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Abstract  G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them 
attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery 
by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing mod-
els for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constrain-
ing their applicability for high throughput virtual screening. To address these issues, we introduce AiGPro, a novel 
multitask model designed to predict small molecule agonists (EC50) and antagonists (IC50) across the 231 human 
GPCRs, making it a first-in-class solution for large-scale GPCR profiling.

Leveraging multi-scale context aggregation and bidirectional multi-head cross-attention mechanisms, our approach 
demonstrates that ensemble models may not be necessary for predicting complex GPCR states and small molecule 
interactions. Through extensive validation using stratified tenfold cross-validation, AiGPro achieves robust perfor-
mance with Pearson’s correlation coefficient of 0.91, indicating broad generalizability. This breakthrough sets a new 
standard in the GPCR studies, outperforming previous studies. Moreover, our first-in-class multi-tasking model 
can predict agonist and antagonist activities across a wide range of GPCRs, offering a comprehensive perspective 
on ligand bioactivity within this diverse superfamily. To facilitate easy accessibility, we have deployed a web-based 
platform for model access at https://​aicadd.​ssu.​ac.​kr/​AiGPro.

Scientific Contribution We introduce a deep learning-based multi-task model to generalize the agonist and antago-
nist bioactivity prediction for GPCRs accurately. The model is implemented on a user-friendly web server to facilitate 
rapid screening of small-molecule libraries, expediting GPCR-targeted drug discovery. Covering a diverse set of 231 
GPCR targets, the platform delivers a robust, scalable solution for advancing GPCR-focused therapeutic development.

The proposed framework incorporates an innovative dual-label prediction strategy, enabling the simultaneous classi-
fication of molecules as agonists, antagonists, or both. Each prediction is further accompanied by a confidence score, 
offering a quantitative measure of activity likelihood. This advancement moves beyond conventional models focusing 
solely on binding affinity, providing a more comprehensive understanding of ligand-receptor interactions.

At the core of our model lies the Bi-Directional Multi-Head Cross-Attention (BMCA) module, a novel architecture 
that captures forward and backward contextual embeddings of protein and ligand features. By leveraging BMCA, 
the model effectively integrates structural and sequence-level information, ensuring a precise representation 
of molecular interactions. Results show that this approach is highly accurate in binding affinity predictions and con-
sistent across diverse GPCR families.
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By unifying agonist and antagonist bioactivity prediction into a single model architecture, we bridge a critical gap 
in GPCR modeling. This enhances prediction accuracy and accelerates virtual screening workflows, offering a valuable 
and innovative solution for advancing GPCR-targeted drug discovery.
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Graphical Abstract

Introduction
G-protein coupled receptors (GPCRs) are a vast fam-
ily of transmembrane proteins that play a critical role in 
numerous cellular signaling. They facilitate the trans-
mission of signals from outside the cell to the inside by 
regulating G proteins. They are involved in multiple 
signaling pathways activated by various chemical com-
pounds, hormones, and neurotransmitters, influencing 
crucial cellular processes such as growth, differentiation, 
vision, olfaction, and gustatory [1]. Out of the 826 human 
GPCRs, approximately 350 non-olfactory members are 
considered druggable, with 165 validated as drug targets 
[2]. Given their critical role in fundamental physiologi-
cal functions, it is not surprising that they are associated 
with neurodegenerative and psychiatric disorders, such 
as Parkinson’s and Alzheimer’s disease (AD) [2]. Despite 
challenges in drug development for Alzheimer’s, clinical 
trials exploring GPCR agonism in treatment are under-
way [3, 4]. The human GPCR family is categorized into 

classes A (rhodopsin), B (secretin and adhesion), C (glu-
tamate), and F (Frizzled) subfamilies based on amino 
acid sequences. Notably, approved drugs for neuropsy-
chiatric diseases mainly target class A and C GPCRs, 
underscoring their significance in therapeutic strategies. 
Understanding and targeting specific GPCR classes offer 
potential breakthroughs in treating complex neurological 
conditions. Remarkably, one-third of currently available 
drugs target GPCRs, addressing a spectrum of human 
diseases, including cardiac malfunction, obesity, asthma, 
and migraines. GPCRs account for 12% of all human pro-
tein drug targets and contribute to the therapeutic effects 
of 34% of small molecule drugs [2, 5, 6]. Certain drugs, 
exemplified by clozapine, initially designed for specific 
protein targets, have been retrospectively demonstrated 
to exert clinical actions by modulating multiple GPCR 
proteins [7–9]. This underscores the unique polypharma-
cological profiles associated with GPCR modulation.
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As of Dec 2023, it was reported that approximately 35% 
(approximately 700 drugs) of all US FDA-approved drugs 
act on GPCR targets [6, 10]. Furthermore, 321 drugs tar-
geting GPCRs are currently in clinical trials, 66 of which 
target GPCRs not presently targeted by approved drugs. 
Examples of drugs in clinical trials include LJPC-501, 
INT-767, and RX-10045[5]. Between 2011 and 2015, 
drugs that target GPCRs generated over $900 billion in 
sales [11]. Collectively, GPCRs, along with related pro-
teins upstream or downstream from GPCRs, constitute 
approximately 17% of all protein targets for approved 
drugs [6]. It accounts for about 12% of this, underscoring 
its vital role in drug development and therapeutic inter-
ventions [6]. This emphasizes the significance of GPCRs 
as critical players in pharmaceutical research and treat-
ment modalities.

The structural elucidation of GPCRs began in 2000 
with the resolution of bovine rhodopsin, marking a 
continuous increase in experimental GPCR structures. 
Despite progress, only 70 unique GPCRs have been 
characterized among 370 GPCR-ligand complexes with 
resolved structures [12]. Among these structures, 25 
GPCRs have both agonist and antagonist binding, 33 
exclusively with antagonist binding, 11 solely with agonist 
binding, and one without any ligand bound, providing a 
detailed overview of GPCR conformational diversity [12]. 
The scarcity of high-resolution GPCR structures chal-
lenges understanding activation mechanisms and hinders 
structure-based drug design [13]. Experimental efforts 
and computational advancements like molecular dynam-
ics (MD) and machine learning (ML) have produced 
high-quality models systematically cataloged in reposi-
tories such as GPCRdb [14, 15] and GPCR-EXP [16]. 
However, many GPCRs still lack experimental 3D data. 
In the absence of receptor structures, alternative ligand-
based techniques, such as quantitative structure–activ-
ity relationship (QSAR) models, have been explored [17]. 
Datasets detailing small-molecule activity against GPCRs 
offer opportunities for in silico ligand-based screening, 
including the application of ML models.

Recent advancements in computational approaches 
have significantly contributed to understanding protein 
interactions with ligands [18–23]. Several classification 
models have been developed to discern the activity of 
GPCR ligands, ranging from simple binary prediction 
like active/inactive or predicting bioactivity of antag-
onist/agonist on a single GPCR to a small subset of 
GPCRs. One classification model was developed using 
hub and cycle structures of ligands, along with the 
amino acid motif sequence of GPCRs [24]. Based on 
the UniProt and the Database of Interacting Proteins 
(DIP), a Random Forest (RF) model was developed 
with a focus on specific and important types of GPCRs 

and employed different types of sequence-based fea-
tures to improve the accuracy of the predictions [25]. 
The Helix encoder, a compound-protein interaction 
(CPI) model explicitly designed for class A GPCRs, 
employs attention-based convolutional neural networks 
(CNNs) [26]. GPCRLigNet, on the other hand, is an 
ML-based feed-forward neural (FFN) network incor-
porating dilated graph convolutional networks (GCN) 
trained with a diverse dataset to conduct binary clas-
sification into active and active GPCR ligands [27]. 
DeepREAL employs a multi-scale modeling approach 
to analyze genome-wide ligand-induced receptor 
activities through transfer learning from a pre-trained 
binary interaction classification model [28]. SDTNBI, 
or Substructure-Drug-Target Network-Based Infer-
ence, prioritizes potential targets for old drugs, failed 
drugs, and new chemical entities by integrating net-
work analysis and chemoinformatics to bridge the gap 
between novel chemical entities and the established 
Drug-Target Interaction (DTI) network [29]. A two-
step RF-based binary classifier also performed similarly 
to SDTNBI with an AUC of 0.795 [30]. DTI-MLCD 
innovatively transforms DTI prediction from binary 
to multi-label classification, incorporating commu-
nity detection for label correlations using a fast greedy 
algorithm [31]. It adapts feature representations based 
on dataset-specific requirements, achieving competi-
tive performance while addressing computational load 
and label correlation issues inherent in binary methods 
[31]. Some studies have focused on a specific target; for 
instance, in [32], an RF model was developed to clas-
sify ligands based on molecular fingerprint features 
against Human Adenosine Receptor type 2A (A2AR), 
which is implicated in neurodegenerative diseases like 
Parkinson’s and cancer and is a proven druggable target 
[32–34]. Docking and ML were also used to identify the 
pharmacological activity of ligands for the β2 adrener-
gic receptor, focusing on the specific residues for both 
agonist and antagonist ligands interaction [35]. How-
ever, another focus was on analyzing the features of a 
ligand by utilizing molecular fingerprints and embed-
dings for GPR151, utilizing numerous classical feature 
selection algorithms and DL models [36]. However, the 
interaction of compounds with GPCR is more complex 
than binary or two mutually exclusive classes, i.e., Ago-
nist or Antagonist. Other subtle activity classes include 
neutral antagonists, both agonists and antagonists, 
inverse and partial agonists, etc. A multi-class model 
could be a more suitable choice; however, the need for 
such clean labeled data makes it a challenging prob-
lem. In practice, detecting if an unseen ligand is in its 
state of activity, i.e., a regression model for both agonist 
and antagonist, would be more helpful. More relevant 
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efforts are screening Lasso of ECFPs and the deep neu-
ral nets (SED) approach, comprising ECFP generation, 
critical substructure selection, and bioactivity predic-
tion using a DNN regression model [37]. This method 
was applied to 16 GPCRs (Classes A, B, C, and F, span-
ning 13 subfamilies). Further, they also used weighted 
DL and RF with five types of molecular fingerprints to 
develop the WDL-RF methods, which extended to 26 
GPCRs, covering the same classes as their previous 
article [38]. GCN has also effectively predicted bio-
activity against diverse targets, including 33 GPCRs 
[39]. Further, pdCSM-GPCR, another graph-based 
model, predicts bioactivity across 36 primary GPCR 
targets [40]. Recently, ensemble models employing five 
algorithms demonstrated a robust predictive capabil-
ity for EC50 values of human orphan GPCRs, achiev-
ing a Pearson’s correlation coefficient of 0.85 through 
training on 200 GPCRs utilizing MSA, physiochemical 
properties, and molecular fingerprints [41].

Despite extensive efforts in GPCR research, current 
methodologies predominantly center on classifying active 
and inactive or characterizing agonist and antagonist 
attributes, limiting comprehensive small molecule profil-
ing against GPCRs, especially regarding bioactivity prop-
erties. Existing models for regression tasks are scarce and 

often focus on a limited GPCR subset, underscoring the 
complexities in accurately predicting bioactivity for small 
molecules against GPCRs. This gap requires a more com-
prehensive approach to deciphering the complexities of 
GPCR interactions.

Recently, the application of attention-based models, 
proven highly successful in natural language process-
ing (NLP) tasks, has found significant utility in Drug 
Target Prediction (DTA) and Drug-Target Interaction 
(DTI) challenges [29, 31, 42, 43]. Recently, AiKPro intro-
duced structurally validated multiple sequence align-
ments (svMSA) and multi-head attention (MHA) with 
cross attention between kinase and ligand and showed 
improved results compared to the previous models [22, 
44]. Additionally, in KinScan, the integration of multi-
scale context aggregation (MSCA) and deep context 
encoder (DCE) resulted in a significant improvement 
in the performance of bioactivity values [42]. Motivated 
by these advancements, our present study extends this 
approach with AiGPro. AiGPro is the single multi-task 
model based on a bi-directional multi-head cross-atten-
tion (BMCA) network with an applicability domain span-
ning the highest numbering, n(n = 231) of GPCRs. To our 
knowledge, no model exists with this number of human-
druggable GPCRS within its applicability domain. Several 

Fig. 1  The Details of Data Used in the Study. A displays the number of proteins with agonist, antagonist, or both data types. Similarly, B provides 
insights into the number of proteins each GPCR class classifies. C illustrates the total number of interaction pairs and their categorization 
into agonist, antagonist, and classes. D shows the count of unique ligands in different types of interaction with GPCRs. E displays the distribution 
of agonist and antagonist bioactivity. Finally, F demonstrates the relationship between the LogP and molecular weight of ligands for both the 
training and test datasets. Please note that (A–E) are specific to the training dataset
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experiments demonstrated that it outperforms existing 
models in the accuracy and applicability domain, includ-
ing ensemble models. Additionally, to enhance accessibil-
ity, we offer AiGPro as a web service, accessible free of 
charge at https://​aicadd.​ssu.​ac.​kr/​AiGPro.

Methodology
Data collection and pre‑processing
We focused on constructing a diverse and comprehensive 
dataset for model training to develop an effective model 
to address the current challenge. For these, we retrieved 
datasets from two databases: GLASS and GPCRdb. Last 
updated in February 2019, the GLASS database offered 
a repository of 562,871 curated GPCR-ligand interaction 
records featuring 342,539 ligands and 3,056 GPCRs with 
experimentally measured binding affinities. Simultane-
ously, the GPCRdb, updated as of October 25, 2023, con-
tained data on 424 GPCRs, 217,578 ligands, and 481,718 
bioactivities. Then we followed stringent filtration pro-
cedures, which excluded bioactivity values other than 
IC50, Ki, and EC50, duplicate pairs, non-sanitizable com-
pounds by RDKit, and non-standard experimental kin-
ematics values, keeping only the absolute values or those 
with “ > ” or “ < ” signs only. The resultant dataset featured 
231 distinct human GPCRs and 276,183 small molecules, 
making 405,246 interactions comprising 44% antago-
nist and 56% agonist interactions. A dataset not in the 
above dataset containing 11,464 interactions with 11,259 
unique ligands, of which 52.78% are unseen and with a 
similar agonist and antagonist ratio, was considered the 

independent test set. More comprehensive details are in 
Fig. 1 for the training dataset. Additional file 1 is acces-
sible at https://​aicadd.​ssu.​ac.​kr/​suppo​rtedg​pcr.

Distinguishing between antagonist and agonist data-
sets, we categorized the combined IC50 and Ki datasets as 
antagonistic, while the EC50 dataset represented agonists. 
Finally, in the remaining datasets, following [45], the 
experimental bioactivity (BA) values were transformed 
by adding some noise and then into the negative log of 
bioactivity (pBA) values as:

Sequence encodings
We used 1D sequences to represent both protein and 
chemical compounds. These 1D sequences consist of 
the MSA of proteins and Simplified Molecular Input 

(1)
BA =BA± random(0, 0.3 · BA),

+ if ′ >′ in BA,−if ′ <′ in BA, else BA.

(2)pBA = α − log(BA),BA in{IC50,EC50,Ki}

whereα = {3, if the value unit is inmilimolar (mM)

6, if the value unit is inmicromolar (uM)

9, if the value unit is in nanomolar (nM)

12, if the value unit is in picomolar (pM)

Fig. 2  Schematic Representation of the AiGPro Architecture. The diagram illustrates the proposed framework, which includes four modules: (1) 
Tokenizing and embedding the protein sequence from MSA and compound smiles inputs and data representation. (2) using the Multi-Scale 
Context-Aggregation module based on dilated convolution to extract multiscale features from both the input protein sequence and compound 
SMILES. (3) The bidirectional multi-head cross attention (BMCA) for intermolecular features between the protein and ligand (4) Output module 
to predict unknown interaction in a drug–target pair, which can address classification and regression tasks based on user consideration

https://aicadd.ssu.ac.kr/AiGPro
https://aicadd.ssu.ac.kr/supportedgpcr
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Line Entry System (SMILES) strings of compounds. 
We employed structure-based alignment of protein 
sequences to encode the 3D structural information of 
proteins into a 1D sequence. This method provides a 
comprehensive representation of the structural fea-
tures of proteins and allows us to gain valuable insights 
into their similarities and differences. On the other 
hand, SMILES is a concise ASCII string widely used for 
describing ligand chemical structures and efficiently 
encapsulating information about atoms, bonds, rings, 
and other molecular components.

Protein
For protein sequence, a structurally based MSA was per-
formed using the complete GPCR protein sequence of 
all unique proteins, facilitated by the GPCRdb sequence 
alignment RESTful API available at https://​gpcrdb.​org/​
servi​ces/. We describe here the encoding of a single 
protein sequence from MSA of all GPCRs. Given the 
Protein MSA, M = {P1,P2, . . . ,Pn} , where Pi is a single 
protein at the i-th index of MSA. So, Pi = ( a1, a2, . . . , an ), 
a ∈

[

A,′ −′] , where ai represents the i-th amino acids, n 
represents the length of the sequence, ‘A’ represents the 
types of amino acids, and Pi is the i-th protein within 
MSA. In Pi , along with common amino acids, ,′ −′ , it is 
also included due to the inherited feature of MSA, which 
represents gaps in the alignment. We encoded the protein 
sequence using a tokenized function, T, and obtained the 
tokenized sequence, T P = {t1, t2, . . . , tn}, where each ti is 
the token corresponding toai:

where [N ]t represent the set character of the token, 
which contains 25 elements, including 

[

TOKENsp

]

 , 
w h e r eTOKENsp ∈ ["PAD", "UNK", "START", "STOP"]  . 
T enables encoding amino acids and gaps as discrete 
numerical values, facilitating computational operations 
and analysis within the MSA framework. In the study,  Pn 
= 231 and ti = 1,900 , the maximum length of a protein 
sequence. The tokenized amino acid ti∀i ∈ [N ]t is then 
embedded into dp-dimensional vectors via an embedding 
layer.

Ligand
Consider a ligand, C = {c1, c2, . . . , cm} , denotes the 
SMILES string of a ligand with m as the length of the 
string and ci an i-th string within the SMILES. To get a 
tokenized smile, TC = {t1, t2, . . . , tn}, where each ti is the 
token corresponding toci:

(3)t = {ti|ti ∈ T (ai)},T : � → [N ]t

(4)t = {ti|ti ∈ T (ci)},T : � → [D]t

where tn is the length of the smile string and [D]t , rep-
resents the complete set of tokens for smiles, i.e., 
575 characters vocabulary dictionary, which also 
includesTOKENsp . We then embedded the ti∀i ∈ [D]t 
to dl-dimensional vectors via an embedding layer. We 
also utilized a positional embedding alongside a class 
token (agonist or antagonist), as shown in Fig. 2, that was 
embedded into dc with dimensions to dl and dp while 
using dp and dl of 32. Positional embedding was done in 
all sequences while class labels were concatenated to dl 
and dp.

Molecular feature encoding
Following [23], we calculated a 170-long vector molec-
ular descriptors study to extract relevant features to 
evaluate the physicochemical attributes of chemical 
compounds using RDKit [46]. This descriptor includes 
Lipinski parameters for topological/topochemical 
descriptors of molecules, Atom-based LogP and molar 
refractivity (MR), Hybrid EState-VSA descriptors 
analogous to MOE van der Waals Surface Area (VSA) 
descriptors, QED descriptors, and Basic EState descrip-
tors, etc. We also added the Gasteiger charge descrip-
tor, a 512-dimensional vector that captures the charge 
distribution across all constituent atoms within the 
compound. Integrating these molecular features allows 
us to assess properties spanning diverse physicochemi-
cal domains of the molecules. This descriptor provides 
valuable insights into the compound’s overall charge 
distribution, enhancing our understanding of its inher-
ent characteristics.

AiGPro architecture
A schematic overview of the proposed multi-task model, 
AiGPro, is shown in Fig.  2. The model can be divided 
into the following parts: the input data representations, 
the multi-scale context aggregation (MSCA), the bi-
directional multi-head cross-attention (BMCA), and the 
last output block for final prediction outputs. The MSCA 
block uses dilated convolution to expand its receptive 
convolution field without compromising the resolution 
or coverage to extract short and long-distance interac-
tion information for the BMCA, which learns to extract 
meaningful interrelationships between distant atoms or 
residues. We used a similar setup for MSCA and Multi-
head attention (MHA), as described in [23].

AiGPro builds upon the attention mechanism, scaled 
dot-product attention, introduced by Vaswani et al., and 
is a powerful method for calculating the connections and 
weighted sums between different elements in a given 
sequence [47]. MHA relies on self-attention, comprising 
multiple layers, followed by an FFN. In the architecture, 

https://gpcrdb.org/services/
https://gpcrdb.org/services/
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MHA layers are integral, each composed of multiple 
attention heads. These layers leverage scaled dot-prod-
uct attention, requiring the utilization of query (Q), key 
(K), and value (V) matrices. These matrices, denoted as 
W

Q
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,WV
i ∈ Rdmodel×dV  

respectively, are learnable weight matrices. Here, 
Q = K = V is the input protein and ligand representation 
for the MHA.

We employed the multi-head self-attention mechanism 
for n times, utilizing distinct linear projections to 
enhance performance. The MHA computes the self-
attention operation in parallel on the projected iterations 
of queries, keys, and values, producing output values of 
dmodel/ℎ-dimensions. Where WT ∈ R

ndv×dmodel is a 
weighted parameter and 1√

dk
 is scale factor. The output of 

MHA is further fed into the feed-forward layers, where 
Rintra is the learned representation.

Bi‑directional multi‑head cross‑attention module (BMCA)
Figure 2, shows the intra-molecular features and relation-
ship between elements learned, and each DCE for pro-
tein and ligand output (Rp

intra)
dmodel and (Rl

intra)
dmodel for 

protein and ligand respectively. However, the informa-
tion on the intermolecular dependency between the pro-
tein and ligand is still missing. Thus, within the BMCA, 
ligands and protein features undergo successive pro-
cessing through the intermolecular bi-directional cross-
attention layer, yielding multimodal data augmentation 
features specific to ligands and proteins and combined 
intermolecular features. BMCA is built upon MHA with 
hcross attention heads, which take the learned representa-
tion (Rp

intra)
dmodel and (Rl

intra)
dmodel as the input.

In BMCA, for query pro-
tein, where Qforward = (R

p
intra)

dmodel and 
Kforward = Vforward = (Rl

intra)
dmodel similarly 

for query ligand Qbackward = (Rl
intra)

dmodel and 
Kbackward = Vbackward = (R

p
intra)

dmodel , the BMCA outputs 

(5)Qd = hdW
Q
d ,Kd = hdW

K
d ,Vd = hdW

V
d

(6)
head = Attention(Qd ,Kd ,Vd)

= softmax(
QdK

T
d√

dk
)Vd

(7)MHA(hd) = concat(head1, . . . , headn)W
T

(8)Rintra = FFN
(

MHA(hd)W
d
1 + b1d

)

Wd
2 + b2d

R
p
inter ∈ R

a×dmodel andRl
inter ∈ R

a×dmodel , is the learned 
representation of intermolecular feature. This feature 
is combined to form the final representation, as shown 
below.

Since BMCA is based on an attention mechanism, it 
has an x(x = 2) number of layers, followed by a residual 
connection and layer normalization. To counter overfit-
ting, dropout layers are inserted post each computational 
layer, stochastically deactivating hidden unit activations 
to enhance model generalization beyond the training set.

The molecular features of the compounds are normal-
ized and projected to a hidden state, MF, using an i-th 
projection layer, where i ∈ [1,2] , hci  is the output vector of 
layer i, and Wc

i ∈ R
di−1×di is learnable weighted param-

eter matrices, so the

The final context aggregation block merges the rep-
resentations obtained from BMCA, backbone, and 
projected molecular features, as shown in Fig.  2. Addi-
tionally, we added the class embedding. This captures 
local and global information for inter and intra-molec-
ular information, which helps refine the representation 
for downstream tasks. Then, it is passed through the final 
DCE to compressed combined global representation as,

(9)Rinter = Concat
(

R
p
inter ,R

l
inter

)

(10)hci = FN (hci−1 + bci )

(11)R
g
inter= Conc(Eclass, h

c

i , )

Table 1  Summary of the parameters used in developing the 
AiGPro

N/A means Not Applicable

Parameters AiG-ANT AiG-AGO AiGPro

Max length of SMILES 100 100 100

Max length of protein 1900 1900 1900

Protein embedding size 32 32 32

SMILES embedding size 32 32 32

Class embedding size N/A N/A 32

Batch size 512 512 512

Epoch 500 500 1000

Initial learning rate 0.001 0.001 0.003

Optimizer AdamW AdamW AdamW

Dropout 0.1–0.5 0.1–0.5 0.1–0.5

Activation Leaky-ReLU Leaky-ReLU Leaky-ReLU

Number of layers in MSCA 6/4 6/4 6/4

Number of layers in DCE 4 4 6

Number of layers in BMCA 2 2 2

Numbers of heads 16 16 16
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which is then passed on to the final output block for final 
prediction.

Output block
The output block comprises a multi-layer perceptron 
(MLP), consisting of three fully connected neural net-
work (FCN) layers. Each FCN layer, except the last one, 
to mitigate overfitting, utilizes a Leaky Rectified Linear 
Unit (Leaky-ReLU) activation function with a negative 
slope of 0.01, followed by a dropout layer. The output 
pBA , is the predicted bioactivity value between the pro-
tein and the ligand.

Model implementation and training detail
The model was developed and implemented using 
PyTorch and Python 3.11. It was trained on an NVIDIA 
4090 24  GB with open-source CUDA 11.7 using the 
AdamW optimizer, with a learning rate of 0.003 and 
weight decay of 0.001. Dropout and L2 regularization 
techniques were applied to prevent overfitting. Over-
fitting was checked using validation data after every 10 
epochs. Mixed precision and an early stopping strat-
egy were utilized to optimize the training process. See 
Table 1 for more details.

Evaluation metrics
In the study, several evaluation metrics were computed 
to assess the model’s performance on the test set and 
facilitate a comparison of its predictive power. We used 
Pearson’s correlation coefficient (CC) for performance 
evaluation, Mean Square Error (MSE), and the correla-
tion coefficient ( R2 ) to evaluate the performance of a 
model’s predictions.

For model assessment, we computed the concordance 
Index (CI), which measures the concordance probability 
between the experimental and predicted values. CI can 
be defined as,

where δi and mi represent the experimental and pre-
dicted value for i-th data. With Z, the normalization con-
stant, for the greater affinity  δi and the smaller affinity 
δj, its prediction value is mj and mi   respectively. h(x) is 
defined as:

(12)pBA = MLP(R
g
inter)

(13)CI = 1
Z

∑

δi>δj
h
(

mi −mj

)

(14)h(x) =







1 if x > 0
0.5 if x = 0
0 if x < 0





The CI values range from 0 to 1, where 1 signifies the 
optimal outcome.

Furthermore, we utilized the Matthews Correlation 
Coefficient (MCC), a robust statistical metric perfect 
for evaluating models on binary classification [48]. In 
addition to MCC, we also employed the Area Under the 
Receiver Operating Characteristic curve (AUC-ROC) 
and Cohen’s kappa to comprehensively evaluate the per-
formance of our models in classification tasks. To ensure 
a thorough assessment, we conducted a stratified K-fold 
CV(K = 10) to confirm the usability, reliability, and gener-
alizability of AiGPro.

Web server implementations and deployment
To provide an accessible end-to-end solution, we have 
deployed AiGPro as a web platform using FastAPI and 
Nginx as the backend and reverse proxy server for load 
balancing. This reduces the difficulty for users without 
a computational background to test the model without 
downloading and installing anything. The User Interface 
(UI) is developed using React JSX, Vite, and Tailwind 
CSS frameworks. The predicted target activity value table 
is presented using React DataTables, while interactive 
plots and figures are generated using Plotly.js and the D3 
library.

Real‑world application test: a case study on Alzheimer’s 
disease (AD)
As proof of concept and to test the applicability domain, 
we tested our models and their limitations in real-world 
applications. Our focus was on addressing the problem 
of AD, so we curated GPCR data involved in the dis-
ease, not in the training dataset, to use as an external 
test dataset. This dataset consists of 4895 unique ligands, 
which form 6050 GPCR-ligand pairs, of which 5508 are 
antagonist interactions and 542 are agonist bioactivity 
data. The dataset contains 8803 unique ligands interact-
ing with four GPCRs. These receptors are Adenosine 
receptor A2a (P29274), Muscarinic acetylcholine recep-
tor M1 (P11229), Muscarinic acetylcholine receptor M3 
(P20309), and Muscarinic acetylcholine receptor M2 
(P08172). It is known that these proteins have a role to 
play in AD. These proteins are dysregulated in the cogni-
tive area of AD patients [33, 34]. Some of these GPCRs 
have garnered significant interest due to numerous stud-
ies supporting them as credible targets for repurposing 
existing drugs or designing and discovering new drugs 
with clinical potential [49].

The adenosine receptor A2a interacts with 2,662 
unique ligands to form 2,695 interactions. The Mus-
carinic acetylcholine receptor M1 interacts with 1,265 
unique ligands to create a total interaction of 1,284. The 
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Muscarinic acetylcholine receptor M3 interacts with 
1,078 unique ligands to form 1,084 interaction data. The 
Muscarinic acetylcholine receptor M2 interacts with 982 
ligands to form 987 interaction data. See Table 5 for more 
details on the AD test dataset.

Results and discussion
Model development
To develop robust prediction models for orphan GPCRs, 
we curated a comprehensive dataset consisting of 98,391 
agonistic ligands, 165,639 antagonistic ligands, and 
12,153 dual agonist-antagonistic ligands, covering 231 
GPCRs as shown in Fig. 1. Of these GPCRs, 43 had only 
agonistic ligand interactions, 16 proteins had exclusively 
antagonistic ligand activities, and 172 GPCRs with at 
least one ligand exhibited both agonistic and antago-
nistic activities. This dataset was extracted from mul-
tiple publicly available databases. GPCRs are complex 
because they can adopt different conformational states, 
resulting in a single ligand exhibiting different activities 
(e.g., agonist, antagonist, or both). Consequently, tradi-
tional single-task or multi-task models, which predict 
only bioactivity value, are insufficient for distinguishing 
between these states, making them unsuitable for profil-
ing applications.

In our earlier work, AiKPro [22], we utilized one-hot 
encoding with svMSA for protein representation and 
3D ensemble features for ligands, successfully capturing 
their structural information for bioactivity prediction in 
kinases. While this approach yielded accurate results, the 
requirement for computationally expensive 3D ensem-
ble features for ligands was a limitation. Subsequently, in 
KinScan [23], we advanced this methodology by employ-
ing embedding-based representations with MSCA and 
DCE. This innovative approach combined dilated convo-
lutions with data-specific feature engineering for svMSA. 
By doing so, we eliminated the need for 3D ensemble 
ligand features while achieving superior predictive per-
formance to our and existing models for Kinases.

For the current work on GPCRs, we adopted a similar 
foundational approach from KinScan while addressing 
their inherent complexities. GPCRs are membrane pro-
teins with multi-state interactions, which cause them to 
exhibit different bioactivities for the same ligand under 
varying conditions.

To tackle this, we developed BMCA, a novel method-
ology that captures structural information tailored to 
the required output. BMCA enables our model to pre-
dict bioactivity values for both agonist and antagonist 
dynamically. For instance, if the input specifies agonistic 
activity, the model predicts a value distinct from that of 

Fig. 3  Distribution of End Points for each fold in Cross-validation
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antagonistic activity, even for the same ligand. This state-
dependent prediction capability makes BMCA highly 
suited for modeling the complex, multi-state interactions 
characteristic of GPCRs.

Performance evaluation
Accurately predicting the binding affinity between pro-
teins and compounds is crucial in drug discovery to dif-
ferentiate between meaningful interactions and those 
with secondary targets, also known as off-targets. GPCRs 
are one of the most important targets, and many drugs 
target them. However, existing models only cover a sin-
gle target or a small number of GPCRs because the com-
plexity of GPCRs, being membrane proteins, limits the 
availability of high-quality data. To overcome this issue, 
an effort has been made to combine multiple ML models, 
creating an ensemble model to predict GPCR bioactivity 
values [40, 41]. Even though this approach adds integra-
tion and computation complexity, limitations remain in 
generality, accuracy, and applicability to broad GPCRs for 
large-scale profiling.

In this regard, we initially developed two separate mod-
els, AiG-ANT and AiG-AGO, to predict the bioactivity 
of antagonists and agonists against GPCRs. We trained 
these models on separate datasets comprising 183,466 
antagonist and 229,312 agonist instances and evaluated 
them using distinct test sets for antagonist and agonist 
samples, respectively. In this study, we extensively evalu-
ated the model on test data to ensure its reliability in 
real-world scenarios and demonstrate its strong gener-
alization ability to predict unseen compounds. As Shown 
in Table  3, the AiG-ANT model performed well on the 
independent antagonist test set, with R2 value of 0.773 
and a corresponding CC of 0.879 for antagonist bioac-
tivity predictions. The AiG-AGO model also showed 
promising results, with R2 of 0.719 and a CC of 0.853 for 
agonist bioactivity predictions on the independent ago-
nist dataset.

However, a discrepancy in performance between ago-
nist and antagonist evaluations was evident. This was due 
to the limited range of EC50 values for agonists. Around 
90% of all agonist instances had pEC50 values between 4 
and 5. In contrast, antagonist data had a more uniformly 
normally distributed, with a standard deviation of about 
1.39, compared to the narrower range of 1.04 for agonist 
datasets. To address this issue, we developed a multi-task 
model, AiGPro, and trained it on a combined agonist 
and antagonist samples dataset. AiGPro showed supe-
rior performance to the single-task models, with a R2 of 
0.829 and a CC of 0.912, surpassing the individual sin-
gle-task models. This approach improved performance 
significantly by over 7–16% and allowed us to integrate 

bioactivity categories seamlessly. A similar trend of 
increased performance on combined datasets than sin-
gle ones was also observed in previous research [41]. This 
can be attributed to the enhanced ability of DL models to 
exploit larger volumes of data and the use of conditional 
labeling to facilitate better fitting to data distributions.

Furthermore, to mitigate concerns regarding overfit-
ting, our study conducted a rigorous tenfold stratified 
CV, as shown in Fig.  3 analysis, and evaluated perfor-
mance on an independent test set, yielding similar results 
as shown in Table  3. Thus, our framework presents a 
versatile, general, and innovative approach to explor-
ing the intricate mechanisms underlying agonistic and 
antagonistic ligand interactions in GPCR systems. The 
optimal settings used to train AiGPro depend on various 
parameters, such as embedding size, the number of heads 
in MHA, the number of layers in MSCA and BMCA, the 
number of epochs, the dropout rate, the learning rate, 
and so on. These parameters are crucial for determining 
the performance of AiGPro and were determined based 
on KinScan and some hyperparameter searches. For 
more detailed specifications of these parameter settings, 
see Table 1 and Additional File 2.

Comparison with existing options
Based on our knowledge, AiGPro is the first multi-task 
neural network based on the transformer’s attention 
mechanism architecture approach that can accurately 
predict the bioactivity values, i.e., antagonist IC50 and 
agonist EC50 of small molecules to profile against 231 
GPCRs. We found that pdCSM-GPCR, a graph-based 
model, is similar to our model’s applicability; however, 
this model is limited to only 36 GPCRs, significantly lim-
iting its applicability domain.

We compared the performance of AiGPro against 
pdCSM-GPCR to predict ligand activity using a dataset 
retrieved from pdCSM-GPCR’s test dataset. AiGPro’s 
capability to predict both agonist and antagonist activity 
values, as shown in Table 3, is a crucial consideration for 
successful therapeutic development efforts, especially in 
GPCR-related drug discovery. However, the significant 
limitation of existing models, including pdCSM-GPCR, is 
its inability to distinguish such crucial information. Since 
this test dataset doesn’t contain an activity type label, we 
considered it an outlier dataset for AiGPro, which is a 
significant challenge in accurately predicting activity val-
ues. We included both activity types and considered only 
the lowest value in the metric against the pdCSM-GPCR.

The result, summarized in Table 2 and Additional file 4 
Figure S1 and Figure S2, shows that AiGPro performed 
well against pdCSM-GPCR for large numbers of GPCRs, 
with MSE ranging from as low as 0.01 for Q99835 to 
2.2. However, we observed that AiGPro performed 
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relatively worse in some GPCRs, like Q14833, P30968, 
and Q14833, with MSE as high as 2, even though this 
MSE is lower than pdCSM-GPCR in some cases.

Further analysis was conducted on proteins, as pre-
sented in Table  S1; we observed that the imbalance in 
the dataset ratio between agonists and antagonists likely 
contributed to the higher MSE values for two of the pro-
teins. Interestingly, despite having a balanced dataset, the 

protein associated with UniProt ID Q9HC97 also exhib-
ited poor performance. A deeper investigation revealed 
that most data for Q9HC97 consisted of log activity val-
ues lower than 5, suggesting that a large proportion of 
inactive data can negatively impact the model’s predictive 
accuracy.

This study highlights the unique strengths and limi-
tations of AiGPro and pdCSM-GPCR in predicting 

Table 2  Comprehensive Performance Metrics of pdCSM-GPCR and AiGPro Models for 36 GPCRs supported by pdCSM-GPCR, 
including Pearson and Spearman and Mean Squared Error (MSE)

Metric Pearson MSE Spearman

UniProt ID AiGPro 
Agonist

AiGPro 
Antagonist

pdCSM-
GPCR

AiGPro 
Agonist

AiGPro 
Antagonist

pdCSM-
GPCR

AiGPro 
Agonist

AiGPro 
Antagonist

pdCSM-GPCR

P08173 0.677697 0.844019 0.927161 0.598459 0.262448 0.138784 0.681418 0.811225 0.920255

P08908 0.689659 0.921445 0.913819 1.440755 0.197048 0.244769 0.725641 0.930697 0.915411

P08912 0.558878 0.73516 0.96047 0.389232 0.23069 0.039637 0.643617 0.795608 0.931363

P0DMS8 0.724056 0.898625 0.837471 1.079031 0.309748 0.416983 0.71744 0.902301 0.929995

P20309 0.756877 0.857717 -0.18575 2.387652 0.741582 16.83852 0.752055 0.830525 0.239374

P21452 0.903191 0.977033 0.661544 0.632052 0.106288 1.393349 0.890782 0.970373 0.868128

P21917 0.763711 0.890759 0.894257 0.439251 0.198539 0.219516 0.792558 0.883109 0.891361

P24530 0.790824 0.858437 0.926488 0.5765 0.340872 0.28856 0.845828 0.925262 0.923018

P28335 0.783483 0.925001 0.936922 0.525033 0.148203 0.165385 0.778624 0.92579 0.937908

P29275 0.57747 0.747991 0.89956 1.744522 0.576609 0.22598 0.604479 0.782773 0.894269

P30542 0.63934 0.90017 0.396229 1.493945 0.250213 1.440032 0.551049 0.930075 0.876307

P30968 0.577188 0.492209 0.339559 2.246996 2.080604 2.551277 0.469937 0.363065 0.799985

P34995 0.780087 0.860241 0.577697 0.64427 0.328886 0.924773 0.83424 0.911129 0.534206

P35346 0.44117 0.479922 0.65292 1.939671 2.200727 0.843807 0.333241 0.423323 0.650743

P35348 0.899096 0.962053 – 0.15992 0.390727 0.120603 8.235974 0.911268 0.96074 0.526311

P35372 0.732431 0.846547 0.381958 1.671303 0.620345 3.148592 0.722602 0.837374 0.802032

P41180 0.814046 0.948219 0.84282 0.595652 0.096359 0.245888 0.797648 0.939531 0.814971

P46663 0.882107 0.935077 0.752952 0.704371 0.301326 1.084366 0.872538 0.936141 0.833231

P47871 0.7521 0.883138 0.851745 0.994021 0.253084 0.471346 0.688865 0.809073 0.800408

P47900 0.632413 0.757002 0.93903 1.304861 0.439505 0.149359 0.675703 0.900808 0.900456

P48039 0.78483 0.933192 − 0.32359 1.172908 0.235479 9.592626 0.794298 0.935882 0.406757

P50406 0.813097 0.923785 0.941495 0.735113 0.222674 0.202607 0.84594 0.943349 0.940951

P51677 0.916871 0.969147 0.524032 0.319415 0.089995 1.309028 0.929045 0.976074 0.879858

Q14416 0.904959 0.944118 0.939619 0.210774 0.096948 0.086333 0.905397 0.941748 0.89801

Q14833 0.390707 0.312899 − 0.54542 2.303484 2.421646 6.00078 0.805074 0.715054 0.660051

Q16602 0.451143 0.536767 − 0.06658 2.691533 2.156264 9.260116 0.425713 0.525492 0.481879

Q8TDS4 0.858214 0.907132 0.771218 0.319798 0.149885 0.350926 0.866247 0.903202 0.754774

Q8TDU6 0.981837 0.874889 0.880415 0.072351 0.563678 0.419429 0.979498 0.872989 0.87819

Q96LB2 0.807737 0.880264 0.819568 0.252343 0.210351 0.233144 0.873239 0.890536 0.745612

Q99500 0.896725 0.911844 0.531145 0.174193 0.129037 0.602572 0.91287 0.928918 0.467122

Q99705 0.826176 0.944241 0.883057 0.606932 0.097271 0.224144 0.827514 0.941554 0.887913

Q99835 0.70499 0.990305 0.889806 0.880702 0.015348 0.164317 0.73248 0.987365 0.917692

Q9H228 0.82701 0.838706 0.737199 0.415411 0.738059 0.620671 0.713968 0.765747 0.82804

Q9HC97 0.851701 0.778585 0.911147 0.413254 0.862635 0.28222 0.766518 0.665466 0.917893

Q9Y5N1 0.866684 0.95228 0.873469 0.376423 0.142348 0.340459 0.868995 0.942514 0.852287

Q9Y5Y4 0.8684 0.969928 0.734544 0.564619 0.088746 0.606321 0.869558 0.974374 0.748595
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ligand activity for class A GPCRs. While pdCSM-GPCR 
shows some strengths in specialized scenarios, AiGPro’s 
broader applicability and generalizability across a more 
comprehensive range of GPCRs make it a promising tool 
for advancing GPCR-targeted drug discovery. However, 
the study also underscores the need for models that can 

accurately distinguish between different types of ligand 
activities, an area that remains critical for the field.

Wei-Cheng et  al. recently published models that were 
trained on a dataset of 200 GPCRs using EC50 data to 
predict agonist and antagonist activity values with single-
task (STL-AG) and multitask (MTL) models [41]. How-
ever, there are concerns about potential biases resulting 
from merging training and validation datasets, particu-
larly in the MTL training of models. This is an essential 
difference from the methodology used by AiGPro, which 
does not incorporate such merging, resulting in a more 
robust and impartial evaluation framework.

As shown in Tables  2 and 3, our single-task models, 
the AiG-ANT and AiG-AGO, have demonstrated excep-
tional predictive performance with CC values of up to 
0.879 for antagonists and 0.853 for agonists. In contrast, 
the best-performing models among the STL and MTL 
models, and also integrating the training and validation 
data within the multitask framework (MTL-AG-ATG), 
along with various feature combinations including addi-
tional mol2Vec (M2V) feature vectors, results in slight 
improvements with CC values reaching up to 0.85 from 
0.80, which is lower than most of AiG models, except the 
AiG-AGO-B and AiG-ANT-B. However, AiGPro stands 
out as the best performer, exceeding these ensemble 
models with a remarkable CC of 0.913 and R2 of 0.833 
predictions on the test set. These suggest that our novel 
multi-task attention-based bidirectional model can learn 
complex relationships between GPCRs and ligands. The 

Table 3  Comparison of performance metrics, such as MSE, MAE, 
and CC, for AiGPro, compared to similar existing models. Bold 
text indicates the best result

* The values inside parentheses indicate the Standard Deviation, and CV 
represents Cross-Validation

MODEL TARGET MSE ↓ MAE ↓ CC ↑

STL-AG EC50 0.96 0.46 0.83

MTL-AG EC50 0.29 0.37 0.80

STL-ATG​ EC50 0.50 0.47 0.83

MTL-ATG​ EC50 0.27 0.35 0.83

MTL-AG-ATG​ EC50 0.24 0.30 0.85

MTL-AG-ATG-FS EC50 0.24 0.30 0.85

MTL-AG-ATG-
M2V

EC50 0.27 0.33 0.85

MTL-AG-
ATG-M2V-FS

EC50 0.27 0.33 0.84

Chemprop 
(Multi)

EC50 & IC50 0.57 0.54 0.86

AiGPro EC50 & IC50 0.35 0.38 0.91

AiGPro (CV) EC50 & IC50 0.363 (0.004) 0.409 (0.004) 0.907 (0.001)

Fig. 4  Performance of AiGPro on classification task on Test dataset and Alzheimer’s Disease data
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disparities in MSE and MAE across models in Table  3 
underscore the inherent scale dependency of these met-
rics, necessitating careful consideration during compara-
tive analyses.

Furthermore, we evaluated the model’s efficacy in iden-
tifying active and inactive ligands, defining active ligands 
as those with a potency of less than 100 nM. As depicted 
in Fig.  4A, B, AiGPro exhibited overall robust perfor-
mance, with a slight decrease in performance for agonists 
compared to antagonists. This discrepancy may be attrib-
uted to the relatively smaller number of active ligands in 
the training dataset, see Fig.  5, influencing the model’s 
ability to generalize effectively to this category.

Overall, this demonstrates that the AiGPro has a bal-
anced capability for generalization and accuracy in 

predicting with a broad applicability domain, enabling 
large-scale high throughput screening for GPCR ligands.

Ablation study
In this study, we aimed to evaluate the importance and 
efficiency of different components of the AiGPro design 
for extracting meaningful information that can help 
make accurate bioactivity predictions. To achieve this, we 
use the same datasets for training and testing and con-
duct ablation experiments to understand the contribu-
tion of each component, such as MSCA, DCE, molecular 
features, and BMCA. Although the importance of some 
of these components has been highlighted in previous 
studies [23], BMCA is a new addition that requires a ded-
icated examination of its efficacy and relevance. Thus, we 
conducted ablation experiments to assess the impact of 
the BMCA module on the AiGPro model’s performance.

As shown in Table 4, the removal of BMCA had a sub-
stantially varied influence on the predictive capabili-
ties of the single and multi-task models. The single-task 
models without BMCA, namely the AiG-AGO and AiG-
ANT, performed very well; however, on adding BMCA to 
this model (AiG-ANT-B and AiG-AGO-B), a significant 
reduction in performance was observed, with CC drop-
ping to as lowest of 0.829 and 0.794 from 0.879 and 0.853 
for ANT and AGO models respectively. These models 
were based on a previous study, which was well designed 
for predicting bioactivity, also held in the current study. 
Nevertheless, the absence of the BMCA in the multi-task 
model resulted in a significant decrease in performance, 

Fig. 5  Count of Active interaction for agonist and antagonist

Table 4  Ablation study on the effect of BMCA on single and 
multi-task Models

Please note that in the model development, ‘O’ represents the used features, 
while ‘ × ’ represents the unused features. BMCA = Bi-directional Multi Head Cross 
Attention module. Bold text indicates the best result

MODEL BMCA R
2 ↑ CC ↑ CI ↑

AiG-AGO  ×  0.719 0.853 0.833

AiG-ANT  ×  0.773 0.879 0.827

AiG-AGO-B O 0.613 0.794 0.809

AiG-ANT-B O 0.670 0.828 0.730

AiGPro  ×  0.551 0.759 0.764

AiGPro O 0.829 0.912 0.848
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with a CC of only 0.759, approximately 5% lower than 
the weakest single-task model, namely the AiG-AGO-
B. However, including the BMCA led to a substan-
tial improvement in performance, surpassing even the 
strongest single-task models and achieving a CC of 0.912.

As a result, the single-task model cannot take advan-
tage of BMCA, and these models perform inferiorly 
with the proposed architecture. Overall, our ablation 
experiments provide compelling evidence supporting 
the significance of the BMCA module within the AiGPro 

architecture. By elucidating its critical role in information 
extraction and predictive accuracy, our study contributes 
valuable insights into advancing computational method-
ologies for bioactivity prediction in drug discovery and 
development using a multi-task model.

Applicability test on Alzheimer’s related proteins
To verify the practical applicability of the model, we con-
ducted a case study on GPCRs implicated in AD, namely 
Adenosine receptor A2a, Muscarinic acetylcholine 

Table 5  Overview of data in detail for external GPCR application test related to Alzheimer’s disease

UniProt Protein name Unique ligands Interactions Antagonist Agonist

P29274 Adenosine receptor A2a 2656 2695 2556 139

P11229 Muscarinic acetylcholine receptor M1 1213 1284 1020 264

P08172 Muscarinic acetylcholine receptor M2 941 987 914 73

P20309 Muscarinic acetylcholine receptor M3 1027 1084 1018 66

All – 4895 6050 5508 542

Table 6  Comparative analysis of AiGPro with other available methods on the Alzheimer’s data

‘Anta’ means Antagonist, ‘Ago’ means Agonist, ‘Multi’ means Multi-Task, ‘NC’ means Not Capable to distinguish between agonistic or antagonistic ligand activity, ‘NS’ 
means Not Supported and ‘NA’ means Not applicable

UniProt Methods All R2 Ago R2 Anta R2 All CI Ago CI Anta CI All MSE Ago MSE Anta MSE All CC Ago CC Anta CC

P29274 AiGPro 0.688 0.458 0.701 0.830 0.785 0.831 0.515 0.999 0.489 0.830 0.687 0.838

pdCSM-GPCR NS NC NC NS NC NC NS NC NC NS NC NC

Chemprop(Ago) − 1.229 0.298 − 1.331 0.526 0.769 0.520 3.694 1.292 3.842 0.076 0.607 0.052

Chemprop(Anta) 0.719 − 0.391 0.786 0.830 0.563 0.850 0.465 2.562 0.350 0.850 0.186 0.888

Chemprop(Multi) 0.724 − 0.291 0.785 0.832 0.556 0.852 0.456 2.378 0.351 0.852 0.136 0.889

P11229 AiGPro 0.712 0.279 0.789 0.829 0.722 0.856 0.564 1.035 0.442 0.844 0.573 0.889

pdCSM-GPCR NS NC NC NS NC NC NS NC NC NS NC NC

Chemprop(Ago) − 0.475 0.626 − 0.672 0.568 0.815 0.525 2.896 0.535 3.507 0.199 0.808 0.073

Chemprop(Anta) 0.630 − 0.526 0.834 0.798 0.508 0.872 0.726 2.191 0.346 0.804 0.106 0.917

Chemprop(Multi) 0.653 − 0.371 0.835 0.802 0.525 0.871 0.679 01.968 0.345 0.812 0.153 0.915

P08172 AiGPro 0.805 0.587 0.810 0.869 0.811 0.870 0.465 0.715 0.446 0.899 0.772 0.902

pdCSM-GPCR NS NC NC NC NC NC NS NC NC NS NC NC

Chemprop(Ago) − 0.861 0.849 − 1.05 0.520 0.870 0.498 4.455 0.259 4.790 0.045 0.940 -0.016

Chemprop(Anta) 0.790 − 0.344 0.848 0.863 0.612 0.883 0.500 2.323 0.354 0.897 0.271 0.926

Chemprop(Multi) 0.813 − 0.127 0.859 0.868 0.660 0.886 0.447 1.948 0.327 0.905 0.393 0.929

P20309 AiGPro 0.865 0.491 0.862 0.895 0.732 0.893 0.417 0.570 0.408 0.930 0.754 0.929

pdCSM-GPCR − 0.703 NC NC 0.778 NC NC 3.898 NC NC 0.279 NC NC

Chemprop(Ago) − 0.702 0.781 − 0.885 0.552 0.820 0.531 5.277 0.245 5.604 0.201 0.901 0.156

Chemprop(Anta) 0.863 − 1.025 0.897 0.895 0.558 0.905 0.424 2.272 0.304 0.929 0.244 0.947

Chemprop(Multi) 0.858 − 0.892 0.889 0.893 0.531 0.903 0.438 2.122 0.329 0.927 0.228 0.944

All AiGPro 0.765 0.472 0.784 0.854 0.779 0.859 0.500 0.925 0.458 0.875 0.693 0.886

pdCSM-GPCR NA NC NC NA NC NC NA NC NC NA NC NC

Chemprop(Ago) − 0.846 − 1.00 0.625 0.536 0.519 0.824 3.933 4.255 0.657 0.124 0.075 0.794

Chemprop(Anta) 0.756 − 0.318 0.839 0.845 0.575 0.873 0.519 2.314 0.342 0.873 0.236 0.917

Chemprop(Multi) 0.766 − 0.191 0.838 0.847 0.592 0.872 0.499 2.089 0.342 0.875 0.272 0.916
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receptor (mAChR) M1, mAChR M2, and mAChR M3. 
The A2A adenosine receptor, a vital member of the P1 
purinergic receptor family, significantly influences the 
pathophysiology of various neurodegenerative disorders, 
including AD. Its regulatory effects on neurons and glial 
cells modulate synaptic transmission and neuroinflam-
mation. Notably, the A2A receptor is the most exten-
sively studied adenosine subtype concerning its effects on 
neurodegenerative diseases and the availability of selec-
tive receptor antagonists currently undergoing clinical 
evaluation.

Likewise, the involvement of mAChR M1, M2, and 
M3 in AD is well-documented, with several ongoing 
clinical investigations [49]. Notably, the M1 subtype 
has witnessed the development of orthosteric ligands 
like xanomeline and, recently, HTL9936, progressing 
from preclinical models to human trials. While allos-
teric ligands for M1-mAChR are in early developmental 
stages, promising data from preclinical studies under-
score their potential efficacy [49].

Experimental evidence underscores the crucial role of 
M1-mAChR in cognitive function, supported by studies 
demonstrating cognitive deficits upon genetic ablation 
or pharmacological inhibition of M1-mAChR signaling 
in rodents. Conversely, activation of M1-mAChR has 
been shown to ameliorate learning and memory deficits 
in preclinical models of neurodegeneration and human 
patients with central nervous system disorders such as 
schizophrenia [49–51].

The M2-mAChR subtype exhibits widespread expres-
sion throughout crucial brain regions involved in cogni-
tion, and its antagonism has shown potential in rescuing 

cognitive deficits in neurodegeneration in rodent mod-
els [52]. In contrast, the M3-mAChR subtype exhibits 
the lowest expression levels in the central nervous sys-
tem, primarily localized in the hypothalamus. While 
its precise role remains unclear, studies using knockout 
and phospho-deficient knockin mice suggest a potential 
involvement of M3-mAChR in cognitive function [53].

We evaluated the predictive capabilities of AiGPro in 
comparison to existing models, such as pdCSM-GPCR, 
and general methodologies like Directed Message Pass-
ing Neural Network (D-MPNN) models implemented 
in Chemprop [54]. For Chemprop/D-MPNN, we trained 
multiple models: two single-task models (one for ago-
nists and another for antagonists) and a multi-task model 
for both activities, using the same dataset. These models 
were then tested on the Alzheimer’s dataset, as shown in 
Table 5, which included ligands with both agonistic and 
antagonistic activities, providing challenges to the mod-
els like pdCSM, which do not differentiate between these 
activities. Notably, only one of the four GPCRs analyzed 
falls within pdCSM-GPCR’s scope.

As shown in Table 6, Figure S3, and Figure S4, AiGPro 
outperformed other predictive models across various 
metrics. However, there were instances where Chemprop 
models delivered comparable or slightly superior perfor-
mance. For protein P20309, AiGPro achieved the highest 
R2 of 0.865 and the lowest MSE of 0.417 for all ligands. 
Chemprop(Multi) and Chemprop(Anta) exhibited R2 
values close to AiGPro’s, at 0.858 and 0.863, respec-
tively. However, their MSE values were slightly higher, 
reflecting less precise predictions. Similarly, for P08172, 
Chemprop(Anta) and Chemprop(Multi) achieved 

Fig. 6  Confusion Matrix of AiGPro on Classification task on Alzheimer’s Disease and Test Dataset
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comparable or marginally better R2 values of 0.790 and 
0.813, respectively, compared to AiGPro’s 0.805. Addi-
tionally, their MSE values for all ligands were close to 
AiGPro’s 0.465, with Chemprop(Multi) slightly out-
performing AiGPro. For P29274, Chemprop(Anta) and 

Chemprop(Multi) performed marginally better than AiG-
Pro in R2 and MSE. In contrast, AiGPro outperformed all 
other models for P11229, achieving an R2 of 0.712 com-
pared to Chemprop(Anta) and Chemprop(Multi), which 
scored 0.630 and 0.653, respectively.

Fig. 7  An overview of the AiGPro end-to-end web platform with a user-friendly interface for using the AiGPro model easily. A The main page 
of the AiGPro web server shows inputs for smile queries. B The resultant output, which includes Antagonist and Antagonist values from AiGPro 
prediction, can be downloaded for further analysis
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One of the most notable trends is observed in Chemp-
rop’s performance for agonist and antagonist predictions. 
While Chemprop models, particularly Chemprop(Multi) 
and Chemprop(Anta), demonstrated competitive perfor-
mance for antagonist activity prediction, all Chemprop 
models failed for agonistic activity prediction. Nega-
tive R2 values, such as -1.229 for P29274 and -0.861 for 
P08172, highlight Chemprop(Ago) ’s inability to gen-
eralize or make meaningful predictions for agonists. 
This failure was further corroborated by higher MSE 
values and lower CI scores for agonists across all tested 
proteins, underscoring a critical limitation in Chemp-
rop’s generalizability. In contrast, AiGPro demonstrated 
robust performance across both agonists and antago-
nists, consistently delivered high predictive accuracy and 
reliability across all proteins even on skewed datasets 
such as P08172, outperforming Chemprop models in 
overall generalization. pdcsm-GPCR’s inability to process 
agonists or antagonists underscores its lack of versatility; 
its ability to maintain high performance across diverse 
ligand types makes it a versatile tool for profiling large-
scale GPCRs. These results emphasize the limitations of 
existing models in handling mixed activity datasets and 
underscore the need for AiGPro’s broader applicability 
and reliability in GPCR profiling.

Further, we also performed classification tests, the find-
ings of which are presented in Fig. 6A, B. These findings 
highlight AiGPro’s robust performance even on classifi-
cation tasks on novel datasets. Demonstrating notably 
high Cohen’s kappa, ROC–AUC, and MCC values for 
both agonist and antagonist ligands, these results affirm 
the reliability of AiGPro and reassure its robust perfor-
mance in classification tasks. Such validation underscores 
its potential importance in advancing practical research 
and enhancing GPCR targetd drug discovery efforts.

Limitations
While AiGPro demonstrates significant advancements 
in predicting both agonistic and antagonistic activities 
across GPCRs, it has certain limitations. The model’s 
performance relies heavily on the availability of high-
quality training data. Despite our dataset being among 
the most comprehensive for GPCRs, it remains sparse for 
specific targets. This data sparsity particularly impacts 
the model’s generalizability for underrepresented GPCR 
families and ligands with rare activity profiles, with ago-
nistic ligands notably underrepresented. Although our 
approach addresses some challenges associated with 
traditional multi-task models, data imbalance remains 
a significant limitation. Agonist data is considerably less 
abundant than antagonist data, as illustrated in Fig.  1. 
This imbalance has resulted in higher MSE values exceed-
ing 1.00 for proteins like Q14833 and Q16602, as shown 

in Table  2, introducing biases that can affect prediction 
accuracy for these targets. Furthermore, as demonstrated 
in the case study, AiGPro may not be well-suited for sin-
gle-target predictions and may underperform compared 
to single-task models specifically optimized for antago-
nistic activity.

Moreover, AiGPro does not fully account for experi-
mental variations, such as receptor conformations 
from 3D structures, which can significantly influence 
bioactivity values. Although innovative data process-
ing techniques were applied to reduce inconsistencies, 
its capacity to model complex ligand behaviors, such as 
partial agonism or antagonism, is not yet fully explored, 
indicating potential areas for further development. These 
challenges underscore the need to development of inno-
vative techniques to enhance AiGPro’s robustness and 
broader applicability.

AiGPro web service
We have developed a user-friendly web server, accessible 
at https://​aicadd.​ssu.​ac.​kr/​AiGPro, to facilitate the utili-
zation of the AiGPro models for individuals with limited 
coding expertise. See Fig. 7. This online platform enables 
users to submit a SMILES string representing their query 
compounds, generating a profile against 231 GPCRs. The 
computed results, presented as activity scores, are con-
veniently organized in a paginated table, with each page 
displaying 10 predictions encompassing both antagonist 
and agonist compounds, and can be downloaded in CSV 
file format for further analysis. The tool is designed to 
determine the nature of given small molecules, categoriz-
ing them as agonists, antagonists, or inactive compounds 
for GPCR proteins.

The platform’s efficient processing speed and user-
friendly interface make it invaluable for drug screening 
and design endeavors.

Conclusion
This study presents AiGPro, a novel bi-directional multi-
head cross-attention incorporating a multi-scale content 
aggregation-based model, leveraging the self-attention 
mechanism and dilated convolution. Our proposed 
framework facilitates the comprehensive exploration 
and learning of both intra and intermolecular features of 
GPCRs and ligands, thereby enhancing generalizability 
for accurate prediction of bioactivity values for both ago-
nist (EC50) and antagonist (IC50) activities.

GPCRs play a pivotal role in human pathophysiology, 
making them a prime target for drug discovery. How-
ever, the complexity of GPCRs and the scarcity of high-
quality data have led to limited applicability of prior 
ML approaches. AiGPro overcomes these challenges, 

https://aicadd.ssu.ac.kr/AiGPro
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demonstrating exceptional performance and applicabil-
ity domain across 231 GPCRs, thus establishing itself as 
the first-in-class method for GPCR profiling, setting new 
benchmarks in accuracy and efficacy for identifying and 
eliminating off-targets. This advancement holds promise 
for accelerating GPCR drug development by facilitating 
high throughput screening, compound evaluation, prior-
itization, and prediction of activity profiles.

Our results demonstrated that an innovative model 
could predict both agonist and antagonist bioactivity 
values of GPCR ligands with superior performance 
compared to complex ensemble models, eliminating 
the need for ensemble models. Further, we have devel-
oped and deployed an end-to-end platform accessible 
at https://​aicadd.​ssu.​ac.​kr/​AiGPro, enabling conveni-
ent access to AiGPro models for the identification of 
off-targets against GPCRs, thereby offering scalable, 
rapid, and precise profiling of small molecules. The 
community can leverage the user-friendly web server 
AiGPro to enrich molecule libraries for screening pur-
poses and facilitate rational GPCR ligand design.
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