEvêi,j
)

∈ R
d

where  σ  is the activation function. In this work, the 
signed-square-root activation function was adopted; 
WQ,Wk,WEw,WEb ∈ R

d′×d , WA ∈ R
1×d′ and Wv

,WEv ∈ R
d×d′ are learnable parameters; ⊙ is the element-

wise product; and ρ(x) is the signed-square-root, which 
stabilizes training by reducing the magnitude of large 
inputs.

With multiple heads ( Nh heads) attention mechanism, 
the output is defined as:

where Wh
O, W

h
Eo represent the weight matrices for each 

head h ∈ {1,2 . . . . . .Nh} and are also learnable param-
eters. To produce efficient aggregation and maintain 
degree information of node representations, an adaptive 
degree-scaler was applied to the attention mechanism as 
follows:

where di is the degree of node i ; θ1, θ2 ∈ R
d are learna-

ble parameters. Outputs xout ′i  and eouti,j  are then subjected 
to 1-dimernsiontal Batch Normalization (Fig.  1, block 
in purple box) to ensure gradient stabilization. Subse-
quently, a feed-forward network is applied to map xout ′i  
from Rd to R2d and then back to Rd . This process aims to 
enhance the model’s expressivity in higher-dimensional 
space. The final outputs of graph transformer block xout ′i  
and eouti,j  are then fed into the node regression prediction 
head block for the prediction of NMR chemical shifts.

Node regression prediction head
Once the final node feature representations xout

′

i  
are generated through the graph transformer 
block, they are transformed via a three-layer MLP 
xout

′

i ∈ R
d → R

d/2 → R
d/4 → R

1 see Fig.  1, block in 
blue box) to yield the desired NMR chemical shifts. Note 
that a mask was applied to filter out irrelevant atoms, e.g. 
non-carbon atoms, defined as follows:

(5)ρ(x) =
{

[ReLU(x)]
1
2 − [ReLU(−x)]

1
2

}

(6)xouti =

Nh
∑

h=1

Wh
Ox̂

h
i ∈ R

d

(7)eouti,j =

Nh
∑

h=1

Wh
Eoê

h
i,j ∈ R

d

(8)
x
out ′

i := x
out
i ⊙ θ1 +

[

log(1+ di)x
out
i ⊙ θ2

]

∈ R
d

(9)
mask =

{

xi is True if yi is present and i is a carbon atom else False (Train Stage)
xi is True if i is a carbon atom else False (Inference Stage)
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Training details
In GT-NMR, the l1-loss is used as the training objective J  . 
More precisely, the targets are generated as follows:

where yPredi  and yTruei  are predicted and true values for 
atom i, respectively; n represents the effective number 
of labels in a batch; and L is the loss function used for 
regression, mean absolute error (MAE) in GT-NMR.

The current GT-NMR was built on PyTorch and 
PyG[42]. GraphGym[44] was adopted for experiment 
management and parameter searching. The source codes 
and trained model can be found at https:// github. com/ 
Anan- Wu- XMU/ GT- NMR/.

Results and discussion
Model performance in general
To facilitate the evaluation of various methods, we 
selected the method proposed by Jonas and Kuhn as a 
baseline. For the Hose codes and GCN, results on the 
entire test set of nmrshiftdb2 were taken from reference 
[25]. The fully connected graph (FCG) [26], weakly-
supervised MPNN [45] and SG series [27] results were 
also included for comparison. Note that only half of the 
original test set of nmrshiftdb2 was used to evaluate the 
performance of GT-NMR, while the other half was used 
as validation test. Table 2 presents the comparison results 
of the prediction accuracy of 1H and 13C chemical shifts. 
The best results for each dataset are highlighted in bold.

(10)J = L

(

yPredi , yTruei

)

(11)L(MAE) =
1

n

n
∑

i=1

∣

∣

∣
yPredi − yTruei

∣

∣

∣

It is apparently that the GT-NMR method proposed 
in this work significantly outperformed other methods 
on both datasets. For the 13C chemical shifts predic-
tion, GT-NMR yielded the lowest MAE and RMSE of 
1.189 and 2.206  ppm, respectively, followed by SG-pro-
posed method, with an MAE and RMSE of 1.261 and 
2.232 ppm, respectively. For the 1H chemical shifts pre-
diction, GT-NMR also achieved the lowest statistical 
metrices, establishing SOTA performance on both data-
sets. This indicates that the GT-NMR method can predict 
the NMR spectrum of new molecules more accurately 
than other methods.

Large prediction errors mainly occurred for molecules 
with uncommon chemical structure or those highly 
underrepresented in the calibration. For instance, large 
prediction errors were observed for cyclopropenone (a, 
MAE: 22.03  ppm) and bicycle [1,1,0]butane (b, MAE: 
16.65  ppm), both of which have exotic structures as 
shown in Fig.  2. Additionally, the tetramethoxyallene 
skeleton (c in Fig.  2) was completely absent from the 
training set, resulting in poor performance with an MAE 
of 13.58  ppm. The large prediction error for cyclopen-
tane-1,3-dione (CPD, d in Fig. 2, MAE: 24.39 ppm) was 

Table 2 Comparisons of baseline models and GT-NMR for the predictions of 1H and 13C chemical shifts on nmrshiftdb2-subset. 

1 . taken from ref. [25]; 2. taken from ref. [26]; 3. taken from ref. [45]; 4. taken from ref. [27]

MAE mean absolute error, RMSE root mean squared error. Method with the best performance is highlighted in bold. Units in ppm

Method δ(13C) δ(1H)

MAE RMSE MAE RMSE

HOSE1 2.85 – 0.33 –

GCN1 1.43 – 0.28 –

FCG2 1.355 ± 0.022 – 0.224 ± 0.002 –

Weakly-Supe.  MPNN3 1.552 ± 0.056 – 0.243 ± 0.003 –

SG-only4 1.286 ± 0.010 2.273 ± 0.017 0.224 ± 0.002 0.509 ± 0.008

SG-IMP4 1.293 ± 0.007 2.266 ± 0.009 0.224 ± 0.002 0.508 ± 0.012

SG-IR4 1.282 ± 0.007 2.285 ± 0.043 0.215 ± 0.002 0.487 ± 0.005

SG-proposed4 1.271 ± 0.008 2.232 ± 0.018 0.216 ± 0.001 0.484 ± 0.005

GT-NMR(this work) 1.189 2.206 0.158 0.293

O
O O

O

O
da b c

O O

Fig. 2 Molecules for which performances of GT-NMR are 
unsatisfactory. Carbon atoms with error large than 10 ppm 
are highlighted with red circle.a: cyclopropenone (MAE 
22.03 ppm). b: bicyclo[1,1,0]butane (MAE 16.65 ppm). c: 
tetramethoxyallene(MAE 13.58 ppm). d: cyclopentane‑1,3‑dione 
(MAE 24.39 ppm) 
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unexpected. However, a previous study [46] has pointed 
out that CPD is a mixture of rapidly interconverting tau-
tomers, complicating the interpretation of its 13C NMR 
spectra. Consequently, a possible reference error may 
occur. To calibrate the experimental 13C chemical shifts 
of CPD, a benchmark calculation at FPA-M [7] level of 
theory was conducted. This method has been shown to 
yield chemical shifts with the accuracy of CCSD(T) com-
plete basis set limit [7, 8]. As expected, large deviations 
were observed between the experimental values and the 
calculated 13C chemical shifts (see Table  S3). Given the 
high accuracy of the FPA-M method and experimen-
tal values of similar molecules, we believe that there 
is indeed a reference error in the 13C chemical shifts of 
CPD. Taking the FPA-M results as reference, the MAE of 
GT-NMR for CPD is dramatically reduced to a reason-
able value of 3.25 ppm.

Model analysis
As mentioned above, traditional MPNNs may struggle 
with complex graph structures, and the primary motiva-
tion for adopting GTs is to address limitations associated 
with classic MPNNs. To assess the complexity of mol-
ecules, a recent proposed scoring metric, the size-nor-
malized spacial score (nSPS) [41] was employed, where 
the larger the nSPS, the more complex the molecule. This 
metric has been shown to effectively reflect the chem-
ist’s intuitive assessment of molecular complexity and is 
applicable to both natural products and synthetic com-
pounds [41]. Figure  3 present statistics associated with 
nSPS.

As seen in Fig.  3a, the nSPS distribution in the train-
ing set is highly biased toward simple molecules, with 

majority of molecules (66.57%) having an nSPS less than 
the average value (17.00). This implies that trained mod-
els may not perform well for complex molecules. This 
is evidenced by the increased prediction errors with 
increasing nSPS in the test set. As illustrated in Fig. 3b, 
both GCN (Yellow) and GT-NMR (Cyan) performed 
well for simple molecules (nSPS < = 17.00), with MAEs 
of 1.176 and 1.078  ppm, respectively. However, when 
applied to complex molecules (nSPS > 38.42), the predic-
tion errors increased significantly, nearly doubling those 
for simple molecules, with MAEs of 2.247 (GCN) and 
2.066 (GT-NMR) ppm, respectively. Such large errors 
mainly attributed to two factors. Firstly, the labelled data 
for complex molecules are highly underrepresented in 
the calibration, as shown in Fig. 3a, resulting in poor per-
formance of the trained models on complex molecules. 
Secondly, complex molecules often consist of multiple 
chiral centers (see Figure S1), while neither the anno-
tated data nor the atomic features include stereochemi-
cal information. Consequently, it is not surprising that 
neither GCN nor GT-NMR performed satisfactorily on 
complex molecules.

Encouragingly, GT-NMR outperformed traditional 
GCN method throughout the entire test set, with the 
performance gap (Purple in Fig.  3b) between these two 
methods becoming more pronounced as molecular 
complexity increases. For example, when nSPS < = 17.0, 
the difference in the predicted MAE between GT-NMR 
and GCN is 0.098  ppm, increasing to 0.138  ppm when 
17.0 < nSPS < = 27.71, and finally reaching 0.181  ppm 
when nSPS > 38.42. This result affirms the improved 
performance of GT-NMR in dealing with complex 
graph structures compared to traditional graph-based 

Fig. 3 Statistic on nSPS, where the larger the nSPS value, the more complex the molecule. a Distribution of nSPS values in the training 
set, with average (μ) and standard deviation(σ) of 17.00 and 10.71, respectively. b Prediction errors of GCN (Yellow) and GT-NMR (Cyan), 
and the differences between GCN and GT-NMR (Purple) with respect to nSPS in the test set. GCN was retained with the same dataset and settings 
as those in reference [25]
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methods. It should be noted that stereochemical effects 
and geometry-specific effects were not considered with 
the standard nmrshiftdb2. Hence, GT-NMR, built upon 
this dataset, will be only effective for determination and 
verification of constitution, but is inherently incapable 
of assigning relative configurations. Further improve-
ment of GT-NMR’s performance on complex molecules 
requires not only increasing the annotated data of com-
plex molecules, but also incorporating stereochemical 
information into the atomic features and bond features. 
These enhancements will be left for further investigation 
in future studies.

Comparison with ab initio methods
To further assess the accuracy of GT-NMR in practi-
cal applications, we selected 37 natural products from a 
previous study [9] and compared the results with those 
obtained using DFT methods (see the supplementary 
information for computational details). Detailed results 
can be found in Table  S4, and the corresponding struc-
tures are presented in Figure S2. Figure 4 shows a radar 
plot comparing MAEs of 13C chemical shifts predicted 
by various methods (Fig.  4a) and nSPS values of the 37 
natural products (Fig.  4b). Predictions by MestReNova 
[47] were also included for comparison. Each spoke on 
the radar plot represents a different natural product, with 
proximity to the center indicating the magnitude of the 
error (MAE) for each method, where closer to the center 
indicates less accuracy.

As shown in Fig.  4a, xOPBE functional (Gold) sig-
nificantly outperforms the other methods. It consist-
ently exhibits lower errors across nearly all molecules, 
demonstrating its enhanced accuracy in predicting 13C 
chemical shifts. On the other hand, GT-NMR (Red) is 
highly dependent on the molecular complexity. For rela-
tively simple molecules (nSPS < = 27.71, points below 
the green line in Fig. 4b), the prediction accuracy of GT-
NMR is comparable to that of the xOPBE functional. For 
instance, compound 8 and 6, with nSPS values of 12.05 
and 23.6, respectively, have their 13C chemical shifts 
accurately predicted by GT-NMR with MAE of 1.512 
and 1.474  ppm (see Table  S4), while the corresponding 
values predicted by the xOPBE functional are 1.878 and 
1.313 ppm. For complex molecules (nSPS > 38.42, points 
above the red line in Fig.  4b), the performance of GT-
NMR is clearly inferior to xOPBE functional, and even 
to the OPBE functional, with MAEs typically higher than 
2.0 ppm (see Figures S3 and S5).

Nonetheless, the overall performance of GT-NMR, 
with an average MAE of 2.867  ppm for the 37 natu-
ral products, is superior to the commonly used B3LYP 
(5.284  ppm) and mPW1PW91 (3.982  ppm) functionals, 
and comparable to the OPBE functional (2.646  ppm) 
and MestreNova (2.950  ppm). Hence, GT-NMR can be 
applied with high confidence in rapid structural screen-
ing of relatively simple molecules (nSPS < = 27.71). 
However, for complex molecules (nSPS > 38.42), the 
more accurate xOPBE functional is preferred, although 
GT-NMR is more efficient. Notably, predicting the 13C 

Fig. 4 Results of the selected 37 natural products. Detailed results can be found in Table S4 and the corresponding structures are presented 
in Figure S2. a Radar plot comparing the mean absolute errors (MAEs) of 13C chemical shifts predicted by various methods. Each spoke represents 
a different natural product. The proximity to the center of the plot indicates the magnitude of the error for each method, with closer to the center 
indicating less accuracy. xOPBE (Gold); OPBE (Green); mPW1PW91(Blue); B3LYP(Black); MestreNova (Purple); GT-NMR (Red); b nSPS values of the 37 
natural products.µ: the average nSPS in the training set; σ: the standard deviation of nSPS in the training set
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chemical shifts of a new molecule using GT-NMR takes 
an average of 0.025 s on a single RTX 4090 GPU.

Structure elucidation
As the purpose of this work is to establish an accurate 
yet efficient model to predict NMR chemical shifts for 
rapid structure screening, we further examined 11 nat-
ural products [48] that had been incorrectly assigned 
along with their revised structures using total synthesis, 
to illustrate the capabilities of GT-NMR. Detailed results 
can be found in Table S5 and S6, and the structures are 
presented in Figure S4.

Figure 5 presents a comparative analysis of prediction 
errors for two different molecular structures (originally 
proposed and revised) across 11 natural products pairs. 
The scatter plot differentiates between the originally pro-
posed structure (blue points) and the revised structure 
(red points) based on their MAEs against nSPS values. 
The data points are connected with dashed lines to high-
light comparisons. It is evidently that for relatively sim-
ple molecules (nSPS < = 27.71), the revised structures 
(red points) consistently show lower MAEs compared to 
the originally proposed structures (blue points), indicat-
ing that GT-NMR can successfully discriminate correct 
structures from incorrect ones. However, as nSPS values 
increase (nSPS > 38.42), it becomes challenging for GT-
NMR to determine the correct structure, or it may even 
give the incorrect assignment, as shown in Fig. 5.

These examples further strengthen the argument that 
while the GT-NMR method developed in this work 
exhibits consistent reliability for relatively simple mol-
ecules (nSPS < = 27.71), it becomes less reliable for 
complex molecules (nSPS > 38.42). The nSPS values can 

be effectively utilized to assess the reliability of the GT-
NMR model. Hence, it is necessary to combine the GT-
NMR with nSPS values for rapid structure screening.

Conclusion
With the advent of deep learning, graph neural net-
work-based methods have been extensively used in 
predicting NMR chemical shifts, and have achieved 
considerable success. However, traditional graph neu-
ral network-based methods have inherent limitations, 
making them challenging to handle complex graph 
structures. How to rationally apply these graph neural 
network-based methods in chemical shifts prediction 
appears to be underestimated and overlooked. In this 
work, inspired by the graph transformer, we presented 
an improved method, denoted as GT-NMR, which 
combines molecular graph representation with Trans-
formers for accurate yet efficient prediction of NMR 
chemical shifts. The effectiveness of GT-NMR was 
thoroughly examined with the standard nmrshiftdb2, 
37 natural products and structural elucidation of 11 
pairs natural products. More importantly, the reliability 
of the GT-NMR was assessed for the first time in terms 
of molecular complexity, represented by the size-nor-
malized spacial score (nSPS).

Regarding to the nmrshiftdb2 database, the GT-NMR 
method achieved state-of-the-art performance with 
mean absolute error of 0.158 and 1.189 ppm in the pre-
diction of 1H and 13C NMR chemical shifts, respectively, 
which are clearly superior to the performance of existing 
methods (GCN, MPNN, weakly-super MPNN, and SG). 
Detailed analysis affirms the improved performance of 
the GT-NMR in dealing with complex graph structures 
compared to traditional graph-based methods. In the 
practical application of predicting 13C Chemical Shifts of 
37 natural products, the GT-NMR method also demon-
strated its reliability. It outperforms the commonly used 
mPW1PW91 and B3LYP functionals, and is only inferior 
to the xOPBE, a specialized functional for accurate pre-
diction of 13C Chemical Shifts. Close inspections revealed 
that the performance of GT-NMR is highly dependent on 
molecular complexity. For relatively simple molecules 
(nSPS < = 27.71), GT-NMR yields reliable results and can 
be applied with high confidence. However, for complex 
molecules represented by high nSPS values, its perfor-
mance is significantly degraded due to a lack of stereo-
chemical information and sufficient representative data. 
This argument was further strengthened by the subse-
quent structural elucidation of 11 natural product pairs. 
In combination with nSPS, we believe that GT-NMR will 
be a valuable tool for routine application in structural 
screening and elucidation of relatively simple molecules. 
Future work will focus on the rational construction of 

Fig. 5 GT-NMR results for the 11 natural product pairs. The blue 
points represent the originally proposed structures and the red points 
represent the revised structures. Each pair is connected with a dashed 
line
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datasets that include more complex molecules and incor-
poration stereochemical information into the model to 
improve its applicability domain.
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