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Abstract 

Predicting EC numbers for chemical reactions enables efficient enzymatic annotations for computer-aided synthesis 
planning. However, conventional machine learning approaches encounter challenges due to data scarcity and class 
imbalance. Here, we introduce CLAIRE (Contrastive Learning-based AnnotatIon for Reaction’s EC), a novel framework 
leveraging contrastive learning, pre-trained language model-based reaction embeddings, and data augmentation 
to address these limitations. CLAIRE achieved notable performance improvements, demonstrating weighted average 
F1 scores of 0.861 and 0.911 on the testing set (n = 18,816) and an independent dataset (n = 1040) derived from yeast’s 
metabolic model, respectively. Remarkably, CLAIRE significantly outperformed the state-of-the-art model by 3.65 folds 
and 1.18 folds, respectively. Its high accuracy positions CLAIRE as a promising tool for retrosynthesis planning, drug 
fate prediction, and synthetic biology applications. CLAIRE is freely available on GitHub (https://​github.​com/​zishu​
ozeng/​CLAIRE).

Scientific contribution
This work employed contrastive learning for predicting enzymatic reaction’s EC numbers, overcoming the challenges 
in data scarcity and imbalance. The new model achieves the state-of-the-art performance and may facilitate the com-
puter-aided synthesis planning.

Keywords  Reaction EC number, Contrastive learning, Reaction embeddings, Metabolic model, Computer-aided 
synthesis planning

Introduction
Enzymes are pivotal in catalyzing biochemical reactions 
vital for life processes. Central to the classification and 
nomenclature of enzymes is the Enzyme Commission 
(EC) number system, providing a systematic framework 
for organizing and understanding enzymatic activities. 

The EC numbers are formatted into four hierarchical 
levels. According to the IUBMB Enzyme Nomencla-
ture [1], the first level denotes the most basic classifica-
tion of enzyme functions, including oxidoreductase (EC 
1), transferase (EC 2), hydrolase (EC 3), lyase (EC 4), 
isomerase (EC 5), ligase (EC 6), and translocase (EC 7). 
The following second level designates the group or bond 
where enzyme acts upon, e.g., EC 2.3 indicates acyltrans-
ferase under the transferase group (EC 2). The third level 
specifies the enzymatic reaction, e.g., EC 2.3.2 refers to 
aminoacyltransferase. The last component is a serial 
number assigned to the enzyme with specific substrate 
[2] in sequential order [3], e.g., EC 2.3.2.8 is assigned to 
arginyltransferase.

The fast and automated annotation of EC number for 
protein sequences has become especially crucial since the 
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emergence of next generation sequence, which results 
in rapid accumulation of biological sequences with 
unknown functions [4]. Many efforts have been made 
aiming to achieve this goal, ranging from traditional 
bioinformatics methods [5] to machine learning-based 
methods [6–9]. However, accurate prediction of EC num-
bers for proteins is not straightforward, because the total 
types of complete EC numbers (four levels) are enor-
mous (over 5000 [3]) and the distribution of the available 
sequences per EC number is highly imbalanced—some 
EC numbers have tens of thousands of affiliated protein 
sequences whereas some may only have a handful. Con-
sequently, no highly reliable EC number predictor is in 
place until CLEAN [10] being introduced very recently. 
CLEAN adopted a pre-trained large language model for 
effective protein feature extraction and contrastive learn-
ing as the model architecture to overcome the limitations 
of data imbalance, dubbing it the state-of-the-art method 
for protein EC number prediction.

While EC numbers are commonly used for annotat-
ing enzymes, their application extends to annotating the 
corresponding reactions catalyzed by these enzymes. 
However, existing tools for predicting EC-reaction rela-
tionships suffer from unsatisfactory performance due to 
several reasons. First, unlike protein sequence, the EC 
number of a chemical reaction can be manually deter-
mined by experts, which is more reliable than a computa-
tional tool. Second, the available EC-reaction datasets are 
much smaller compared to those for EC-enzyme annota-
tions. For instance, the Rhea database [11] only contains 
about 21 thousand EC-reaction entries, whereas Uni-
Prot [12] contains > 250 thousands reviewed EC-enzyme 
sequence entries.

Although a reaction’s EC number can be manually 
determined by experts, automated prediction is particu-
larly crucial in the era of synthesis biology, where knowl-
edge of synthesis reactions and metabolic pathways is 
essential for producing desired compounds in microbial 
factories [13]. To this end, many tools have been devel-
oped for computer-aided synthesis planning (CASP) [14]. 
CASP may generate large amount of candidate reactions, 
necessitating automated EC number annotation due to 
the impracticality of manual curation. With the aid of a 
reliable EC-reaction predictor, these candidate reactions 
can be annotated with EC numbers. Meanwhile, the pro-
tein sequences derived from transcriptomic or proteomic 
data can also be annotated with EC numbers by tools 
such as CLEAN [10]. The mutual presence of the same 
EC numbers on protein level and reaction level can serve 
as cross-validation, which facilitates the enzyme mining 
process for the desired reactions. Altogether, an efficient 
predictor of EC-reaction predictor is pivotal for enzyme 
mining and synthesis biology overall.

Most existing reaction-EC annotation tools primarily 
rely on similarity search against annotated reactions [3, 
15–17]. Reaction similarity can be constructed by finger-
prints [15], atom–atom mapping [3], types of bonds [16], 
and mutual information [18]. The similarity-based meth-
odology assumes that the inter-reaction similarity can 
well capture the complex relationships between reaction 
similarity and EC labels. However, this assumption often 
fails especially when large molecules experience relatively 
minor local changes or when large cofactors partici-
pate in the reaction [17]. Matsuta et al. attempted to use 
machine learning to capture the nonlinear relationship 
between reaction similarity and EC labels [18]. But they 
treated the EC number prediction task as a binary classi-
fication task, which does not perform well in multi-class 
tasks [19]. Most recently, a deep learning-based multi-
class model called Theia [20] was developed for reaction-
EC prediction. Although Theia was trained on a dataset 
larger than previous ones, the data imbalance problem 
was still not particularly addressed, which motivated us 
to develop a new model with higher performance.

Inspired by CLEAN [10], we developed a novel reac-
tion-EC number predictor using contrastive learning 
architecture, which is demonstrated to be beneficial in 
remedying data imbalance in classification tasks [21–
23]. The data input to the contrastive learning network 
includes differential reaction fingerprints (DRFP) [24] 
and embeddings derived from a pre-trained language 
model [25], both of which are shown to be superior to 
structure-based fingerprints [24]. Moreover, we per-
formed data augmentation by shuffling the order within 
reactants and within products simultaneously to improve 
the model robustness. We name this new model CLAIRE 
(Contrastive Learning-based AnnotatIon for ReactI on’s 
EC). As a result, CLAIRE outperforms Theia substan-
tially, demonstrating its utility in reaction-EC prediction 
and its promise in enzyme mining for synthetic biology.

Methods
Data curation and processing
Rhea [11] is a commonly used database dedicated for 
reaction and enzyme mapping, which comprises only 
about 21 thousand reaction-enzyme pairs with annotated 
EC numbers. Recently, a much larger reaction-EC data-
set called ECREACT [26] has been collected by combin-
ing data from Rhea, BRENDA [27], PathBank [28], and 
MetaNetX [29]. We downloaded the ECREACT dataset 
[26] (n = 62,222), including 277 3rd-level EC numbers, 
wherein we removed 101 EC numbers that have less 
than 10 reaction entries, resulting in 61,817 EC-reac-
tion entries. These remaining EC-reaction entries cover 
seven 1st-level EC numbers (e.g., 5.-.-.-), 63 2nd-level 
EC numbers (e.g., 2.1.-.-), and 175 3rd-level EC numbers 
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(e.g., 1.2.1.-). For each of the 3rd-level EC numbers, we 
left 10% of samples (reactions) for final testing. For the 
remaining 90% of samples, we further split the data in 1:9 
ratio for validation and training purposes.

To ensure the robustness of the model, we performed 
data augmentation by shuffling participants within reac-
tants and products. For example, reaction A + B = C + D 
can be augmented to four reactions: A + B = C + D, 
B + A = C + D, A + B = D + C, and B + A = D + C. To dem-
onstrate the necessity of the data augmentation, we 
randomly selected 1000 reactions to perform data aug-
mentation and computed the Euclidean distance of rxnfp 
embeddings between the original reaction and shuffled 
reactions (e.g., A + B = C + D and B + A = C + D). We then 
compared these same-but-shuffled reactions’ distances 
with the distances between actually different reactions 
(pairwise distances among the 1000 reactions). Result 
showed substantial overlap–there are 11.7% same-but-
shuffled distances that are greater than the 10-percentile 
of distances between different reactions (Supplementary 
Fig. 1), confirming the necessity the data augmentation. 
The data augmentation process resulted in a three-fold 
size increase in training set (n = 150,226), validation set 
(n = 16,692), and testing set (n = 18,816).

Feature engineering
We computed embeddings for reactions in our dataset 
using the rxnfp [25] pre-trained model and differential 
reaction fingerprints (DRFP) [24]. The rxnfp model is a 
transformer-based classifier that predicts a reaction’s cat-
egory (e.g., nitro to amino). The rxnfp model was trained 
on ~ 3 million reactions from Pistachio database (https://​
www.​nextm​oveso​ftware.​com/​pista​chio.​html) and 
UPSTO 50K dataset [30] to predict the reaction category 
(e.g., nitro to amino). In this study, we fed the enzymatic 
reactions in SMILES format to rxnfp, from which the 
resulting model hidden layer is extracted as the embed-
dings. These embeddings serve as the features to describe 
the properties of a chemical reaction for our machine 
learning task. The rxnfp-derived embeddings enable 
mapping the reaction space properly (i.e., reactions 
belonging to the same category are placed closer together 
in the embeddings dimensions) [25] and have been found 
useful in a variety of downstream machine learning tasks, 
such as prediction of chemical yields [31], biocatalytic 
synthesis planning [26], and reaction classification [24].

DRFP, unlike rxnfp, is not a machine learning-based 
method. It converts a reaction SMILES to a binary fin-
gerprint by comparing the symmetric difference of two 
sets of circular n-grams extracted from the molecules 
positioned to the left and right of the reaction arrow [24]. 
Since the reactions are in SMILES (simplified molec-
ular-input line-entry system) format [32], the reaction 

embeddings can be readily applied. Both DRFP and rxnfp 
converts a SMILES-based reaction to a 256-long vector, 
resulting in a final feature set with 512 numeric values 
long.

Curation of yeast metabolic model data
We curated an additional large-batch dataset from yeast’s 
metabolic model for further validation on CLAIRE. We 
first obtained the gene-reaction mapping relationships 
from the yeast metabolic model, iMM904 [33], where 
genes are listed as IDs (e.g., YOR190W) and reaction 
comprises of model-specific IDs for metabolites (e.g., 
2hp6mbq_m). To obtain the ground truths of EC number 
for each gene-reaction pair, we obtained the sequences of 
the yeast gene IDs and BLASTed [34] them against the 
UniProt database [12], from which we acquired the EC 
number annotations. To enable the reaction-EC predic-
tion by CLAIRE, metabolites of reactions in iMM904 
need to be converted to SMILES format. Thus, we first 
mapped the metabolite IDs to metabolite names through 
the inherent mappings available in iMM904; we then 
mapped metabolite names to SMILES through a map-
ping table downloaded from ChEBI database [35], which 
is a comprehensive database for chemicals with informa-
tion of chemical names, synonyms, canonical SMILES, 
etc. Note that some metabolite names in iMM904 are 
are difficult to be standardized using regular expression. 
Thereby, we have to manually fix the metabolite names 
when necessary, for examples, “2 Hydroxy hexadecanal 
C16H32O2” to “2-hydroxyhexadecanal”, “Nicotinamide 
adenine dinucleotide phosphate—reduced” to “NADPH”. 
Also, there are many metabolite names that failed to be 
identified based on the ChEBI database and therefore 
abandoned, such as “Mannose inositol P 2 ceramide 
ceramide 1 26C”, “Peptide C2H4NO2RC2H2NOR”, and 
“TRNA(Phe)”. As a result, we collected 1122 reaction-EC 
(genes) pairs with 617 unique genes and 578 unique reac-
tions. After removing duplicates on genes, we obtained 
456 reaction-EC pairs as the positive set.

For an objective evaluation, we also compiled a nega-
tive set. Since there could be tremendous possible false 
reactions for negative reaction-EC pairing, we selected 
the reaction that is closest to the reaction in the positive 
reaction-EC pair, i.e., the false reaction only differs on the 
third level from the positive reaction-EC pair. This way, 
we can significantly narrow down the candidate pool and 
maximize the challenge of the negative set to the model. 
Note that, since some reactions in the positive set may 
correspond to multiple EC numbers, we first expanded 
the reaction-EC(s) to single reaction-EC pairs then per-
formed the negative set construction. As a result, the 
negative set (n = 584) is slightly larger than the positive 
set.

https://www.nextmovesoftware.com/pistachio.html
https://www.nextmovesoftware.com/pistachio.html
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Model implementation
We trained an individual model for 1st-level, 2nd-level, 
and 3rd-level EC number prediction, respectively. The 
methodology and code for training and prediction were 
modified based on CLEAN’s [10] framework (https://​
github.​com/​tttia​nhao/​CLEAN).

We adopted the Triplet Margin Loss (TML) [36] as the 
training strategy, where the sampling procedures are as 
the following:

1.	 A selected data point is set as Anchor;
2.	 A data point with the same label (EC number) as the 

Anchor is randomly selected to form a Positive pair;
3.	 A data point with a different label from the Anchor is 

randomly selected as a Negative pair.

Such an Anchor-Positive–Negative combination con-
stitutes a triplet. The objective is to optimize the model 
parameters by the TML loss function (Eq.  1), i.e., to 
minimize Anchor-Positive distance and maximize the 
Anchor-Negative distance, respectively, while maintain-
ing a distance greater than a predefined margin, thereby 
allowing the network to better learn the differences 
between samples. Each sample in the entire dataset is 
exhaustively iterated as Anchor.

where [·]+ =

{

0, x < 0

·, x ≥ 0
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Negative pairs.

Apart from the TML strategy [36], CLEAN also pro-
posed Supcon Hard Loss (SHL) [10, 37]. SHL aims to 
challenge the model by selecting negative samples that 
is similar to the Anchor. However, in our dataset, there 
exists cases where the feature distances are small whereas 
the labels are very different (i.e., differ by the first level). 
Also, SHL limits the options of Negative, sacrificing the 
diversity during triplet construction. These limitations 
impede the learning efficiency and subject the model to 
overfitting, and thus the SHL strategy is not adopted.

Hyperparameter tuning
For the TML strategy, the hyperparameter α may have an 
impact on the model performance and training efficiency, 
we therefore perform experiments to find the optimal α 
from 0.5, 1, 1.5, and 2 with a default set of hyperparam-
eters (number of layers = 5; learning rate = 0.0001; hid-
den dimension = 1280). Results showed that the model 
converges most quickly and both training and validation 
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losses are minimal at α =1 (Supplementary Fig. 2). For the 
hyperparameters of the fully connected neural network, 
we first performed grid search for number of layers and 
hidden dimension. After finding the optimal set of these 
two hyperparameters, we continued to optimize the 
learning rate. The final set of hyperparameters are as fol-
lows: number of layers = 5; learning rate = 0.0001; hidden 
dimension = 1280. Code was implemented in Python (v 
3.10.4) with PyTorch package (v 1.11.0) and scikit-learn 
(v 1.2.0).

Ablation study
Since we used two embedding strategies (rxnfp, DRFP) 
for data featurization, we performed an ablation study to 
investigate whether combining the two types of embed-
dings is better than either one alone. We trained the 
model on training set and evaluated the WAF1 on vali-
dation set using the optimized set of hyperparameters. 
Result showed that combining rxnfp and DRFP is slightly 
better than using only one embeddings strategy (Supple-
mentary Fig. 3).

Prediction
The EC number prediction for a given reaction is made 
by the following: (1) compare the Euclidean distances 
between the input reaction’s last model layer to the last 
model layer for each of the reactions with known EC 
numbers; (2) assign the EC number whose reaction has 
the closest distance to the input reaction; (3) if desired, 
output the top K EC numbers ranked by the distances.

Evaluation metric
To properly evaluate the model performance on the 
testing sets, we used weighted average F1 score (WAF1; 
Eq.  2), which allows adjustment of the final metric by 
sample size, ensuring a fairer evaluation.

where C , F1i and Ni are number of EC numbers, the F1 
score of the i-th EC number, and the sample size of the i-
th EC number, respectively. F1 score for a given EC num-
ber can be calculated by Eq. 3.

where tp, fp, and fn are true positive, false positive, and 
false negative, respectively.

Since three models are developed separately for three 
levels of EC numbers, it is desired to evaluate whether the 
three models agree with each other on the same reaction. 

(2)WAF1 =

∑C
i=1

Ni × F1i
∑C

i=1
Ni

(3)F1score =
2tp

2tp+ fp+ fn

https://github.com/tttianhao/CLEAN
https://github.com/tttianhao/CLEAN
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We therefore proposed consistency (Eq. 4) to measure the 
level of consensus by the three models.

where N  is number of sample size; the 1st-level, 2nd-
level, and 3rd-level predictions are “a1”, “b1.b2”, and “c1.
c2.c3”, respectively.

Comparison with other model
We compared our model with the state-of-the-art 
model, Theia [20], on the testing set and the yeast meta-
bolic model dataset. Theia can be obtained from https://​
github.​com/​daenu​probst/​theia. Note that Theia includes 
two sets of model: Theia-RHEA and Theia-ECREACT, 
which were trained on the Rhea dataset and ECREACT 
dataset, respectively. We incorporated both sets of mod-
els for comparison.

Results
Data curation
We obtained and cleaned the reaction-EC number data-
set from ECREACT [26], totaling 61,817 unique reaction 
entries. Since the 4th-level is a serial number and does 
not confer learnable information [20], we limit our reac-
tion-EC prediction task to the 3rd-level, which is in line 
with other existing predictors [15, 16, 20]. For each of the 
3rd-level EC numbers, we separated 10% reaction-EC 
entries for final testing; we further separated the remain-
ing 90% data in 1:9 ratio for the split of validation set 
and training set. Since a reaction may have various order 
among reactants and products, the arrangement of reac-
tants or products’ order may influence the model predic-
tion. In particular, we observed that a shuffled reaction 
could have very different rxnfp [25] embeddings than the 
original one (Methods; Supplementary Fig.  1), suggest-
ing that changing reaction participants’ order may sub-
stantially change the features of a sample. We therefore 
performed data augmentation by shuffling participants 
within reactants and products (Methods) to a) ensure 
the robustness of model prediction in terms of reac-
tion participants’ order; and b) for data augmentation 
purpose. The data augmentation results in a three-fold 
size increase in training set (n = 150,226), validation set 
(n = 16,692), and testing set (n = 18,816).

(4)consistency =

∑N
i=1

Ii

N
× 100%

Ii =

{

1, if a1 = b1 = c1 and b2 = c2
0, else

Model implementation
We adopted contrastive learning [37] as our model archi-
tecture for the reaction-EC prediction. We trained an 
individual model for 1st-level, 2nd-level, and 3rd-level 
EC number prediction, respectively. Contrastive learn-
ing (Fig. 1) operates on the principle of maximizing the 
similarity between positive pairs (reactions belonging 
to the same EC number) while minimizing the similar-
ity between negative pairs (reactions belonging to dif-
ferent EC numbers). We used the rxnfp [25] pre-trained 
model and the DRFP framework [24] for feature extrac-
tion (Methods). Both rxnfp and DRFP have been shown 
to be effective feature extraction techniques in a variety 
of reaction-related downstream tasks [31, 38, 39]. In our 
experiments, we observed that combining rxnfp and 
DRFP achieves higher WAF1 (0.942) on training set than 
rxnfp (0.895) or DRFP (0.940) alone.

Performance comparison
We compared the performance of CLAIRE and Theia on 
the augmented testing set (n = 18,816). As a result, the 
weighted average F1 score (WAF1; Eq. 2) of CLAIRE for 
1st-level, 2nd-level, and 3rd-level EC number prediction 
are much higher (by 0.574–0.639) than Theia (Fig.  2). 
Besides, we defined consistency (Eq.  4) to measure the 
agreement of the three levels of predictions. For exam-
ple, if the three models predict a reaction to be 2.-.-.-, 
2.1.-.-, and 2.1.3.-, respectively, then it is considered con-
sistent; otherwise (e.g., 2.-.-.-, 2.4.-.-, and EC 2.1.3.-) is 
not. We then computed and compared the consistency 
of Theia and CLAIRE on testing set. Results show that 
82.01% of the reactions on testing set are consistent, while 
only 15.52% of the reactions received consistent predic-
tions from Theia. These results collectively suggest that 
CLAIRE is more accurate and less self-contradictory. In 
addition, we observed that 97% of the non-augmented 
samples in the testing set have consistent predictions 
when augmented by shuffling reactants or product’s 
order, highlighting that the model is robust against vary-
ing reaction participants’ input order.

Next, we managed to curate another large-size reac-
tion-EC dataset for further validation on CLAIRE 
(Fig.  3A; Methods). We extracted a total of 456 reac-
tion-gene pairs as positive set from the yeast metabolic 
model, iMM904 [33]. After annotation and processing 
(Methods), we obtained a dataset containing 456 reac-
tion-EC number entries as the positive set. For the neg-
ative set, we compiled 584 false enzyme-reaction pairs 
by substituting the reaction in a true enzyme-reaction 
pair with the most similar analog from the reaction 
pool, so that negative data are more challenging to the 
model. The final dataset has 1040 entries (456 positive 

https://github.com/daenuprobst/theia
https://github.com/daenuprobst/theia
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and 584 positive). For evaluation purpose, we calcu-
lated the top 1–3 WAF1 on the positive and negative 
data (Methods). As a result, CLAIRE’s top 1–3 WAF1 
are 0.911, 0.93, and 0.926 (Fig. 3), respectively, outper-
forming Theia (0.437, 0.450, and 0.455, respectively). 
This result once again demonstrated the superior per-
formance of CLAIRE.

Discussion
The purpose of developing a reaction-EC number predic-
tor lies in making high-throughput predictions, instead of 
in small batches. This is because, in reality, small batches 
of reactions can be directly annotated by experts, whereas 
annotating large batches of reactions manually is practi-
cally infeasible. With that said, it is not so meaningful to 

Fig. 1  Contrastive learning framework in this study. A shows the principle of training CLAIRE: (1) randomly selecting a sample as Anchor; (2) 
randomly selecting a Positive sample (same EC number as Anchor’s) and a Negative sample (different EC number as Anchor’s); (3) optimize 
the neural network by minimizing the Anchor-Positive distance while maximizing the Anchor-Negative distance. B shows how the prediction 
is made for a query reaction: (1) calculate Euclidean distance in terms of model last layer vector between the query and each of the reference 
reactions with known EC numbers; (2) identify the closest reference reaction and output its EC number as the prediction
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further test CLAIRE on an additional small dataset on 
top of our testing sets. Meanwhile, we still want to evalu-
ate the utility of CLAIRE in a larger extent. The enzyme-
reaction pairs catalogued in metabolic models serve for 
this purpose. Metabolic models are quantitative repre-
sentations of metabolic reactions with associated genes, 
enzymes, metabolites, and compartmentalization in an 
organism or cells [40]. It can be used for various tasks 
such as flux balance analysis to guide metabolic engineer-
ing [41]. In this study, we showed that CLAIRE can accu-
rately distinguish positives (true enzyme-reaction pairs) 

and negatives (false enzyme-reaction pairs) derived from 
the yeast metabolic model. This success further high-
lights the promising utility of CLAIRE in a high-through-
put setting.

High-throughput prediction of reaction EC numbers 
is particularly valuable in applications like retrosynthesis 
planning [42] and drug fate prediction [43]. Retrosyn-
thesis prediction refers to predicting the reactants lead-
ing to a product of interest [44]. Retrosynthesis planning 
involves identifying the reactants required to produce a 
target compound, often through multiple iterative steps. 

Fig. 2  Performance comparison between CLAIRE and Theia (including Theia-RHEA and Theia-ECREACT) on testing set. A shows the WAF1 
(weighted average F1 score) of the models on the testing set. Since both CLAIRE and Theia offers a model on three EC number levels, the WAF1 
on three levels are shown separately. B shows the consistency of CLAIRE and Theia on the testing set

Fig. 3  Data curation of the yeast metabolic model dataset and evaluation result. A shows the procedures of curating data from the yeast metabolic 
model: (1) extracting gene IDs and reactions catalogued in the yeast metabolic model (iMM904); (2) annotate the genes with EC numbers and map 
the reaction compounds to SMILES, these gene-derived EC numbers and the corresponding reactions serve as the positive pairs; (3) construct 
negative pairs by substituting the reaction in a positive EC-reaction pair with a close analog (see Methods); (4) apply the predictors on the curated 
dataset (positive set and negative set) and calculate the top 1, top 2 and top 3 WAF1 (shown in B)
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This process generates a reaction network that traces 
the possible pathways from raw materials to the desired 
products [45]. Each step along the proposed pathway 
may yield multiple potential intermediate reactants, 
resulting in a large and complex network of reactions. By 
incorporating CLAIRE-predicted EC numbers into this 
network, relevant enzymes can be assigned to reactions, 
thereby increasing the feasibility of achieving the desired 
synthesis. However, CLAIRE’s utility in retrosynthesis is 
limited to biocatalytic processes, as it assigns EC num-
bers regardless of whether the reaction can be enzymati-
cally catalyzed [46, 47], as CLAIRE would annotate an EC 
number for any query reaction, regardless of whether the 
reaction can be catalyzed by an enzyme or not. Recent 
advances in deep learning-based bio-retrosynthesis tools 
[46] provide an ideal framework for integrating CLAIRE’s 
predictions. Another promising application of CLAIRE 
is in drug fate prediction, which models the metabolic 
transformations and pathways a drug compound under-
goes in the human body [43]. This process, which can be 
viewed as the reverse of retrosynthesis planning, involves 
predicting successive reactions that metabolize the drug. 
Similar to retrosynthesis, the stepwise predictions often 
generate large networks of potential reactions, as each 
reactant can produce multiple products [48]. CLAIRE’s 
ability to annotate these reactions with EC numbers facil-
itates various analyses, such as evaluating drug toxicity or 
identifying key metabolic pathways [49].

The primary limitation of CLAIRE is its incomplete 
coverage of three-level EC numbers, which stems from 
a lack of sufficient data. Overcoming this challenge is 
inherently difficult without the availability of more train-
ing data. Additionally, many enzymatic reactions remain 
unexplored and uncharacterized, leaving their corre-
sponding EC numbers undefined. However, the utility 
of CLAIRE is not highly sensitive to the pace of new EC 
number discovery. This is because the addition of new 
three-level EC numbers has been relatively slow; our 
analysis revealed that only 17 new three-level EC num-
bers have been incorporated into reviewed entries in 
UniProt over the past decade. We provide a list of the EC 
numbers covered by CLAIRE (Supplementary Table  1), 
where users should check whether the EC numbers 
of users’ interest (if any) are in that list before applying 
CLAIRE.

Conclusion
In summary, we built CLAIRE for reaction-EC num-
ber prediction leveraging contrastive learning and data 
augmentation to overcome limited data size and data 
imbalance. We demonstrated that CLAIRE outperforms 
the state-of-the-art model in terms of accuracy and con-
sistency, suggesting that CLAIRE may facilitate tasks in 

computer-aided synthesis planning, such as retrosynthe-
sis planning and drug fate prediction.
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