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Abstract 

Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlight-
ing the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes 
the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, 
necessitating the development of computational approaches. In this study, we introduce AttenhERG, a novel graph 
neural network framework designed to predict hERG channel blockers reliably and interpretably. AttenhERG dem-
onstrates improved performance compared to existing methods with an AUROC of 0.835, showcasing its efficacy 
in accurately predicting hERG activity across diverse datasets. Additionally, uncertainty evaluation analysis reveals 
the model’s reliability, enhancing its utility in drug discovery and safety assessment. Case studies illustrate the practi-
cal application of AttenhERG in optimizing compounds for hERG toxicity, highlighting its potential in rational drug 
design.

Scientific contribution
AttenhERG is a breakthrough framework that significantly improves the interpretability and accuracy of predicting 
hERG channel blockers. By integrating uncertainty estimation, AttenhERG demonstrates superior reliability compared 
to benchmark models. Two case studies, involving APH1A and NMT1 inhibitors, further emphasize AttenhERG’s practi-
cal application in compound optimization.
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Introduction
The adverse effects of pharmaceutical agents on the 
heart represent a significant challenge in drug develop-
ment. Drug-induced arrhythmias are of particular con-
cern, with severe consequences resulting in mortality, 
as observed in treatments such as dofetilide, haloperi-
dol, and trovafloxacin [1, 2]. Among the numerous ion 
channels involved in cardiac repolarization, the human 
ether-a-go-go-related gene (hERG) potassium chan-
nel is pivotal in regulating cardiac action potential [3]. 
Accurate prediction of hERG toxicity in the early stages 
of drug development is critical for mitigating risks and 
ensuring the safety profile of emerging therapeutics [4].
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Recognizing the growing concerns regarding cardiac 
safety, regulatory bodies such as the International Con-
ference on Harmonization of Technical Requirements 
for the Registration of Pharmaceuticals for Human 
Use (ICH) now mandate the evaluation of drug candi-
dates’ hERG channel blockage properties in preclini-
cal stages [4, 5]. Traditional hERG inhibition detection 
methods like patch-clamp electrophysiology and in vivo 
QTc assays are hindered by their cost and time-inten-
sive nature [6]. Therefore, computational methods have 
emerged as a promising avenue to enhance the efficiency 
of hERG channel blocker screening [7, 8]. Quantitative 
structure–activity relationship (QSAR) models were ini-
tially developed, offering interpretability by dissecting 
hERG channel blocker pharmacophore patterns [9–12]. 
However, these models often rely on small-sized train-
ing datasets, limiting their robustness for diverse hERG 
channel-blocking compounds [13]. Subsequently, vari-
ous data-driven machine learning (ML)-based models 
emerged [14–20]. However, ML methods based on 
expert-defined molecular fingerprints and feature engi-
neering approaches might be constrained by predefined 
rules. Predictive performance may decrease for novel 
compound scaffolds. Encoding the atoms of the com-
pound and performing end-to-end prediction may help 
alleviate the limitations imposed by predefined rules.

Deep learning-based (DL) models have emerged as a 
novel method for predicting hERG channel inhibition 
[21], propelled by the remarkable success of deep neural 
networks (DNNs). Recent advancements have focused 
on integrating diverse molecular features and model 
consensuses to enhance prediction reliability and expla-
nation. Certain standouts emphasize reliability, applica-
bility, or interpretability among these models, including 
CardPred [22], DeepHIT [23], CardioTox [24], hERG-att 
[25], ADMETLAB 2.0 [26], BayeshERG [27], DMFGAM 
[28], Pred-hERG 5.0 [29], CToxPred [30], and CardioDPi 
[31]. Specifically, BayeshERG was developed via a graph-
based Bayesian deep learning model and a directed mes-
sage-passing neural network (D-MPNN). However, these 
models are frequently perceived as black boxes, yielding 
prediction outcomes that are difficult to fully interpret, 
along with a need to improve uncertainty estimation. 
Several research teams have utilized substructure-based 
methods to analyze chemistry-intuitive explanations, as 
observed in SME and OptADMET [32, 33]. Still, these 
models lack robustness due to the limited availability of 
hERG channel-blocking experimental data. We summa-
rize the performance, interpretability, and availability of 
ML- / DL-based models in Table  S1. We also summa-
rize the rationale for uncertainty quantification imple-
mentation as a strategy to enhance model robustness 
(Table S1). Among these models, hERG-att, BayeshERG, 

and the recently updated models, such as CardioDPi and 
Pre-hERG 5.0, provide interpretability. While Bayes-
hERG also incorporates uncertainty quantification, both 
its uncertainty estimation and overall accuracy require 
considerable improvement. Therefore, we are developing 
a new approach aimed at addressing the three aspects of 
reliability, interpretability, and uncertainty quantification.

We developed AttenhERG, a novel graph neural net-
work framework designed to reliably predict compound 
hERG channel blocking risk to address this unmet clini-
cal need. Notably, we enhanced predictive performance 
and improved interpretability through structure opti-
mization. Next, we thoroughly evaluated the model’s 
predictive performance using internal and external test 
datasets, highlighting its efficacy in accurately predict-
ing hERG activity. We demonstrate the model’s robust-
ness and reliability through meticulous optimization and 
uncertainty estimation. We also comprehensively evalu-
ate our model analysis by comparing it with benchmark 
models, providing valuable insight into its technical 
advantage over existing tools. We conclude by present-
ing compelling case studies involving APH1A [34] and 
NMT1 inhibitors [35] to illustrate the practical utility of 
our approach in real-world scenarios.

Results
Model architecture and optimization
We began by utilizing the Attentive FP algorithm [36] in 
conjunction with uncertainty evaluation analysis to con-
struct an interpretable and reliable deep learning model 
named AttenhERG for predicting hERG channel block-
ers (Fig. 1). The methods section provides specific details 
regarding this methodology.

We employed a systematic approach combining grid 
search and early stopping techniques during the hyperpa-
rameter tuning phase, conducted exclusively on the vali-
dation set. This approach enabled us to efficiently explore 
a range of hyperparameter configurations while safe-
guarding against potential overfitting. The parameters 
subjected to optimization included dropout rate, hidden 
layer units, learning rate, and L2 regularization (Table S2, 
Fig. 2A). We initially fixed the dropout and L2 regulariza-
tion parameters to determine the appropriate number of 
hidden units. Subsequently, we separately optimized the 
regularization L2 rate and dropout rate. To mitigate over-
fitting, we implemented an early stopping strategy (see 
Methods), emphasizing the learning rate due to its criti-
cal impact on model training steps.

After the optimization stage, an optimal model con-
figuration with a learning rate of  10–3.5, 200 hidden layer 
units, a dropout rate of 0.1, and an L2 regularization rate 
of  10–4.5 was identified. Next, we evaluated its perfor-
mance characteristics and training dynamics in greater 
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depth. This analysis provided insights into the model’s 
training progression and illustrated the evolution of 
loss and area under the receiver operating characteristic 
curve (AUROC) metrics on the validation and test sets 
(Fig.  2B). Notably, the validation set’s AUROC metrics 
plateaued after 83 epochs, indicating peak model per-
formance achievement. AttenhERG also exhibited com-
mendable performance metrics, including an AUROC of 
0.835, accuracy of 0.777, an area under precision-recall 
curve (AUPRC) of 0.834, Matthew’s correlation coeffi-
cient (MCC) of 0.543, balanced accuracy (BAC) of 0.767, 
and F1 score of 0.812 (Table S3, Fig. 2C). These metrics 
underscore the model’s efficacy in accurately predicting 
hERG activity.

Internal evaluation
The predictive performance of all models was con-
ducted to measure MCC, BAC, and AUROC on the test 
dataset (Table S4). Among the models evaluated, Atten-
hERG displayed improved performance across the met-
rics, with an MCC of 0.543, BAC of 0.767, and AUROC 
of 0.835 (Fig.  3A). This advantage could be attributed 
to its dual-level attention mechanism, which first cap-
tures local features at the atomic level and subsequently 
incorporates global molecular features. In contrast, 
BayeshERG and D-MPNN models encode local fea-
tures, deriving atomic embeddings from molecular 
structures. However, the influence between atoms sig-
nificantly diminishes with increasing distance, while 

Fig. 1 Overall architecture of the model

Fig. 2 Heat maps and model predictive performance for hyperparameter search. A Impact of different hyperparameters on AUROC 
on the validation set; B Performance metrics of the optimal model; C Loss and AUROC during the training process
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long-range interactions, such as intramolecular hydro-
gen bonding, can still be impactful. Incorporating an 
attention mechanism at the atomic level in AttenhERG 
likely optimizes these aspects, resulting in enhanced 
performance compared to BayeshERG and D-MPNN. 
Additionally, SVM and RF models exhibited compara-
tively lower performance metrics, potentially due to 
limitations in expert-defined molecular fingerprints.

Interestingly, we also observed that SVM and RF 
method performance was improved relative D-MPNN. 
One possible reason for this advantage may be that 
expert-defined molecular fingerprints have specific pre-
defined rules for molecular scaffolds and list all frag-
ments of the compound. To test this hypothesis, we 
constructed a test-strict dataset comprising compounds 
with low scaffold similarity to the training dataset (see 
Methods for details). The predictive performance on 
the test-strict dataset revealed distinct differences 
among the models (Table  S5, Fig.  3B). AttenhERG 
exhibited the highest performance, achieving an MCC 
of 0.492, BAC of 0.744, and AUROC of 0.818. In con-
trast, SVM (FPS) and RF (FPS) demonstrate relatively 
poorer performance, with lower MCC and AUROC 
than the other models. We conclude that predefined 
rules constrain ML methods relying on expert-defined 
molecular fingerprints, resulting in significant perfor-
mance dips when encountering novel scaffolds. These 
findings highlight the role of model design, feature 
engineering, and attention mechanisms in improving 
predictive performance.

External evaluation
Next, we delved into a comprehensive evaluation of the 
predictive performance of our model across diverse 
external test sets to shed light on its efficacy in real-
world scenarios. The external review utilizes identical 
evaluation metrics employed in the internal assessment. 
We present a detailed overview of the external evalua-
tion results that showcase the predictive performance 
of our model compared to baseline models across four 
distinct external test sets (Tables S6-S9). Overall, our 
model demonstrates comparable performance to the 
baseline models across these test sets, underscoring its 
robustness in various scenarios. Our study focuses on 
two critical aspects: model interpretability and reliabil-
ity. We selected models that performed strongly in these 
areas for comparative analysis for the in-house dataset, 
such as BayeshERG, CardioDPi, CToxPred, Pred-hERG 
5.0 and DMFGAM (Table  S10). Our model consistently 
ranks highly among the models evaluated across vari-
ous metrics and datasets, showing overall superiority 
over recently updated models (Fig. 4A). Upon analyzing 
the performance differences, we found that many of the 
updated baseline models primarily rely on expert-defined 
fingerprints and descriptors for molecular representa-
tion, which could constrain their performance due to 
predefined rules. Notably, BayeshERG’s predictive per-
formance on the external test sets was influenced by the 
presence of duplicate data arising from molecular stereo-
chemistry and ionization, which introduced a bias in its 
predictions, leading to overestimated prediction results.

Fig. 3 The evaluation of predictive performance results with the internal test. A The internal test of the model; B The internal test-strict 
of the model
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To provide a more rigorous comparison of novel com-
pounds, we selected an in-house dataset that is struc-
turally distinct from the four external test sets (Figure 
S1A). AttenhERG significantly outperformed both 
BayeshERG and recently updated models, including 
CardioDPi, CToxPred, Pred-hERG 5.0 and DMFGAM 
in this analysis (Fig. 4B). This improvement was attrib-
uted to AttenhERG’s ability to autonomously learn the 
chemical environment of atoms, thereby effectively 
identifying substructures that significantly impact 
hERG inhibition rather than just the entire molecule. 
Overall, the external evaluation provides compelling 

evidence of our model’s efficacy, highlighting its ability 
to generalize across diverse, novel datasets.

Uncertainty evaluation analysis
Within deep learning models, uncertainty estimation has 
become a crucial component for assessing the authen-
ticity of prediction outcomes. Specifically, the source 
of this uncertainty can be affected by both algorithmic 
and data-availability constraints. We delved into the 
impact of uncertainty estimation on model performance, 
particularly in scenarios with insufficient hERG data. 
We employed two uncertainty estimation techniques, 

Fig. 4 The evaluation of predictive performance results with the External Test Sets using AttenhERG, Baseline and Updated baseline (models 
updated after 2022). A The four external test sets of the model performance; B The in-house test sets of the model performance
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Entropy and MC-Dropout, that are known for their effi-
cacy in similar attribute prediction tasks [37] within the 
framework of the AttenhERG model. These methods 
capture predictive uncertainty in classification models 
without altering the model framework and are contrasted 
with two uncertainty estimation methods employed in 
the BayeshERG model. Additionally, we explored the lin-
ear relationship between uncertainty levels and predic-
tion accuracy to enhance the model’s reliability.

Despite being a probabilistic model, the uncertainty 
analysis in the BayeshERG model revealed no significant 
improvement in model performance. This observation 
is supported by the AUROC curve, which indicates that 
models referencing uncertainty estimates perform equiv-
alently to the random group, showing no discernible 
change (Fig. 5A). Furthermore, introducing Entropy and 
MC-Dropout uncertainty methods into the AttenhERG 
model resulted in enhanced model performance com-
pared to the random group, as evidenced by the MCC, 
BAC, and AUROC metrics. This demonstrates the supe-
rior performance of the model over the random group 
(Fig.  5B), validating the reliability of the AttenhERG 
model equipped with uncertainty estimation.

Case study
We employed AttenhERG’s predictive ability in mul-
tiple case studies to assess its real-world utility. This 
analysis provided crucial insight into how structural 
modifications influence hERG activity across various 
circumstances. For instance, CHEMBL2021101 was 

identified as a potent γ-secretase modulator (Fig.  6A), 
demonstrating single-digit nanomolar Aβ42 (APH1A) 
 IC50 in cell-based assays. Despite its therapeutic poten-
tial, this compound possesses significant hERG toxicity 
risks. Optimization studies originating from aryl tria-
zole leads were initiated, culminating in developing novel 
amides and lactams within the series [34]. These modi-
fications significantly enhanced activity and reduced 
the compound’s affinity towards hERG channels. Atten-
hERG forecasted the directional shifts in hERG binding 
proportions for these molecules and pinpointed crucial 
atoms and substructure fragments that may contribute 
to this modification. Atom attention weight visualiza-
tion revealed deeper hues of red in the phenyl group of 
the initial structure, indicating segments likely pivotal 
to hERG properties. The introduction of trifluoromethyl 
substitution to the phenyl group mitigated its impact on 
hERG properties, with predictive results indicating that 
the optimized compounds exhibited hERG inhibitory 
activity above 10uM, in agreement with prior results [35].

In another case study concerning the Pyrazole Sul-
fonamide Series of Trypanosoma brucei N-Myris-
toyltransferase (NMT1) inhibitors, we scrutinized 
the structure–activity relationships of a novel series 
of pyrazole sulfonamide compounds to identify frag-
ment modifications that result in hERG inhibition 
[35]. AttenhERG analyzed two representative com-
pounds, CHEMBL3358114 and CHEMBL1230468, 
for hERG inhibition risk (Fig.  6B). Predictive 
analysis demonstrated alignment between the 

Fig. 5 The evaluation of uncertainty evaluation analysis. A The uncertainty evaluation analysis of BayeshERG model and AttenhERG model; B The 
uncertainty evaluation analysis of the AttenhERG model
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magnitude and directionality of hERG changes and 
experimental observations. We used the NMT1 inhibi-
tor CHEMBL3358114 as an illustrative example. First, 
we provided a visualization of the model-derived 
weights to illustrate how molecular features are cap-
tured in our model. The AttenhERG model autono-
mously learns the chemical environment of atoms, 
utilizing hERG prediction as a supervisory task. The 
model assesses the atomic vectors’ correlation, with 
negatively correlated atoms highlighted in yellow and 
positively correlated atoms in blue (Fig. 6C). The analy-
sis indicates that the molecule exhibits distinct struc-
tural patterns, which are more pronounced in the 
deeper hidden layers. In the case of CHEMBL3358114’s 
structure, atomic correlations are predominantly clus-
tered in the C20-C29 tail region, indicating a significant 
impact of this region on the molecule’s hERG inhibitory 
activity. Structural modifications in this region (Fig. 6B) 
reduced its hERG risk, consistent with experimental 
validation in which we measured reduced hERG affinity 
from 0.6 μM to 28 μM.

Overall, these case studies underscore the rationale 
behind deriving fragments from the AttenhERG model 
that significantly impact hERG and provide instruc-
tion for structural optimization, giving valuable insights 
into model-learned knowledge associated with hERG 
properties.

Discussion and conclusion
Here, we developed AttenhERG, a novel graph neural 
network framework tailored for predicting hERG channel 
blockers with enhanced reliability and interpretability. 
Inspired by the Attentive FP algorithm, our work intro-
duces key innovations that significantly advance the field. 
Notably, AttenhERG integrates graph-based molecular 
representations, attentive encoding mechanisms, and 
uncertainty evaluation analysis. These advancements 
distinguish it from previous hERG prediction models, 
enhancing both predictive performance and model trans-
parency. Our model demonstrates notable improvements 
in classification accuracy within multiple datasets, high-
lighting its efficacy in accurately predicting hERG activity 
across diverse molecular structures. Furthermore, uncer-
tainty analysis reveals that excluding predictions with 
higher uncertainty enhances the model’s performance, 
thereby bolstering prediction reliability. Our case studies 
illustrate AttenhERG’s utility in optimizing compounds 
for hERG toxicity, showcasing its capability to effectively 
identify and modify atomic fragments to optimize hERG 
properties. The development of AttenhERG represents 
a substantial advancement in drug discovery and safety 
assessment methodology, offering a robust and interpret-
able model for early-stage prediction of hERG toxicity.

In early-stage drug discovery, uncertainty analy-
sis results prioritize structures with low uncertainty 

Fig. 6 Case Study: Optimization of hERG Toxicity for Various Compounds. A An illustration of optimizing a compound targeting APH1A 
to reduce hERG inhibitory risk; B Optimizing the hERG inhibitory activity of a compound targeting NMT1; C Visualization of AttenhERG’s capability 
to autonomously learn molecular features
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scores, as these predictions are more reliable and asso-
ciated with a reduced risk of failure. However, explor-
ing effective strategies for addressing high-uncertainty 
predictions presents a valuable direction for future 
research. Compounds and their analogs with elevated 
uncertainty scores merit further investigation, as they 
may reveal underexplored regions of chemical space or 
complex features overlooked by existing models. We 
recommend conducting additional in  vitro testing on 
these compounds to validate their biological activity. 
Compounds that consistently exhibit high uncertainty 
should be deprioritized in the development pipeline 
to optimize resource allocation toward more reliable 
candidates. Expanding validated compounds into the 
training dataset’s chemical space and fine-tuning the 
model with this augmented dataset may enhance pre-
dictive performance, enabling uncertainty estimates 
to serve as critical insights that effectively guide early-
stage drug discovery efforts.

Future investigations could explore to improve 
model generalization and the model wider scope of 
applicability. AttenhERG’s model performance may 
also be limited by the dataset size. With limited data-
sets, the chemical space represented by the compounds 
is restricted, which can hinder predictive performance 
for novel structures. In addition to utilizing activ-
ity data from patch-clamp experiments, it would be 
beneficial to incorporate high-throughput data while 
remaining cautious of biases that such data may intro-
duce. Up-sampling or down-sampling strategies could 
be applied when integrating large-scale high-through-
put data to manage class imbalance. For tasks with lim-
ited sample sizes, meta-learning approaches could be 
considered in future work to enhance predictive per-
formance. Moreover, this framework could be adapted 
for predicting drug metabolism, molecular carci-
nogenicity, aquatic toxicity, and drug-induced liver 
injury [38–41]. Furthermore, OCHEM offers a com-
prehensive collection of toxicity data, which could be 
combined with the AttenhERG framework to uncover 
potential relationships among different toxicity attrib-
utes [42]. Additionally, investigations into the transfer-
ability of AttenhERG to other ion channels or toxicity 
endpoints could expand its utility in drug safety assess-
ment. Efforts to enhance the interpretability of the 
model’s predictions by developing visualization tech-
niques or feature attribution methods could provide 
deeper insights into the molecular mechanisms under-
lying hERG inhibition. Overall, AttenhERG represents 
a promising step towards more efficient and reliable 
prediction of hERG toxicity, with broad implications 
for drug discovery and safety evaluation.

Methods
Dataset construction
The datasets utilized for model construction encompass 
compound activity data from various public databases, 
including ChEMBL, PubChem, and BindingDB, along-
side the compound activity data extracted from multi-
ple scientific publications [27, 43–45]. The final datasets 
(Table S11) employed for training, validation, and testing 
the model comprised 14,322 molecules, including 8,488 
positive and 5,834 negative instances, with a predefined 
activity threshold of 10  μM. Within the testing dataset, 
we established a stringent subset called the test-strict 
dataset, wherein compounds with highly similar scaf-
folds (similarity > 0.8) to those in the training set were 
excluded. Furthermore, the literature data can serve as 
external test sets, providing a more comprehensive evalu-
ation of the model’s performance.

The external test sets are entirely independent of the 
training, validation, and test datasets. The datasets for 
all mentioned experiments are summarized in Table S11. 
External Test Set 1 consisted of 30 positive and 14 nega-
tive instances [23]. External Test Set 2 comprised 157 
FDA-approved drugs, with 41 positive and 116 negative 
instances [16]. External Test Set 3 contained 11 positive 
instances and 30 negative instances [24]. External Test 
Set 4 incorporated data from the thallium flux assay, 
featuring 34 positive and 706 negative instances [24]. 
Additionally, an in-house dataset included 143 positive 
instances and 90 negative instances. Integrating these 
diverse external datasets enables a comprehensive evalu-
ation of the model’s performance across various experi-
mental conditions and assay methodologies, thereby 
enhancing the reliability and applicability of the model 
evaluation. The t-SNE distribution demonstrates the 
structural novelty of compounds in the in-house data-
set, particularly in comparison to the external test sets 
(Figure S1A). Among the four external test sets, only 
External Test Set 2 and External Test Set 4 share 17 FDA-
approved drugs, as illustrated in the Venn diagrams (Fig-
ure S1B). There is no other overlap among the external 
test sets. Importantly, we used identical, previously pub-
lished dataset processing methods to ensure consistency 
and comparability [27]. To ensure the reliability of the in-
house dataset, we applied the StandardizeSmiles function 
from the RDKit library to standardize the SMILES rep-
resentations of compounds. This rigorous standardiza-
tion corrects for inconsistencies or irregularities present 
in the chemical structures of the compounds. To address 
bias introduced by stereochemistry and ionization [46], 
we employed RDKit to deduplicate molecules across the 
five external test sets using InChI Keys. In the training 
set, molecules sharing identical first-block InChI Keys 
were removed, and the training dataset was subsequently 
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updated. As summarized in Table S12, external test set 1 
contained six duplicates, test set 2 had one, and test set 3 
had seven. No duplicates were identified in external test 
set 4 or the inhouse set. After deduplication, the train-
ing set for external test sets 1–3 was revised, and three 
separate models were retrained and re-evaluated on their 
respective external test sets.

Model framework construction
The AttenhERG strategy encompasses three pivotal ele-
ments crucial for its efficacy: a well-trained interpretable 
deep learning model capable of delivering precise pre-
dictions and meaningful interpretations; a visualization 
protocol aimed at discerning atom-level features most 
pertinent to hERG inhibition activity; and an uncertainty 
scoring mechanism employed to gauge the robustness of 
the model.

We constructed an interpretable deep learning model 
leveraging the attention-based graph neural network 
(Attentive FP) algorithm [36]. This algorithm, consti-
tuting a specialized graph neural network architecture 
integrated with a graph attention mechanism, has been 
validated for its exceptional predictive performance 
across diverse datasets. Notably, the algorithm’s capabil-
ity extends to extracting non-local intra-molecular inter-
actions and facilitating the visualization of knowledge 
acquired by the model. Initially, nine distinct atomic fea-
tures and four bond feature types were computed to serve 
as node and edge features for each molecular graph. Spe-
cifically, the framework and molecular representations 
are summarized in Figure S2A. The input node features 
of the model include 39 descriptors, such as atom sym-
bol, number of covalent bonds, electrical charge, radical 
electrons, hybridization, aromaticity, hydrogens, chiral-
ity, and chirality type. Furthermore, the input edge fea-
tures account for bond type, conjugation, ring status, and 
stereochemistry (Figure S2B). Subsequently, employing 
a fully connected layer, initial vectors of uniform length 
were generated for each atom and its neighboring enti-
ties. Initial vectors underwent updates after aggregating 
additional neighborhood information in the subsequent 
two hidden layers embedding attention mechanisms. A 
novel state vector characterizing the entire molecule was 
derived by assembling state vectors for each atom, assign-
ing attention weights to neighbors based on their respec-
tive contributions. Ultimately, a fully connected layer was 
harnessed for task training and prediction. The holistic 
network architecture underwent hyper-parameter tun-
ing via grid search and gradient descent optimization 
employing the Adam optimizer. The continuous updat-
ing of attention weights throughout the model’s itera-
tion process is particularly significant. At each iteration, 
a novel model iteration was instantiated and subjected to 

performance evaluation using the validation dataset. To 
mitigate against overfitting and to select the definitive 
model exhibiting exemplary performance, an early stop-
ping strategy predicated on evaluation outcomes from 
training and validation sets was instituted. Consequently, 
if no improvement in validation AUROC was observed 
after 20 epochs or validation loss remained stagnant after 
30 epochs, the training regimen prematurely ceased.

Following the iterative refinement to yield the optimal 
model, attention weight visualization facilitated the iden-
tification of atom-level features most pertinent to hERG 
inhibition activity, thereby providing invaluable insights 
for medicinal chemists engaged in structural optimiza-
tion endeavors. The dual-level attention mechanism in 
AttenhERG first captures local atomic features and then 
integrates global molecular characteristics. This allows 
AttenhERG to autonomously learn the chemical envi-
ronments of atoms, effectively pinpointing substructures 
critical for hERG inhibition rather than merely evaluat-
ing the entire molecular structure. While preserving 
model integrity, introducing two uncertainty estimation 
methodologies, Entropy and MC-Dropout [37], facili-
tated a comprehensive assessment of prediction uncer-
tainty, thereby bolstering prediction reliability. We were 
then able to sequentially discard the top 10% highest 
uncertainty predictions from the in-house dataset and 
compute the MCC, BAC, and AUROC of the prediction 
outcomes.

Baseline model
We employed four machine learning algorithms as base-
line models for hERG prediction: Random Forest (RF), 
Support Vector Machine (SVM), Directed Message Pass-
ing Neural Network (D-MPNN), and Bayesian Neural 
Network (BayeshERG). These four baseline models have 
been reported in previous studies with the same param-
eter settings [27]. Additionally, to ensure a fair com-
parison of model performance, several models and their 
results selected from the literature were used to evaluate 
the generalization performance of the models on multi-
ple external test sets. The chosen baseline models include 
CardPred, DeepHIT, hERG-att, ADMETlab 2.0, Pred-
hERG 4.2, AdmetSAR 2.0, AMED, Ochem I/II, Cardio-
Tox, BayeshERG, and the Siramshetty et  al. model. The 
performance values for these baseline models were pri-
marily sourced from previous studies [27]. The chosen 
updated models include Pred-hERG 5.0, CToxPred and 
CardioDPi. Among these models, predictions for Pred-
hERG 5.0 were obtained directly from the web service, 
with the selected result being the consensus-weighted 
value, which integrates both binary and regression pre-
dictions. Similarly, CardioDPi predictions were also con-
ducted using web services, with the CardioDPi-hERG 
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value being selected. CToxPred was implemented using 
the provided open-source code, with default parameters 
applied. DMFGAM was implemented using the available 
open-source code with default parameters.

Evaluation metrics
To assess prediction performance, we utilized stand-
ard evaluation metrics, including accuracy (ACC), bal-
anced accuracy (BAC), Matthews’s correlation coefficient 
(MCC), F1 score, sensitivity (SEN), specificity (SPE), 
area under the receiver operating characteristic curve 
(AUROC), and area under the precision-recall curve 
(AUPRC). Additionally, in evaluating the test set, we 
focused on analyzing MCC, BAC, and AUROC, with 
their respective calculation formulas as follows:

where TP, TN, FP, and FN represent the number of true 
positives, true negatives, false positives, and false nega-
tives, respectively. The AUROC represents the area 
under the ROC curve, incorporating the true positive 
rate (TPR) and false positive rate (FPR). These metrics 
are computed using the scikit-learn package in Python 
3.6.15.
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