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Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlight-
ing the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes
the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive,
necessitating the development of computational approaches. In this study, we introduce AttenhERG, a novel graph
neural network framework designed to predict hERG channel blockers reliably and interpretably. AttenhERG dem-
onstrates improved performance compared to existing methods with an AUROC of 0.835, showcasing its efficacy

in accurately predicting hERG activity across diverse datasets. Additionally, uncertainty evaluation analysis reveals
the model’s reliability, enhancing its utility in drug discovery and safety assessment. Case studies illustrate the practi-
cal application of AttenhERG in optimizing compounds for hERG toxicity, highlighting its potential in rational drug

AttenhERG is a breakthrough framework that significantly improves the interpretability and accuracy of predicting
hERG channel blockers. By integrating uncertainty estimation, AttenhERG demonstrates superior reliability compared
to benchmark models. Two case studies, involving APHTA and NMT1 inhibitors, further emphasize AttenhERG's practi-
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Introduction

The adverse effects of pharmaceutical agents on the
heart represent a significant challenge in drug develop-
ment. Drug-induced arrhythmias are of particular con-
cern, with severe consequences resulting in mortality,
as observed in treatments such as dofetilide, haloperi-
dol, and trovafloxacin [1, 2]. Among the numerous ion
channels involved in cardiac repolarization, the human
ether-a-go-go-related gene (hERG) potassium chan-
nel is pivotal in regulating cardiac action potential [3].
Accurate prediction of hERG toxicity in the early stages
of drug development is critical for mitigating risks and
ensuring the safety profile of emerging therapeutics [4].
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Recognizing the growing concerns regarding cardiac
safety, regulatory bodies such as the International Con-
ference on Harmonization of Technical Requirements
for the Registration of Pharmaceuticals for Human
Use (ICH) now mandate the evaluation of drug candi-
dates’” hERG channel blockage properties in preclini-
cal stages [4, 5]. Traditional hERG inhibition detection
methods like patch-clamp electrophysiology and in vivo
QTc assays are hindered by their cost and time-inten-
sive nature [6]. Therefore, computational methods have
emerged as a promising avenue to enhance the efficiency
of hERG channel blocker screening [7, 8]. Quantitative
structure—activity relationship (QSAR) models were ini-
tially developed, offering interpretability by dissecting
hERG channel blocker pharmacophore patterns [9-12].
However, these models often rely on small-sized train-
ing datasets, limiting their robustness for diverse hERG
channel-blocking compounds [13]. Subsequently, vari-
ous data-driven machine learning (ML)-based models
emerged [14-20]. However, ML methods based on
expert-defined molecular fingerprints and feature engi-
neering approaches might be constrained by predefined
rules. Predictive performance may decrease for novel
compound scaffolds. Encoding the atoms of the com-
pound and performing end-to-end prediction may help
alleviate the limitations imposed by predefined rules.

Deep learning-based (DL) models have emerged as a
novel method for predicting hERG channel inhibition
[21], propelled by the remarkable success of deep neural
networks (DNNs). Recent advancements have focused
on integrating diverse molecular features and model
consensuses to enhance prediction reliability and expla-
nation. Certain standouts emphasize reliability, applica-
bility, or interpretability among these models, including
CardPred [22], DeepHIT [23], CardioTox [24], hERG-att
[25], ADMETLAB 2.0 [26], BayeshERG [27], DMFGAM
[28], Pred-hERG 5.0 [29], CToxPred [30], and CardioDPi
[31]. Specifically, BayeshERG was developed via a graph-
based Bayesian deep learning model and a directed mes-
sage-passing neural network (D-MPNN). However, these
models are frequently perceived as black boxes, yielding
prediction outcomes that are difficult to fully interpret,
along with a need to improve uncertainty estimation.
Several research teams have utilized substructure-based
methods to analyze chemistry-intuitive explanations, as
observed in SME and OptADMET ([32, 33]. Still, these
models lack robustness due to the limited availability of
hERG channel-blocking experimental data. We summa-
rize the performance, interpretability, and availability of
ML- / DL-based models in Table S1. We also summa-
rize the rationale for uncertainty quantification imple-
mentation as a strategy to enhance model robustness
(Table S1). Among these models, hRERG-att, BayeshERG,
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and the recently updated models, such as CardioDPi and
Pre-hERG 5.0, provide interpretability. While Bayes-
hERG also incorporates uncertainty quantification, both
its uncertainty estimation and overall accuracy require
considerable improvement. Therefore, we are developing
a new approach aimed at addressing the three aspects of
reliability, interpretability, and uncertainty quantification.

We developed AttenhERG, a novel graph neural net-
work framework designed to reliably predict compound
hERG channel blocking risk to address this unmet clini-
cal need. Notably, we enhanced predictive performance
and improved interpretability through structure opti-
mization. Next, we thoroughly evaluated the model’s
predictive performance using internal and external test
datasets, highlighting its efficacy in accurately predict-
ing hERG activity. We demonstrate the model’s robust-
ness and reliability through meticulous optimization and
uncertainty estimation. We also comprehensively evalu-
ate our model analysis by comparing it with benchmark
models, providing valuable insight into its technical
advantage over existing tools. We conclude by present-
ing compelling case studies involving APH1A [34] and
NMT1 inhibitors [35] to illustrate the practical utility of
our approach in real-world scenarios.

Results

Model architecture and optimization

We began by utilizing the Attentive FP algorithm [36] in
conjunction with uncertainty evaluation analysis to con-
struct an interpretable and reliable deep learning model
named AttenhERG for predicting hERG channel block-
ers (Fig. 1). The methods section provides specific details
regarding this methodology.

We employed a systematic approach combining grid
search and early stopping techniques during the hyperpa-
rameter tuning phase, conducted exclusively on the vali-
dation set. This approach enabled us to efficiently explore
a range of hyperparameter configurations while safe-
guarding against potential overfitting. The parameters
subjected to optimization included dropout rate, hidden
layer units, learning rate, and L2 regularization (Table S2,
Fig. 2A). We initially fixed the dropout and L2 regulariza-
tion parameters to determine the appropriate number of
hidden units. Subsequently, we separately optimized the
regularization L2 rate and dropout rate. To mitigate over-
fitting, we implemented an early stopping strategy (see
Methods), emphasizing the learning rate due to its criti-
cal impact on model training steps.

After the optimization stage, an optimal model con-
figuration with a learning rate of 10~3%, 200 hidden layer
units, a dropout rate of 0.1, and an L2 regularization rate
of 107 was identified. Next, we evaluated its perfor-
mance characteristics and training dynamics in greater
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Fig. 2 Heat maps and model predictive performance for hyperparameter search. A Impact of different hyperparameters on AUROC
on the validation set; B Performance metrics of the optimal model; C Loss and AUROC during the training process

depth. This analysis provided insights into the model’s
training progression and illustrated the evolution of
loss and area under the receiver operating characteristic
curve (AUROC) metrics on the validation and test sets
(Fig. 2B). Notably, the validation set’s AUROC metrics
plateaued after 83 epochs, indicating peak model per-
formance achievement. AttenhERG also exhibited com-
mendable performance metrics, including an AUROC of
0.835, accuracy of 0.777, an area under precision-recall
curve (AUPRC) of 0.834, Matthew’s correlation coeffi-
cient (MCC) of 0.543, balanced accuracy (BAC) of 0.767,
and F1 score of 0.812 (Table S3, Fig. 2C). These metrics
underscore the model’s efficacy in accurately predicting
hERG activity.

Internal evaluation

The predictive performance of all models was con-
ducted to measure MCC, BAC, and AUROC on the test
dataset (Table S4). Among the models evaluated, Atten-
hERG displayed improved performance across the met-
rics, with an MCC of 0.543, BAC of 0.767, and AUROC
of 0.835 (Fig. 3A). This advantage could be attributed
to its dual-level attention mechanism, which first cap-
tures local features at the atomic level and subsequently
incorporates global molecular features. In contrast,
BayeshERG and D-MPNN models encode local fea-
tures, deriving atomic embeddings from molecular
structures. However, the influence between atoms sig-
nificantly diminishes with increasing distance, while
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Fig. 3 The evaluation of predictive performance results with the internal test. A The internal test of the model; B The internal test-strict

of the model

long-range interactions, such as intramolecular hydro-
gen bonding, can still be impactful. Incorporating an
attention mechanism at the atomic level in AttenhERG
likely optimizes these aspects, resulting in enhanced
performance compared to BayeshERG and D-MPNN.
Additionally, SVM and RF models exhibited compara-
tively lower performance metrics, potentially due to
limitations in expert-defined molecular fingerprints.

Interestingly, we also observed that SVM and RF
method performance was improved relative D-MPNN.
One possible reason for this advantage may be that
expert-defined molecular fingerprints have specific pre-
defined rules for molecular scaffolds and list all frag-
ments of the compound. To test this hypothesis, we
constructed a test-strict dataset comprising compounds
with low scaffold similarity to the training dataset (see
Methods for details). The predictive performance on
the test-strict dataset revealed distinct differences
among the models (Table S5, Fig. 3B). AttenhERG
exhibited the highest performance, achieving an MCC
of 0.492, BAC of 0.744, and AUROC of 0.818. In con-
trast, SVM (FPS) and RF (FPS) demonstrate relatively
poorer performance, with lower MCC and AUROC
than the other models. We conclude that predefined
rules constrain ML methods relying on expert-defined
molecular fingerprints, resulting in significant perfor-
mance dips when encountering novel scaffolds. These
findings highlight the role of model design, feature
engineering, and attention mechanisms in improving
predictive performance.

External evaluation

Next, we delved into a comprehensive evaluation of the
predictive performance of our model across diverse
external test sets to shed light on its efficacy in real-
world scenarios. The external review utilizes identical
evaluation metrics employed in the internal assessment.
We present a detailed overview of the external evalua-
tion results that showcase the predictive performance
of our model compared to baseline models across four
distinct external test sets (Tables S6-S9). Overall, our
model demonstrates comparable performance to the
baseline models across these test sets, underscoring its
robustness in various scenarios. Our study focuses on
two critical aspects: model interpretability and reliabil-
ity. We selected models that performed strongly in these
areas for comparative analysis for the in-house dataset,
such as BayeshERG, CardioDPi, CToxPred, Pred-hERG
5.0 and DMFGAM (Table S10). Our model consistently
ranks highly among the models evaluated across vari-
ous metrics and datasets, showing overall superiority
over recently updated models (Fig. 4A). Upon analyzing
the performance differences, we found that many of the
updated baseline models primarily rely on expert-defined
fingerprints and descriptors for molecular representa-
tion, which could constrain their performance due to
predefined rules. Notably, BayeshERG’s predictive per-
formance on the external test sets was influenced by the
presence of duplicate data arising from molecular stereo-
chemistry and ionization, which introduced a bias in its
predictions, leading to overestimated prediction results.
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To provide a more rigorous comparison of novel com-
pounds, we selected an in-house dataset that is struc-
turally distinct from the four external test sets (Figure
S1A). AttenhERG significantly outperformed both
BayeshERG and recently updated models, including
CardioDPi, CToxPred, Pred-hERG 5.0 and DMFGAM
in this analysis (Fig. 4B). This improvement was attrib-
uted to AttenhERG’s ability to autonomously learn the
chemical environment of atoms, thereby effectively
identifying substructures that significantly impact
hERG inhibition rather than just the entire molecule.
Overall, the external evaluation provides compelling

evidence of our model’s efficacy, highlighting its ability
to generalize across diverse, novel datasets.

Uncertainty evaluation analysis

Within deep learning models, uncertainty estimation has
become a crucial component for assessing the authen-
ticity of prediction outcomes. Specifically, the source
of this uncertainty can be affected by both algorithmic
and data-availability constraints. We delved into the
impact of uncertainty estimation on model performance,
particularly in scenarios with insufficient hERG data.
We employed two uncertainty estimation techniques,
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Entropy and MC-Dropout, that are known for their effi-
cacy in similar attribute prediction tasks [37] within the
framework of the AttenhERG model. These methods
capture predictive uncertainty in classification models
without altering the model framework and are contrasted
with two uncertainty estimation methods employed in
the BayeshERG model. Additionally, we explored the lin-
ear relationship between uncertainty levels and predic-
tion accuracy to enhance the model’s reliability.

Despite being a probabilistic model, the uncertainty
analysis in the BayeshERG model revealed no significant
improvement in model performance. This observation
is supported by the AUROC curve, which indicates that
models referencing uncertainty estimates perform equiv-
alently to the random group, showing no discernible
change (Fig. 5A). Furthermore, introducing Entropy and
MC-Dropout uncertainty methods into the AttenhERG
model resulted in enhanced model performance com-
pared to the random group, as evidenced by the MCC,
BAC, and AUROC metrics. This demonstrates the supe-
rior performance of the model over the random group
(Fig. 5B), validating the reliability of the AttenhERG
model equipped with uncertainty estimation.

Case study

We employed AttenhERG’s predictive ability in mul-
tiple case studies to assess its real-world utility. This
analysis provided crucial insight into how structural
modifications influence hERG activity across various
circumstances. For instance, CHEMBL2021101 was

A The MCC evaluation

The BAC evaluation
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identified as a potent y-secretase modulator (Fig. 6A),
demonstrating single-digit nanomolar Ap42 (APHIA)
ICy, in cell-based assays. Despite its therapeutic poten-
tial, this compound possesses significant hERG toxicity
risks. Optimization studies originating from aryl tria-
zole leads were initiated, culminating in developing novel
amides and lactams within the series [34]. These modi-
fications significantly enhanced activity and reduced
the compound’s affinity towards hERG channels. Atten-
hERG forecasted the directional shifts in hERG binding
proportions for these molecules and pinpointed crucial
atoms and substructure fragments that may contribute
to this modification. Atom attention weight visualiza-
tion revealed deeper hues of red in the phenyl group of
the initial structure, indicating segments likely pivotal
to hERG properties. The introduction of trifluoromethyl
substitution to the phenyl group mitigated its impact on
hERG properties, with predictive results indicating that
the optimized compounds exhibited hERG inhibitory
activity above 10uM, in agreement with prior results [35].

In another case study concerning the Pyrazole Sul-
fonamide Series of Trypanosoma brucei N-Myris-
toyltransferase (NMT1) inhibitors, we scrutinized
the structure—activity relationships of a novel series
of pyrazole sulfonamide compounds to identify frag-
ment modifications that result in hERG inhibition
[35]. AttenhERG analyzed two representative com-

pounds, CHEMBL3358114 and CHEMBL1230468,
for hERG inhibition risk (Fig. 6B). Predictive
analysis demonstrated alignment between the

The AUROC evaluation

0.8{ —*— BeyeshERG_Alea (AUC=0.42)
—=— BeyeshERG_Epis (AUC=0.43)
—=— Random (AUC=0.37+0.04)

—e— BeyeshERG_Alea (AUC=0.65)
—=— BeyeshERG_Epis (AUC=0.66) 0.90
—=— Random (AUC=0.63+0.02)

—e— BeyeshERG_Alea (AUC=0.69)
—=— BeyeshERG_Epis (AUC=0.68)
—=— Random (AUC=0.65+0.02)

0.85

0.80

Score

0.75

0.70

0.65

0.60

10 09 08 07 06 05 04 03 02 01 10 09 08 07

Percentile

B The MCC evaluation

0.6
Percentile

The BAC evaluation

0.55
05 04 03 02 01 10 09 08 07 06 05 04 03 02 01

Percentile

0.8{ —— AttenhERG_MCdropout (AUC=0.49)
—=— AttenhERG_Entropy (AUC=0.50)
—=— Random (AUC=0.34+0.01)

—e— AttenhERG_MCdropout (AUC=0.70)
—=— AttenhERG_Entropy (AUC=0.70)
—=— Random (AUC=0.63+0.01)

The AUROC evaluation
—e— AttenhERG_MCdropout (AUC=0.74)
0.90{ —=— AttenhERG_Entropy (AUC=0.74)

—=— Random (AUC=0.66+0.01) %7\\.

0.85

Score
)
S
G

06 05 04 03 02 01 1.0 09 08 07
Percentile

10 09 08 07

06 05 04 03 02 01 10 09 08 07 06 05 04 03 02 0.1
Percentile

Percentile

Fig. 5 The evaluation of uncertainty evaluation analysis. A The uncertainty evaluation analysis of BayeshERG model and AttenhERG model; B The

uncertainty evaluation analysis of the AttenhERG model



Yang et al. Journal of Cheminformatics (2024) 16:143

APH1A inhibitor

APH1A IC50: 20 nM
hERG IC50: 2.2 uM 4
Predict label: < 10uM

APH1A IC50: 3 nM
hERG IC50: 13.1 uM
Predict label: > 10uM

NMT1 inhibitor

. NMT1 IC50: 12 nM
' hERG IC50: 0.6 uM *
»_/ Predict label: < 10uM

N\

/{‘ NMT1 IC50: 3 nM
”” hERG IC50: 28 uM
Predict label: > 10uM

Page 7 of 12

CHEMBL3358114

1.0

0.8

0.6

-0.4

-0.2

-0.0

to reduce hERG inhibitory risk; B Optimizing the hERG inhibitory activity of a compound targeting NMT1; C Visualization of AttenhERG's capability

to autonomously learn molecular features

magnitude and directionality of hERG changes and
experimental observations. We used the NMT1 inhibi-
tor CHEMBL3358114 as an illustrative example. First,
we provided a visualization of the model-derived
weights to illustrate how molecular features are cap-
tured in our model. The AttenhERG model autono-
mously learns the chemical environment of atoms,
utilizing hERG prediction as a supervisory task. The
model assesses the atomic vectors’ correlation, with
negatively correlated atoms highlighted in yellow and
positively correlated atoms in blue (Fig. 6C). The analy-
sis indicates that the molecule exhibits distinct struc-
tural patterns, which are more pronounced in the
deeper hidden layers. In the case of CHEMBL3358114’s
structure, atomic correlations are predominantly clus-
tered in the C20-C209 tail region, indicating a significant
impact of this region on the molecule’s hERG inhibitory
activity. Structural modifications in this region (Fig. 6B)
reduced its hERG risk, consistent with experimental
validation in which we measured reduced hERG affinity
from 0.6 uM to 28 uM.

Overall, these case studies underscore the rationale
behind deriving fragments from the AttenhERG model
that significantly impact hERG and provide instruc-
tion for structural optimization, giving valuable insights
into model-learned knowledge associated with hERG
properties.

Discussion and conclusion
Here, we developed AttenhERG, a novel graph neural
network framework tailored for predicting hRERG channel
blockers with enhanced reliability and interpretability.
Inspired by the Attentive FP algorithm, our work intro-
duces key innovations that significantly advance the field.
Notably, AttenhERG integrates graph-based molecular
representations, attentive encoding mechanisms, and
uncertainty evaluation analysis. These advancements
distinguish it from previous hERG prediction models,
enhancing both predictive performance and model trans-
parency. Our model demonstrates notable improvements
in classification accuracy within multiple datasets, high-
lighting its efficacy in accurately predicting hERG activity
across diverse molecular structures. Furthermore, uncer-
tainty analysis reveals that excluding predictions with
higher uncertainty enhances the model’s performance,
thereby bolstering prediction reliability. Our case studies
illustrate AttenhERG’s utility in optimizing compounds
for hERG toxicity, showcasing its capability to effectively
identify and modify atomic fragments to optimize hERG
properties. The development of AttenhERG represents
a substantial advancement in drug discovery and safety
assessment methodology, offering a robust and interpret-
able model for early-stage prediction of hERG toxicity.

In early-stage drug discovery, uncertainty analy-
sis results prioritize structures with low uncertainty
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scores, as these predictions are more reliable and asso-
ciated with a reduced risk of failure. However, explor-
ing effective strategies for addressing high-uncertainty
predictions presents a valuable direction for future
research. Compounds and their analogs with elevated
uncertainty scores merit further investigation, as they
may reveal underexplored regions of chemical space or
complex features overlooked by existing models. We
recommend conducting additional in vitro testing on
these compounds to validate their biological activity.
Compounds that consistently exhibit high uncertainty
should be deprioritized in the development pipeline
to optimize resource allocation toward more reliable
candidates. Expanding validated compounds into the
training dataset’s chemical space and fine-tuning the
model with this augmented dataset may enhance pre-
dictive performance, enabling uncertainty estimates
to serve as critical insights that effectively guide early-
stage drug discovery efforts.

Future investigations could explore to improve
model generalization and the model wider scope of
applicability. AttenhERG’s model performance may
also be limited by the dataset size. With limited data-
sets, the chemical space represented by the compounds
is restricted, which can hinder predictive performance
for novel structures. In addition to utilizing activ-
ity data from patch-clamp experiments, it would be
beneficial to incorporate high-throughput data while
remaining cautious of biases that such data may intro-
duce. Up-sampling or down-sampling strategies could
be applied when integrating large-scale high-through-
put data to manage class imbalance. For tasks with lim-
ited sample sizes, meta-learning approaches could be
considered in future work to enhance predictive per-
formance. Moreover, this framework could be adapted
for predicting drug metabolism, molecular carci-
nogenicity, aquatic toxicity, and drug-induced liver
injury [38—41]. Furthermore, OCHEM offers a com-
prehensive collection of toxicity data, which could be
combined with the AttenhERG framework to uncover
potential relationships among different toxicity attrib-
utes [42]. Additionally, investigations into the transfer-
ability of AttenhERG to other ion channels or toxicity
endpoints could expand its utility in drug safety assess-
ment. Efforts to enhance the interpretability of the
model’s predictions by developing visualization tech-
niques or feature attribution methods could provide
deeper insights into the molecular mechanisms under-
lying hERG inhibition. Overall, AttenhERG represents
a promising step towards more efficient and reliable
prediction of hERG toxicity, with broad implications
for drug discovery and safety evaluation.
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Methods

Dataset construction

The datasets utilized for model construction encompass
compound activity data from various public databases,
including ChEMBL, PubChem, and BindingDB, along-
side the compound activity data extracted from multi-
ple scientific publications [27, 43—45]. The final datasets
(Table S11) employed for training, validation, and testing
the model comprised 14,322 molecules, including 8,488
positive and 5,834 negative instances, with a predefined
activity threshold of 10 uM. Within the testing dataset,
we established a stringent subset called the test-strict
dataset, wherein compounds with highly similar scaf-
folds (similarity>0.8) to those in the training set were
excluded. Furthermore, the literature data can serve as
external test sets, providing a more comprehensive evalu-
ation of the model’s performance.

The external test sets are entirely independent of the
training, validation, and test datasets. The datasets for
all mentioned experiments are summarized in Table S11.
External Test Set 1 consisted of 30 positive and 14 nega-
tive instances [23]. External Test Set 2 comprised 157
FDA-approved drugs, with 41 positive and 116 negative
instances [16]. External Test Set 3 contained 11 positive
instances and 30 negative instances [24]. External Test
Set 4 incorporated data from the thallium flux assay,
featuring 34 positive and 706 negative instances [24].
Additionally, an in-house dataset included 143 positive
instances and 90 negative instances. Integrating these
diverse external datasets enables a comprehensive evalu-
ation of the model’s performance across various experi-
mental conditions and assay methodologies, thereby
enhancing the reliability and applicability of the model
evaluation. The t-SNE distribution demonstrates the
structural novelty of compounds in the in-house data-
set, particularly in comparison to the external test sets
(Figure S1A). Among the four external test sets, only
External Test Set 2 and External Test Set 4 share 17 FDA-
approved drugs, as illustrated in the Venn diagrams (Fig-
ure S1B). There is no other overlap among the external
test sets. Importantly, we used identical, previously pub-
lished dataset processing methods to ensure consistency
and comparability [27]. To ensure the reliability of the in-
house dataset, we applied the StandardizeSmiles function
from the RDKit library to standardize the SMILES rep-
resentations of compounds. This rigorous standardiza-
tion corrects for inconsistencies or irregularities present
in the chemical structures of the compounds. To address
bias introduced by stereochemistry and ionization [46],
we employed RDKit to deduplicate molecules across the
five external test sets using InChl Keys. In the training
set, molecules sharing identical first-block InChl Keys
were removed, and the training dataset was subsequently
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updated. As summarized in Table S12, external test set 1
contained six duplicates, test set 2 had one, and test set 3
had seven. No duplicates were identified in external test
set 4 or the inhouse set. After deduplication, the train-
ing set for external test sets 1-3 was revised, and three
separate models were retrained and re-evaluated on their
respective external test sets.

Model framework construction

The AttenhERG strategy encompasses three pivotal ele-
ments crucial for its efficacy: a well-trained interpretable
deep learning model capable of delivering precise pre-
dictions and meaningful interpretations; a visualization
protocol aimed at discerning atom-level features most
pertinent to hERG inhibition activity; and an uncertainty
scoring mechanism employed to gauge the robustness of
the model.

We constructed an interpretable deep learning model
leveraging the attention-based graph neural network
(Attentive FP) algorithm [36]. This algorithm, consti-
tuting a specialized graph neural network architecture
integrated with a graph attention mechanism, has been
validated for its exceptional predictive performance
across diverse datasets. Notably, the algorithm’s capabil-
ity extends to extracting non-local intra-molecular inter-
actions and facilitating the visualization of knowledge
acquired by the model. Initially, nine distinct atomic fea-
tures and four bond feature types were computed to serve
as node and edge features for each molecular graph. Spe-
cifically, the framework and molecular representations
are summarized in Figure S2A. The input node features
of the model include 39 descriptors, such as atom sym-
bol, number of covalent bonds, electrical charge, radical
electrons, hybridization, aromaticity, hydrogens, chiral-
ity, and chirality type. Furthermore, the input edge fea-
tures account for bond type, conjugation, ring status, and
stereochemistry (Figure S2B). Subsequently, employing
a fully connected layer, initial vectors of uniform length
were generated for each atom and its neighboring enti-
ties. Initial vectors underwent updates after aggregating
additional neighborhood information in the subsequent
two hidden layers embedding attention mechanisms. A
novel state vector characterizing the entire molecule was
derived by assembling state vectors for each atom, assign-
ing attention weights to neighbors based on their respec-
tive contributions. Ultimately, a fully connected layer was
harnessed for task training and prediction. The holistic
network architecture underwent hyper-parameter tun-
ing via grid search and gradient descent optimization
employing the Adam optimizer. The continuous updat-
ing of attention weights throughout the model’s itera-
tion process is particularly significant. At each iteration,
a novel model iteration was instantiated and subjected to
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performance evaluation using the validation dataset. To
mitigate against overfitting and to select the definitive
model exhibiting exemplary performance, an early stop-
ping strategy predicated on evaluation outcomes from
training and validation sets was instituted. Consequently,
if no improvement in validation AUROC was observed
after 20 epochs or validation loss remained stagnant after
30 epochs, the training regimen prematurely ceased.

Following the iterative refinement to yield the optimal
model, attention weight visualization facilitated the iden-
tification of atom-level features most pertinent to hERG
inhibition activity, thereby providing invaluable insights
for medicinal chemists engaged in structural optimiza-
tion endeavors. The dual-level attention mechanism in
AttenhERG first captures local atomic features and then
integrates global molecular characteristics. This allows
AttenhERG to autonomously learn the chemical envi-
ronments of atoms, effectively pinpointing substructures
critical for hERG inhibition rather than merely evaluat-
ing the entire molecular structure. While preserving
model integrity, introducing two uncertainty estimation
methodologies, Entropy and MC-Dropout [37], facili-
tated a comprehensive assessment of prediction uncer-
tainty, thereby bolstering prediction reliability. We were
then able to sequentially discard the top 10% highest
uncertainty predictions from the in-house dataset and
compute the MCC, BAC, and AUROC of the prediction
outcomes.

Baseline model

We employed four machine learning algorithms as base-
line models for hERG prediction: Random Forest (RF),
Support Vector Machine (SVM), Directed Message Pass-
ing Neural Network (D-MPNN), and Bayesian Neural
Network (BayeshERG). These four baseline models have
been reported in previous studies with the same param-
eter settings [27]. Additionally, to ensure a fair com-
parison of model performance, several models and their
results selected from the literature were used to evaluate
the generalization performance of the models on multi-
ple external test sets. The chosen baseline models include
CardPred, DeepHIT, hERG-att, ADMETIab 2.0, Pred-
hERG 4.2, AdmetSAR 2.0, AMED, Ochem I/II, Cardio-
Tox, BayeshERG, and the Siramshetty et al. model. The
performance values for these baseline models were pri-
marily sourced from previous studies [27]. The chosen
updated models include Pred-hERG 5.0, CToxPred and
CardioDPi. Among these models, predictions for Pred-
hERG 5.0 were obtained directly from the web service,
with the selected result being the consensus-weighted
value, which integrates both binary and regression pre-
dictions. Similarly, CardioDPi predictions were also con-
ducted using web services, with the CardioDPi-hERG



Yang et al. Journal of Cheminformatics (2024) 16:143

value being selected. CToxPred was implemented using
the provided open-source code, with default parameters
applied. DMFGAM was implemented using the available
open-source code with default parameters.

Evaluation metrics

To assess prediction performance, we utilized stand-
ard evaluation metrics, including accuracy (ACC), bal-
anced accuracy (BAC), Matthews’s correlation coefficient
(MCCQ), F1 score, sensitivity (SEN), specificity (SPE),
area under the receiver operating characteristic curve
(AUROC), and area under the precision-recall curve
(AUPRC). Additionally, in evaluating the test set, we
focused on analyzing MCC, BAC, and AUROC, with
their respective calculation formulas as follows:

1)

1 P TN
BAC = 3 X

TP + FN * TN + FP

TP x TN — FP x FN

MCC = 2)
J(TP + FP)(TP + FN)(TN + FP)(TN + FN)
TP
SEN = —— (3)
TP + FN
SPE = IN 4
" TP+ FN (4)

where TP, TN, FP, and EN represent the number of true
positives, true negatives, false positives, and false nega-
tives, respectively. The AUROC represents the area
under the ROC curve, incorporating the true positive
rate (TPR) and false positive rate (FPR). These metrics
are computed using the scikit-learn package in Python
3.6.15.
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