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COMMENT

One size does not fit all: revising traditional 
paradigms for assessing accuracy of QSAR 
models used for virtual screening
James Wellnitz1, Sankalp Jain2, Joshua E. Hochuli1, Travis Maxfield1, Eugene N. Muratov1*, 
Alexander Tropsha1* and Alexey V. Zakharov2* 

Abstract 

Traditional best practices for quantitative structure activity relationship (QSAR) modeling recommend dataset balanc-
ing and balanced accuracy (BA) as the key desired objective of model development. This study explores the value 
of the conventional norms in the context of using QSAR models for virtual screening of modern large and ultra-large 
chemical libraries. For this increasingly common task, we now recommend the use of models with the highest posi-
tive predictive value (PPV) built on imbalanced training sets as preferred virtual screening tools. This recommenda-
tion stems from practical considerations of how the results of virtual screening are used in experimental laboratories 
where only a small fraction of virtually screened molecules can be tested using standard well plates. As a proof of con-
cept, we have developed QSAR models for five expansive datasets with different ratios of active and inactive mol-
ecules and compared model performance in virtual screening using BA, PPV, and other metrics. We show that training 
on imbalanced datasets achieves a hit rate at least 30% higher than using balanced datasets, and that the PPV metric 
captured this difference of performance with no parameter tuning. Importantly, hit rates were estimated for top scor-
ing compounds organized in batches of the size of plates (for instance, 128 molecules) used in the experimental high 
throughput screening. Based on the results of our studies, we posit that QSAR models trained on imbalanced datasets 
with the highest PPV should be relied upon to identify and test hit compounds in early drug discovery studies.

Keywords  Computer-assisted drug discovery, QSAR modeling, Imbalanced datasets, Virtual screening, Positive 
predictive value, Hit rate

Introduction
Quantitative structure–activity relationship (QSAR) 
modeling has been an integral part of computer-assisted 
drug discovery for over six decades [1]. This approach 
is used to rationalize the experimental data on chemi-
cal bioactivity measurements and develop models that 
can assess the expected bioactivity of new chemicals in 
advance of experiments. In addition to their broad use in 
drug discovery and chemical toxicity assessment [2, 3], 
methods and approaches used for QSAR modeling have 
proliferated into many areas of research [1]. These mod-
els are broadly categorized into two groups based on the 
type/format biological activity data modeled and overall 
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goal of the model. Continuous models use raw quantita-
tive data, like IC50 values, with the goal of also predicting 
the true value for a given compound. Classification mod-
els still utilize quantitative data, but in a discrete form 
where the goal is to predict which discrete ‘class’ a com-
pound will be in. While it is possible to have many unique 
classes, it is common for QSAR classification models 
to be binary: categorizing compounds as either active 
or inactive. Each type of model employs specific met-
rics used for assessing its overall accuracy. Continuous 
models typically rely on cross-validation R2, for accuracy 
assessment, while the accuracy of binary classification 
models is assessed using metrics derived from the confu-
sion matrix, such as selectivity, specificity, and balanced 
accuracy (also known as Correct Classification Rate [4]). 
Achieving the highest balanced accuracy, i.e., models 
that can equally well predict both the positive and nega-
tive classes for the entire external set of molecules, is the 
most common assessment of binary classification model 
performance [5]. Further, when dealing with imbalanced 
classification datasets, down-sampling the predominant 
class is a common practice to enhance the balanced accu-
racy of the model [6].

The reliance on balanced accuracy as the key desired 
metric to characterize the accuracy of the binary classi-
fication QSAR models can be justified by the historical 
use of these models for lead optimization, where the aim 
has been to refine or design small sets of compounds to 
enhance the activity of a parent molecule [4]. Model sec-
tion driven by balanced accuracy made sense when small 
training datasets of highly similar compounds and the 
recommended use of conservative applicability domains 
of QSAR models [7] resulted in a selection of the lim-
ited number of compounds from external libraries that 
was expected to include roughly the same ratio of active 
and inactive molecules as in the training sets. Further-
more, given the common imbalance in public datasets, 
which are skewed towards active molecules, and high-
throughput screening (HTS) datasets, which are highly 
skewed towards inactive molecules, balancing these data-
sets through under-sampling the majority class (see, for 
instance, a recent rigorous study [8]) has been a conven-
tional method prior to building models. These practices 
were also appropriate in the past when training sets were 
of limited size, virtual screening libraries have been rela-
tively small, and the key context of use for QSAR mod-
els related to the task of hit or lead optimization. Thus, 
it is not surprising that popular best practices surround-
ing QSAR model development and validation have tradi-
tionally emphasized both the challenges associated with 
model development for imbalanced datasets [9] and the 
use of balanced accuracy as a key desired metric to char-
acterize the performance of models [4].

The use of QSAR models is not just limited to lead/
hit optimization, however. The possibility of using 
QSAR models for virtual screening and hit identifica-
tion has been discussed in the literature as well [10] but 
practical utility of such applications has been limited 
by relatively small size of both training set and virtual 
screening libraries. Continuing rapid growth of expan-
sive chemical bioactivity databases like ChEMBL [11] 
and PubChem [12], along with the exponential growth of 
make-on-demand chemical libraries [13] such as eMol-
ecules Explore [14] and Enamines REAL Space [15], has 
significantly increased the appeal of using QSAR mod-
els as an alternative to structure based methods [16] in 
high throughput virtual screening (HTVS). In an HTVS 
campaign, these models can be used to screen ultra-large, 
multi-billion compound libraries; however, the ultimate 
practical objective is to nominate a small number of hit 
compounds for experimental validation [17]. Notably, 
false positive experimental nominations are expensive, 
both in terms of compound acquisition (synthesis or pur-
chase) and the time and effort required to conduct the 
in-vitro and/or in-vivo experiments. The cost of experi-
mental follow up also places a restriction on the num-
ber of compounds that can be selected for experimental 
validation, regardless of the size of the virtual screen-
ing libraries used. The result is only a small fraction of 
compounds that were screen (and potentially predicted 
active) being selected for experimental validation. These 
considerations underscore the critical importance of 
employing QSAR models that have high positive predic-
tive value (PPV, often called precision) to nominate hit 
compounds for experimental testing [18–20]. Indeed, 
the high value of this metric calculated for the small 
selection of computational hit compounds implies high 
enrichment for active compounds, or, conversely, low 
rate of false positives, among the relatively small sets of 
nominated molecules. We demonstrated the success of 
the PPV-driven strategy for model building and virtual 
screening in a recent study that resulted in the discovery 
of novel binder of human angiotensin-converting enzyme 
2 (ACE2) protein [18].

Here, we reconsider and revise previous best prac-
tices and recommendations driven by the considera-
tions outlined above that in the modern age of medicinal 
chemistry and cheminformatics we face large biological 
screening datasets that are typically highly imbalanced in 
favor of inactive compounds for model training, and huge 
compound libraries employed for virtual screening, that 
are also expected to be even more imbalanced the same 
way. It is thus reasonable to acknowledge that both train-
ing and virtual screening sets are highly imbalanced, and 
different principles of building and assessing accuracy of 
QSAR models need to be considered when the goal is to 
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discover hits rather than optimize hits to leads. We posit 
that the PPV of a model is a better metric to assess per-
formance at the virtual screening task: to enhance the 
proportion of active compounds identified in, by neces-
sity, small selections of virtual screening hits as was also 
highlighted by Spiegel and Senderowitz [21]. We also 
emphasize the PPV of the highest ranked predictions as 
the best and most easily interpretable way to assess the 
expected performance of the model. We demonstrate on 
a case study of five HTS datasets that the common prac-
tice of balancing training sets to achieve models with 
high balanced accuracy is not optimal to address the pri-
mary goal of HTVS and results in models with a lower 
PPV, and worse HTVS performance, when utilized on 
external datasets. Our demonstration shows that balanc-
ing of the training sets, as expected, increases balanced 
accuracy while lowering the PPV, with imbalanced mod-
els having roughly 30% more true positives present in the 
top 128 predictions. We also compare to other metrics 
proposed for validation, including area under the receiver 
operating characteristic curve (AUROC) [22] and Boltz-
mann-enhanced discrimination of receiver operating 
characteristic (BEDROC) [23], and show that these met-
rics, while better than balanced accuracy, are not direct 
measures of virtual screening performance and can be 
difficult to interpret or parameterize. These findings 
strongly advocate for a paradigm shift in recommended 
best practices for constructing QSAR models to be used 
in HTVS of ultra-large libraries.

Results and discussion
Most HTVS campaigns often face constraints on the 
number of compounds that can be practically nominated 
for experimental testing. For instance, a model may pre-
dict 5000 compounds as putative actives, yet operational 
constraints often cap experimental testing. A quantitative 
HTS (qHTS) is limited to 128 compounds, correspond-
ing to the throughput of a single plate in 1536 well for-
mat with 11 concentration points per compound. This 
necessitates a caveat in the model’s objective to nomi-
nate a top set of N compounds with a minimal false posi-
tive rate [18]. In such scenarios, a model that identifies a 
smaller number of actives but ensures that such actives 
are included in the top, for example, 128 compounds are 
as, if not more, valuable as the one that can perfectly dis-
criminate between active and in-active among all com-
pounds screened. Conversely, a model that identifies 99% 
of all known actives in a large external set but includes 
none in the top 128 is ineffective for HTVS restricted by 
the size and number of plates used in the experimental 
screening. These considerations call to redefine the per-
formance metrics, such that the number of actives within 

the top nominations of a fixed size emerges as a key indi-
cator of a model’s utility in HTVS.

The idea of virtual screening performance emphasiz-
ing the “high early enrichment” of actives among model 
predictions is not new and has been discussed nearly 
two decades ago by Truchon and Bayly [23] and more 
recently, by Speigel and Senderowitz [21]. Those works 
correctly identifies that other metrics, like area under 
the receiver operator curve (AUROC) and the enrich-
ment factor (EF), are focused on assessing the ability to 
correctly classify active compounds globally across all 
predictions, rather than assessing just the performance 
locally on the top predictions which, as previously stated, 
is the true task of virtual screening. To address the lack 
of good metrics, Truchon and Bayly proposed a new 
one, the Boltzmann-enhanced discrimination of receiver 
operating characteristic (BEDROC), which is an adjust-
ment of AUROC meant to place additional emphasis on 
the performance of the top ranked predictions. However, 
BEDROC is characterized by an α parameter that can 
have a dramatic impact on the reported metric. Further, 
how to tune or select this parameter is not straight for-
ward, as its impact on the resulting value is not linear 
nor easily interpretable. Overall, this can make it difficult 
to understand what the BEDROC value represents and 
how to interpret it in the context of model performance 
beyond “bigger is better”. We suggest there is no need 
to use such a complex metric, as the commonly utilized 
PPV metric directly measures the model’s ability to cor-
rectly identify actives. A simple adjustment to calculate 
the PPV on only the top N predictions is a direct meas-
urement of how we would expect the model to perform 
when used for a virtual screening task that only allowed 
for N predictions.

To demonstrate this, we employed QSAR models in 
simulated virtual screening studies utilizing five distinct 
datasets (Table  1). In these datasets, generated from 
qHTS screenings, only a small fraction of molecules 
was active, which is a common outcome of large library 
screening campaigns. QSAR models were developed for 
training sets sampled from each set of assays in Table 1. 
Table 2 presents the different performance metric values 
for gradient boosting tree (GBT) models developed for 
five datasets, each analyzed under balanced and imbal-
anced training conditions. The datasets were evaluated 
for the number of active compounds correctly identified 
within the top 128 selections (referred to as PPV-128), 
alongside other performance metrics described above, 
including balanced accuracy (BA), AUROC, BEDROC 
[23] with varying alpha levels, and PPV (as a percentage 
rather than raw number of actives). Our findings indi-
cate a significant increase (approx. twofold) in PPV-128 
for models built with the original, imbalanced datasets, 
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emphasizing the advantage of such models for the use 
in HTVS campaigns. The observation that balancing has 
such a negative effect on the virtual screening perfor-
mance can be explained by the observation that models 
for balanced datasets are trained on the data with a label 
distribution that does not match the expected distribu-
tion during virtual screening (actives are far rarer than 
negatives). In this case, up-sampling techniques, like 
SMOTE [25] to balance datasets by adding more positive 
examples would have the same effect as down sampling 
the negatives. However, if the negative class is underrep-
resented in the training data (which was not the case in 
this study), using SMOTE or other methods [26, 27] to 
generate negative datapoints can help improve the model 
performance measured by PPV as observed in this work.

Using PPV-128 as a baseline for true model perfor-
mance at the HTVS task, we evaluated the conventional 
QSAR model assessment metrics (Table 2). BA stood out 
as the worst, having an inverse relationship with the num-
ber of nominated actives. This outcome reinforces the 
assertion that, although BA is a widely recognized metric 
of QSAR model accuracy, it is not the most appropriate 
metric for evaluating the performance of the models as 
applied to nominating compounds for HTVS. AUROC 
demonstrated better performance, marginally favor-
ing imbalanced models over balanced ones. However, 
it fails to truly highlight the scale at which one model 

outperforms the other at the HTVS nomination task, and 
its reliability diminished for two assays, aid_485341 and 
aid_624202. Notably, the BEDROC metric was originally 
proposed for assessing models at the virtual screening 
task. Yet, like AUROC, it failed to differentiate the more 
effective model for assays aid_485341 and aid_624202. 
Further, the effectiveness of BEDROC notably declined 
when the alpha was reduced to 20, incorrectly labeling 
the balanced models as better for 2 out of 5 datasets. 
This pattern suggests that BEDROC’s performance heav-
ily relies on carefully adjusting its alpha setting based on 
the dataset. The need for precise tuning makes BEDROC 
more complex and less user-friendly than other, more 
straightforward metrics. PPV, especially PPV-128 stands 
out as able to differentiate the better preforming imbal-
anced models on all datasets while requiring no tunable 
parameters and a simple calculation and interpretation. 
This effect was still observed even when conventional 
applicability domain filtering [28] was used on predic-
tions, which appeared to have minimal effect on the 
overall performance (Table  S1). Enrichment factor (EF) 
was also calculated for each model (Table  S2) and was 
as capable as PPV in differentiating better models. This 
is unsurprising, as EF is simply the PPV normalized by 
the rate of positives in the datasets (in some definitions 
[23]). Thus, as this rate is constant for all models trained 
on the same datasets, it is simply a linear scaling of PPV. 

Table 1  Size and prevalence of actives and in-actives of datasets used

AID refers to the PubChem Assay ID for this dataset. Datasets and table are from Zakharov et al. [24]

Dataset names AID: 504466 AID: 485314 AID: 485341 AID: 624202 AID: 651820

Total compounds 310,403 306,830 285,970 351,201 268,119

Num actives 4108 4348 1694 3902 10,727

Num in-actives 306,295 302,482 284,276 347,299 257,392

Ratio 1:75 1:70 1:168 1:89 1:24

Table 2  Comparative validation/test set performance metrics of QSAR models on five PubChem datasets

The value of each metric is calculated as the average of from 10 models. PPV-128 refers to number of actives in the top 128 predictions

ASSAY Model type PPV-128 BA AUROC BEDROC (α = 20) BEDROC (α = 100) PPV

aid_485314 Balanced 57.9 ± 5.7 0.80 ± 0.01 0.87 ± 0.01 0.22 ± 0.01 0.08 ± 0.01 0.06 ± 0.01

Imbalanced 90.2 ± 4.6 0.60 ± 0.01 0.88 ± 0.01 0.27 ± 0.02 0.33 ± 0.02 0.70 ± 0.04

aid_485341 Balanced 5.9 ± 1.8 0.69 ± 0.01 0.75 ± 0.02 0.12 ± 0.01 0.03 ± 0.01 0.01 ± 0.01

Imbalanced 12.1 ± 3.8 0.50 ± 0.01 0.75 ± 0.02 0.07 ± 0.01 0.03 ± 0.01 0.20 ± 0.11

aid_504466 Balanced 54.7 ± 4.1 0.83 ± 0.01 0.90 ± 0.01 0.25 ± 0.01 0.08 ± 0.01 0.06 ± 0.01

Imbalanced 91.1 ± 4.0 0.60 ± 0.01 0.92 ± 0.01 0.26 ± 0.02 0.32 ± 0.02 0.75 ± 0.03

aid_624202 Balanced 19.6 ± 3.3 0.80 ± 0.01 0.88 ± 0.01 0.20 ± 0.01 0.06 ± 0.01 0.04 ± 0.01

Imbalanced 40.3 ± 5.7 0.51 ± 0.01 0.89 ± 0.01 0.08 ± 0.01 0.06 ± 0.01 0.41 ± 0.08

aid_651820 Balanced 63.4 ± 5.3 0.78 ± 0.01 0.86 ± 0.01 0.24 ± 0.01 0.13 ± 0.01 0.13 ± 0.01

Imbalanced 99.1 ± 4.2 0.58 ± 0.01 0.88 ± 0.01 0.28 ± 0.01 0.45 ± 0.01 0.66 ± 0.02
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Since a HTVS campaign is focused on a single target, and 
thus, dataset such normalization has no effect. Instead, 
it only makes it harder to directly interpret the meaning 
of the value in the context of the true positive rate; PPV 
represents the true positive rate directly, whereas EF rep-
resents how much better a model’s true positive rate is 
over random. Further, after using the ML model to nomi-
nate compounds for experimental follow up, it would be 
impossible to measure the true EF of the model on this 
set, as it would require knowledge (or a good estimate) of 
the true rate of actives for all compounds in the chemical 
library. PPV can be calculated using only the compounds 
from the nominated set, making it far easier to compare 
in-silico prediction to in-vitro/vivo experimental data, a 
crucial assessment to make for any HTVS campaign.

Similar trends were observed when using two different 
model algorithms: Random Forest (Table  S3) and Deep 
Learning Dense Network (DL) classifiers (Table S4). Both 
had relatively similar metrics overall to the GBT models 
and showed a dramatic improvement in PPV and PPV-
128 when using the full imbalanced dataset when com-
pared to the balanced version.

Generalizing PPV‑128
To generalize PPV-128, we can instead think of it as PPV-
of-the-top-N (PPV-N), where N is the intended number 
of compounds desired for the experimental follow-up. 
This metric represents the proportion of active com-
pounds within the nominated set relative to the total 
number of nominations rather than to the size of the test 
set. This makes it distinct from other early enrichment 
metrics, like EF or Robust Initial Enhancement (RIE)
[29], that are dependent on the proportion of actives 
compounds in the training set. PPV-N is invariant to this 
proportion, since it only considers the small set of top N 
compounds and nothing else. This makes PPV-N directly 
pertinent to nomination-constrained HTVS campaigns, 
as synthesis and experimental characterization will only 
be pursued for the top N nominated compounds with 
the other prediction being ignored. EF-N is also invari-
ant to the total number of nominations, however as dis-
cussed is a constant scalar transformation of PPV-N that 
convolutes the easy and direct interpretation that PPV-N 
has, which we assert makes it less useful, especially when 
both are easy to calculate. To better show the generaliz-
ability of PPV-N, we evaluated all models using this met-
ric across a spectrum of N values, ranging from 16 to 
1000. Our findings revealed that, with the exception of 
aid_485341, imbalanced models consistently surpassed 
their balanced counterparts in performance, particularly 
at N = 128 and N = 256 which correspond to the capaci-
ties of one or two 1536-well qHTS plates (Fig.  1). This 
observation further challenges the traditional QSAR 

modeling practices that advocate for dataset balanc-
ing, suggesting that such an approach may not confer an 
advantage in HTVS contexts.

Conclusions
Broadly utilizing a single metric, like balanced accuracy, 
as the best metrics for all QSAR models can impact the 
downstream performance of a model put into actual use, 
as is the case when models are used for virtual screen-
ing of large external libraries. This study thus recom-
mends a shift in QSAR modeling practices for assessing 
model performance for HTVS applications toward using 
PPV, or more specifically PPV-N nominated compounds, 
instead of conventional BA. The results from five large, 
imbalanced, and diverse chemical datasets demonstrate 
that imbalanced models, which forgo the balancing of 
training sets, not only increase PPV but also significantly 
enhance the number of true positives within the top 
selections of virtual screening hits. We posit that using 
this metric will reduce false discoveries and associated 
costs in compound nomination. Our findings also high-
light the shortcomings of BA as a performance metric 
when nominating compounds for HTVS, as it does not 
correlate with the identification of true actives, contrary 
to the objectives of HTVS.

As cheminformatics continues to evolve, it will con-
tinue to embrace methodologies that directly address 
the needs of modern drug discovery for more efficient 
and cost-effective screening processes. We posit that 
approaches considered and advocated for in this study 
may also find broader use in the domain of information 
retrieval, where early enrichment is often a primary goal 
[30], including fields as diverse as chemistry [31], medi-
cine [32], genomics [33], and even music [34]. Thus, more 
robust approaches for assessing and building models for 
early enrichment tasks can result in benefits to all these 
areas.

Methods
We utilized five publicly available chemical datasets 
sourced from PubChem, as detailed by Zakharov et  al. 
[24]. These datasets were characterized by binary class 
annotations for each compound, encompassing a diverse 
range of active to inactive ratios ranging from 1:24 to 
1:189 (Table 1). Each dataset was split into training and 
validation sets randomly in an 80/20 ratio, respectively, 
using a stratified splitting schema to maintain a similar 
distribution of actives between the train and test set.

To explore the effects of data balancing, we maintained 
each dataset in its original imbalanced state and cre-
ated balanced versions by randomly under-sampling the 
majority class to match the size of the minority class. This 
balancing process was exclusively applied to the training 
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sets, while the validation sets preserved their original, 
imbalanced distributions, to mimic real world exter-
nal libraries expected to include a small fraction of true 
actives.

For each dataset, we constructed a QSAR model using 
the gradient boosting method for both the balanced and 
imbalanced training sets. Default model settings were 
used and no hyperparameter, feature selection or model 
selection was used when training models; a single model 
was trained with all training data and then directly evalu-
ated. Model performance was evaluated using several 
metrics including balanced accuracy (BA), positive pre-
dictive value (PPV, also known as precision), area under 
the receiver operator curve (AUROC), and the Boltz-
mann-enhanced discrimination of receiver operating 
characteristic (BEDROC). For all discrete metrics (like 
BA), class membership was determined using a prob-
ability threshold of 0.5. These metrics were computed 
using the same external validation set for all models, 
ensuring no overlap between training and validation data 
points. To assess the robustness and variability of these 
metrics, we iteratively repeated this validation process 
10 times per dataset, each time with a unique random 
split between training and test sets. This process was 

carried out using the StratifiedShuffleSplit (with n_fold 
set to 10) from SciKit-Learn [35]. All compounds were 
featurized using 2048-bit, radius 4 Extended Connectiv-
ity Fingerprints (ECPF) [36], computed via RDKit [37]. 
The gradient boosting models were developed with the 
XGBoost package [38] using default parameters. Random 
Forest models were built using default parameters from 
SciKitLearn. Neural networks models were built using 
5 dense linear layers with hidden dimensions of 2000, 
2000, 1000, 700, a rectified linear unit (ReLU) activation 
function, and the Adam optimizer with a learning rate 
of 0.0001, and trained with a binary cross entropy loss 
function until loss on a holdout validation set stopped 
decreasing. The validation set was a random 10% strati-
fied split from the training dataset and was separate from 
the testing set used to evaluate the models. The network 
was implemented using Keras [39].

Applicability domain was calculated for test set com-
pounds by finding the maximum Tanimoto similarity 
between the compound and the training set. If the Tani-
moto similarity was above 0.35, the compound was con-
sidered in domain and its prediction kept.

For metrics that required a ranking of predictions (like 
AUROC or PPV-N) the classification model was asked to 

Fig. 1  Evaluation of PPV across varying nominations in HTVS campaigns



Page 7 of 8Wellnitz et al. Journal of Cheminformatics            (2025) 17:7 	

provide a probability of a compound being in the “active” 
class. All models used are natively able to provide this prob-
ability value. When selecting only the top N compounds, 
the predictions with the highest probability were chosen. 
In the event of a tie, various medchem filters implemented 
in the STOPLIGHT program [40] for compounds in ques-
tion would be used. In practice, none of our experiments 
resulted in the tie breaking, thus this step was unnecessary.
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