
Arturi et al. Journal of Cheminformatics           (2025) 17:14  
https://doi.org/10.1186/s13321-025-00950-4

RESEARCH Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

Journal of Cheminformatics

MLinvitroTox reloaded for high‑throughput 
hazard‑based prioritization of high‑resolution 
mass spectrometry data
Katarzyna Arturi1*, Eliza J. Harris2,3, Lilian Gasser2, Beate I. Escher4, Georg Braun4, Robin Bosshard5 and 
Juliane Hollender1,6* 

Abstract 

MLinvitroTox is an automated Python pipeline developed for high-throughput hazard-driven prioritization of toxi-
cologically relevant signals detected in complex environmental samples through high-resolution tandem mass spec-
trometry (HRMS/MS). MLinvitroTox is a machine learning (ML) framework comprising 490 independent XGBoost 
classifiers trained on molecular fingerprints from chemical structures and target-specific endpoints from the ToxCast/
Tox21 invitroDBv4.1 database. For each analyzed HRMS feature, MLinvitroTox generates a 490-bit bioactivity 
fingerprint used as a basis for prioritization, focusing the time-consuming molecular identification efforts on features 
most likely to cause adverse effects. The practical advantages of MLinvitroTox are demonstrated for groundwa-
ter HRMS data. Among the 874 features for which molecular fingerprints were derived from spectra, including 630 
nontargets, 185 spectral matches, and 59 targets, around 4% of the feature/endpoint relationship pairs were predicted 
to be active. Cross-checking the predictions for targets and spectral matches with invitroDB data confirmed the bio-
activity of 120 active and 6791 nonactive pairs while mislabeling 88 active and 56 non-active relationships. By filtering 
according to bioactivity probability, endpoint scores, and similarity to the training data, the number of potentially toxic 
features was reduced by at least one order of magnitude. This refinement makes the analytical confirmation of the toxi-
cologically most relevant features feasible, offering significant benefits for cost-efficient chemical risk assessment.

Scientific Contribution:
In contrast to the classical ML-based approaches for toxicity prediction, MLinvitroTox predicts bioactivity 
for HRMS features (i.e., distinct m/z signals) based on MS2 fragmentation spectra rather than the chemical structures 
from the identified features. While the original proof of concept study was accompanied by the release of a MLin-
vitroTox v1 KNIME workflow, in this study, we release a Python MLinvitroTox v2 package, which, in addition 
to automation, expands functionality to include predicting toxicity from structures, cleaning up and generating 
chemical fingerprints, customizing models, and retraining on custom data. Furthermore, as a result of improvements 
in bioactivity data processing, realized in the concurrently released pytcpl Python package for the custom process-
ing of invitroDBv4.1 input data used for training MLinvitroTox, the current release introduces enhancements 
in model accuracy, coverage of biological mechanistic targets, and overall interpretability.
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Introduction
Advances in instrumental high-resolution tandem  mass 
spectrometry (HRMS/MS) reveal that thousands of 
unidentified anthropogenic pollutants with unknown 
toxicological properties are released to the aquatic envi-
ronments daily [33, 50]. While we can routinely detect 
and analyze tens of thousands of HRMS features (i.e., 
distinct m/z signals) via nontarget screening (NTS) data 
acquisition methods and data processing workflows 
[18, 32, 58], identifying the unknowns remains a bot-
tleneck of environmental risk assessments. Elucidation 
of the detected signals’ molecular identity is performed 
via target, suspect, and nontarget screening. The tar-
geted approach is the ’gold standard,’ as the measured 
masses (mass-to-charge ratios, m/z), retention times 
(RT), and fragmentation spectra (MS2) can be unequivo-
cally matched with experimental records of analytical 
standards. However, less than 2% out of 1 million com-
pounds listed as chemicals of environmental importance 
on EPA’s CompTox Chemicals Dashboard are avail-
able as analytical standards [54]. A suspect screening 
of exposure-relevant compounds compiled in lists [48] 
can help elucidate additional compounds by match-
ing m/z, RT, MS2, and any additional orthogonal data 
available for the unknowns, with those of the suspects 
in compound and spectral databases. Targeted and sus-
pect screening approaches typically yield annotations 
and matches for only a small fraction of the measured 
signals. The remaining HRMS features can be processed 
using nontarget computational methods, such as Met-
Frag [63], CFM-ID [74], and CSI:FingerID implemented 
in SIRIUS [19, 20]. These methods aim to tentatively 
identify unannotated signals by comparing their experi-
mental fragmentation patterns with theoretical fragmen-
tation patterns of compounds in databases. The packages 
can automatically annotate thousands of signals, each 
associated with a potentially large number of structural 
candidates. However, due to the need for an expensive 
and resource-demanding manual validation and analyti-
cal confirmation with reference standards, a complete 
elucidation of all the signals from suspect or nontarget 
screening is not feasible. To keep the workload manage-
able, only a limited number of individual chemicals can 
be investigated and, ideally, confirmed or ruled out using 
analytical standards [10]. Prioritization typically con-
siders peak intensity (serving as a proxy for concentra-
tion), frequency (assuming that more common signals 
may pose greater concern), and statistical trends aligned 
with specific research objectives, such as comparisons 
before and after wastewater treatment [35]. In particu-
lar, multivariate chemometric analysis such as principal 
component analysis (PCA) [10, 34] is widely used for 

preliminary exploration and prioritization of nontarget 
HRMS data.

It has been estimated that less than 5% of the HRMS 
features measured in environmental and biological sam-
ples are commonly identified by a combination of target, 
suspect, and nontarget in silico identification efforts [56]. 
Even if a feature was successfully identified, relevant tox-
icity data is likely unavailable, making it difficult to assess 
the potential risk associated with the chemical. The haz-
ard properties, e.g., toxic potency and modes of action, of 
only a handful of chemicals, have been comprehensively 
mapped due to the time-consuming, expensive, and ethi-
cally questionable nature of the traditional in vivo toxicity 
testing on animals [43]. If a feature is not flagged, prior-
itized, and identified, we are blind to its toxic potential in 
traditional NTS HRMS/MS analysis, which also explains 
why only a small part of overall mixture toxicity is cur-
rently explained by a combination of usual target, sus-
pect, and nontarget analysis [51].

As a result, there is a growing interest in develop-
ing alternative in vitro and in silico methods for toxicity 
assessment. Alternatives to establishing toxicity experi-
mentally involve predictive computational toxicology 
[3, 38, 41, 46, 76] based on the observation that struc-
turally resembling chemicals often have similar prop-
erties and cause analogous toxic effects. Traditional 
Quantitative Structure-Activity Relationship (QSAR) 
models primarily used linear regression and other statis-
tical methods to map monotonic relationships between 
chemical structures or properties and biological activities 
for safety assessments [16, 27]. In contrast, modern in 
silico approaches rely on machine learning (ML), which 
allows for modeling complex, non-linear relationships, 
thereby enhancing the prediction of specific toxic effects 
or molecular bioactivities with greater accuracy and 
broader applicability [14, 36, 60, 72, 76, 79]. An impor-
tant distinction has to be made between in vivo toxicity, 
which is broadly understood as measurable damage in a 
living organism, and in vitro bioactivity which expresses 
molecular events on a cellular level that may or may not 
lead to toxicity on the organ or organism level. In vivo 
targets are generally more interpretable but often face 
data availability, volume, and reproducibility challenges. 
Conversely, in vitro data offers better robustness, clearly 
defined mechanisms, and greater volume, but at the cost 
of decreased interpretability. AOP-Wiki [2] maps in vitro 
bioassays to more than 300 signaling pathways associated 
with nearly 400 adverse outcome pathways (AOP), thus 
linking the molecular activities measured on a cellular 
level to adverse effects on the organ or organism level. 
Examples of ML frameworks for toxicity and bioactiv-
ity prediction developed for environmental applications 
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include MLTox [28, 77], deepFPlearn+ [64, 64], and 
TrendProbe [53]. From an environmental perspective, 
the most commonly assessed in vivo toxicity target is 
aquatic toxicity [45, 65], whereas in vitro predictions pri-
marily focus on mutagenicity and Tox21 data endpoints 
[8, 14], with particular emphasis on endocrine disruption 
due to its significant environmental and public health 
implications [49, 68, 71, 78]. Despite the rapid growth in 
AI and ML, fueled by increased data availability, compu-
tational power, and innovation, the limited application of 
machine learning for environmental HRMS analysis [30, 
47, 57, 59, 70] highlights a gap in the literature, present-
ing a valuable opportunity for future research.

In our previous work [5], we developed MLinvit-
roTox v1, an ML framework trained on hundreds of 
invitroDBv3.4 endpoints [13, 61] to prioritize toxico-
logically relevant signals among thousands of signals 
commonly detected in complex environmental sam-
ples through HRMS/MS. Like traditional ML-based 
approaches for toxicity prediction, MLinvitroTox 
uses molecular fingerprints derived from chemical 
structures as input features. Unlike those approaches, 
however, it was specifically developed to predict bio-
activity based on the MS2 fragmentation spectra of all 
HRMS features rather than on the chemical structures 
derived from the identified features. The aim was to 
add toxicological relevance to environmental analysis 
by bypassing the bottleneck of feature identification 
prior to toxicity evaluation, thereby focusing the time-
consuming molecular identification efforts on features 
most likely to cause adverse effects rather than merely 
the most intense ones. The results demonstrated that 
nearly a quarter of the invitroDB endpoints and most 
underlying mechanistic targets could be predicted 
accurately from structures and the MS2 spectra with 
MLinvitroTox. Furthermore, despite certain limita-
tions, the methodology successfully guided nontarget 
screening of wastewater HRMS/MS data toward toxi-
cologically relevant outcomes.

While the original proof of concept study was accom-
panied by the release of an MLinvitroTox v1 KNIME 
(Konstanz Information Miner) workflow, in this study, 
we release a Python MLinvitroTox v2 package [7] 
trained on the new release of the Tox21/ToxCast data 
(invitroDBv4.1). The package automates all processing 
steps and significantly expands the original function-
ality, e.g., predicting toxicity from structures, cleaning 
up and generating chemical fingerprints, and retrain-
ing customized models on user data. MLinvitroTox 
as a ’high-throughput’ tool not only aims to provide 
an unbiased prioritization accelerating access to toxi-
cologically relevant insights but also to streamline the 
progress from HRMS/MS measurement to actionable 

decision-making. Furthermore, we concurrently release 
pytcpl, a Python package developed for the custom 
processing of invitroDBv4.1 input data used for train-
ing MLinvitroTox. Both MLinvitroTox v2 and 
pytcpl are ultimately designed to integrate machine 
learning into toxicology and environmental analysis to 
achieve cost-efficient chemical risk assessment. In the 
current work, we present the results of invitroDBv4.1 
data processing in pytcpl, which was used for train-
ing MLinvitroTox v2, validation of the ML models 
using MassBank structural and spectral data, and dem-
onstrate their subsequent application on environmen-
tal groundwater HRMS/MS data. Figure  1 provides a 
detailed overview.

Methods
Bioactivity data
For training the models, we used the most recent release 
of ToxCast’s MySQL database, invitroDBv4.1 [13] origi-
nating from the U.S. EPA’s ToxCast program collabora-
tion and the National Institutes of Health (NIH) Tox21 
initiative [62]. ToxCast and Tox21 are extensive high-
throughput screening bioactivity data collections cov-
ering 9559 unique compounds tested selectively across 
1499 assay endpoints. An assay is an experimental pro-
tocol to evaluate interactions between target molecules 
and cells, particularly with endogenous biomolecules 
such as lipids, receptors, and other proteins. The assays 
in ToxCast and Tox21 utilize a range of technologies 
to assess the impact of chemical compounds on a wide 
array of biological targets, including individual proteins, 
nuclear receptor signaling, developmental processes, and 
cellular processes such as mitochondrial health, thereby 
offering a comprehensive view of potential hazards. In 
each assay, varying concentrations of each chemical are 
administered onto bioassays in multiple replicates. The 
measured raw biological concentration-response series 
(also called dose-response series) are fit via regression 
models into corresponding concentration-response 
curves (CRC), from which potency estimates such as 
AC10 (concentration at 10% activity) and AC5O (con-
centration at 50% activity) are derived. The ‘hill’ model, 
which generates sigmoidal dose-response curves, is 
advantageous for fitting as it is a log-logistic model that 
closely approximates the log-normal distribution of most 
toxicological data, providing a toxicologically meaningful 
fit. Positive controls were tested for assays with a defined 
maximum, such as receptor binding assays, to establish 
the objective upper limit of activity and normalize the 
chemicals’ responses. For other assays, responses were 
normalized using the induction ratio to an unexposed 
control. Also, background measurements of solvents 
with no chemicals serve as negative controls, establishing 
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a baseline and accounting for assay-specific noise. For 
each dose-response curve, the chemical activity (hitcall 
active/1 vs. nonactive/0) is assessed based on the fitting 
quality and the number of median (based on concentra-
tion replicates) responses above the noise level. There 
are 3,196,178 concentration-response curves available in 
invitroDBv4.1, corresponding to more than 50 million 
raw measurements.

Data processing
In accordance with the literature, which emphasizes the 
necessity of rigorous preprocessing to eliminate non-
target effects in in vitro data [23, 24, 44], and to mitigate 
modeling artifacts such as overfitting and data biases, we 
developed pytcpl [11], a custom pipeline for process-
ing of the invitroDBv4.1 bioactivity data. pytcpl is a 
streamlined Python package inspired by the R packages 
tcpl and tcplFit2 [25, 67], to accommodate cus-
tomized processing steps and optimized data storage 
by storing the output as compressed Parquet files. Only 
cell-based assays were used in the current study (452 
non-cell-based assays in invitroDBv4.1 were omitted). 
Using pytcpl, we conducted the following data pro-
cessing procedure for each concentration-response series 
involved: 

1.	 Outlier removal: The running mean response for all 
points across neighboring concentrations was calcu-
lated to create a smoothed response curve. The resid-
ual was then determined as the difference between 

each data point and this smoothed curve. All points 
with residuals that were (i) larger than the baseline 
median absolute deviation (BMAD, the deviation of 
the three lowest concentrations in a dose-response 
series) and (ii) more than five times the standard 
deviation of the residuals were flagged as outliers and 
removed. Figure  2a shows examples of outlier flag-
ging.

2.	 Curve validation: The concentration-response series 
were validated to ensure that (i) the number of con-
centrations tested was larger than the set threshold of 
four, and ii) the series contained at least one response 
higher than 0.8 times the activity concentration at 
cutoff (ACC). The ACC is the threshold above which 
a response is considered biologically significant and 
clearly distinguished from the background noise. 
The ACC in invitroDB is a user-selected threshold 
per assay endpoint, e.g., set at three times BMAD to 
ensure biological significance beyond baseline vari-
ability. Concentration-response series violating crite-
ria i were assigned a hitcall of NaN, while those vio-
lating criteria ii were assigned a hitcall of 0 (Fig. 2a, 
b).

3.	 Curve fitting: Different curves were fit to each vali-
dated concentration-response series using maxi-
mum likelihood estimation for various curve mod-
els, ensuring the most accurate representation of the 
data. The models used in this study are described in 
Sect.  "Curve fitting models". The fitted models were 
used to calculate relevant potency estimates and 

Fig. 1  MLinvitroTox pipeline development steps described in this work include: (I) Training XGBoost classifiers for 490 viable assay endpoints 
from invitroDBv4.1; (II) Validating model performance on the ‘Internal’ test set (20% of the input data) and MassBank sets (1.5k compounds, which 
are both present in invitroDBv4.1 as well as contain HRMSMS2 spectra in MassBank for which molecular fingerprints could be predicted) using 
both structural (‘MB structure’) as well as spectral (‘MB spectra’) data via SIRIUS); (III) Applying the models to environmental HRMS/MS data
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activity concentrations as described in [11, 25, 67] 
and shown in Fig. 2.

4.	 hitcall assignment: The fitted model with the low-
est Akaike Information Criterion (AIC) that best 
represented the concentration-response series was 
assigned as the ‘winning’ model. If the winning 
model was the ‘constant’ model, a hitcall of 0 was 
assigned. If the winning model was not the ‘constant’ 
model, the continuous hitcall (representing the likeli-
hood of a significant response/continuous scoring of 
toxicity likelihood rather than binary outcomes) was 
determined as the product of three distinct probabili-
ties according to the method proposed by Sheffield 
et al. [67]: 

(1)Phit = P1 × P2 × P3

 where:

•	P1 = probability that at least one median 
response is greater than the ACC, computed 
using the error parameter from the model fit and 
the Student’s t-distribution to calculate the odds 
of at least one response exceeding the ACC;

•	P2 = probability that the top of the winning fit-
ted curve is above the cutoff, which is the like-
lihood ratio of the one-sided probability of the 
ACC being exceeded;

•	P3 = probability that the winning AIC value is 
less than that of the constant model: 

Fig. 2  Example curve fits illustrating different outcomes: (a) and (b) show dose-response curves where no activity was evident (hitcall_c = 0); 
the upper panel has three outlier points. (c) and (d) illustrate intermediate confidence of activity based on the hill model. (e) and (f) show strong 
confidence in activity; the upper panel required a ‘forced hill’ fit, and the lower panel fit with the ‘hill’ model. The ‘constant’ model and cutoff are 
shown in all panels. AEID = assay endpoint ID and SPID = species ID
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5.	 Annotation and redundancy: Flags and fit categories 
were applied according to the procedure defined in 
[25], including removal of background, controls, and 
viability measurements (used only for cytotoxicity 
estimation) as well as redundant channels.

Curve fitting models
Four models were used to fit the invitroDBv4.1 concen-
tration-response curves, selected for their effectiveness 
in capturing different concentration-response relation-
ships. The ‘constant’, ‘hill’ and gain-loss (‘gnls’) models 
were used in the tcpl package [25], and the ‘forced hill’ 
model is a modification of the ‘hill’ model. The additional 
curve fit models used in tcplv3.0 [73] were included in 
pytcpl but used only for bootstrapping (Sects.  "Boot-
strapping" and "Model choice for concentration-response 
curve fitting") and thus only described here briefly. All 
models are shown in Figure SF1.

•	 The ‘constant’ model is a zero-parameter model 
that describes no effect of the dose on the meas-
ured response, implying that the response remains 
unchanged regardless of dose concentration, where R 
is the response and d is the dose concentration: 

•	 The ‘hill’ model is based on the mechanistic under-
standing of activity where receptor-ligand binding 
always has an upper limit. It is a three-parameter 
model that represents a monotonic response at a 
threshold concentration with the bottom asymptote 
forced to 0, where t is the curve top, g is the gain, and 
p is the gain power: 

•	 The gain-loss (‘gnls’) model is a five-parameter model 
that describes an increase followed by a decrease in 
response, capturing more complex biological pro-
cesses where initial gains in response diminish with 
higher doses, where l is the loss and q is the loss 
power: 

•	 The ‘hill’ and ‘gnls’ models do not always deliver 
consistent results, particularly in terms of potency 
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estimates, due to their different curve shapes. To 
address this, we introduced the ‘forced hill’ model, 
which improves consistency across all active dose-
response series. In all cases where ‘gnls’ was the win-
ning model, data points with concentrations larger 
than the top of the fitted ‘gnls’ model were removed 
to avoid overestimation of effects, and the ‘hill’ model 
was fit to the remaining data points, as shown in 
Fig. 2e.

•	 Additional models included: polynomial-linear 
(‘poly1’), polynomial-quadratic (‘poly2’), power, 
exponential-2 (‘exp2’), exponential-3 (‘exp3’), expo-
nential-4 (‘exp4’), exponential-5 (‘exp5’) [73]. The 
‘exp3’ model was not used in bootstrapping due to a 
low win rate and overflow issues. We also tested the 
‘gnls2’ model, a modified gain-loss model with one 
less parameter, to reduce overfitting [11]. This model 
was considered an alternative to balancing model 
complexity with predictive accuracy.

Bootstrapping
Bootstrapping was performed to estimate uncertain-
ties associated with predicting concentration-response 
parameters by different models, particularly to iden-
tify which models delivered the most reproducible and 
toxicologically meaningful results. Bootstrapping is a 
statistical method used to estimate the uncertainty of a 
parameter by repeatedly resampling the raw data with 
replacement, refitting the models, and recalculating the 
parameters for each resample, thus generating an empiri-
cal distribution of hitcall as well as potency estimates. 
Given the computational demands of bootstrapping on 
the full dataset, we selected a representative subset for 
analysis, ensuring it was large enough to yield meaning-
ful insights. We carried out bootstrapping on 62 unique 
endpoints selected to have close to 100 chemicals each 
for 6436 concentration-response curves. We used a 
nonsmoothed, nonparametric resampling similar to the 
method used by Watt and Judson [75]. In brief, we resa-
mpled with replacement for each concentration-response 
curve at each concentration level. Then, we introduced 
random noise at the level of the BMAD for that assay to 
mimic experimental variability and ensure the robustness 
of our results. We carried out bootstrapping to investi-
gate two data processing scenarios:

•	 All models: All models included in tcplv3.0 [73] 
were used as well as the ‘gnls2’ model, except ‘exp3’ 
which led to regular computational overhead during 
fitting (Figure SF1).



Page 7 of 20Arturi et al. Journal of Cheminformatics           (2025) 17:14 	

•	 Forced hill: Only ‘constant’, ‘gnls’ and ‘hill’ models 
were fit, and in all cases where ‘gnls’ was the winning 
model, the ‘forced hill’ model was used.

We carried out 300 bootstraps for the 6436 concentra-
tion-response curves for the ‘all models scenario’ and 
1000 bootstraps for the ‘forced hill scenario’, which led 
to convergent results whereby both mean and standard 
deviation showed no significant changes with the addi-
tion of further bootstraps. The differing numbers of 
bootstraps were due to the higher computation power 
needed to fit all models, which took around 10 times 
longer. We compared the model selection, hitcalls, and 
relevant activity concentrations across the different boot-
straps and between the two scenarios to identify the most 
robust and reproducible curve-fitting method (Figure 
SF2).

Cytotoxicity estimation and assignment of final ‘hitcall’
Based on the bootstrapping results (Sect. "Model choice 
for concentration-response curve fitting"), we found that 
the ‘forced hill’ method offers the best reproducibility and 
comparability between concentration-response curve 
fits; thus, this method was used to fit the full dataset 
(excluding non-cell-based assays; Sect. "Bioactivity data"). 
The preliminary hitcalls returned from this fitting rep-
resent the probability that an effect was observed ( Phit ); 
however, this effect could be due to general cytotoxicity 
rather than the effect targeted by a particular assay [37]. 
Therefore, we estimated the probability of cytotoxicity 
( Pcytotox ) and used this to estimate the likelihood of activ-
ity due to the targeted effect ( Phit_tgt ), assuming that all 
variables have a Gaussian error distribution. The assump-
tion of a Gaussian error distribution allows for systemati-
cally estimating the cytotoxicity probability, providing a 
statistically sound basis for refining the hitcall.

Phit_tgt is the final continuous hitcall, referred to through-
out this paper as ‘hitcall’.
Pcytotox was estimated as the probability that the curve 

fit activity concentration at cutoff ( ACCtgt ) is lower than 
the cytotoxicity assay activity concentration at cutoff 
( ACCcytotox):

where φ is the Gaussian cumulative distribution function. 
For ∼ 2% of concentration-response curves, a directly 
corresponding viability assay endpoint counterpart was 

(6)Phit_tgt = Phit × (1− Pcytotox)

(7)

Pcytotox = P(ACCcytotox − ACCtgt ≤ 0)

= φ





ACCcytotox − ACCtgt
�

SD2
ACCcytotox

+ SD2
ACCtgt





available for the determination of ACCcytotox ; like tar-
get assays, viability assays were fit using the ‘forced hill’ 
method. SDACCcytotox

 and SDACCtgt
 where both determined 

from the bootstrapping results, which showed that gen-
erally SDACC can be estimated as 0.41× ACC+ 7.0 
(Figure SF3).

Cytotoxicity burst assays offer a proxy for estimating 
cytotoxicity when direct viability data is lacking. A sta-
tistical approach was applied to estimate cytotoxicity for 
assays with no corresponding viability assay. ACCcytotox 
was approximated as the median ACC for the compound 
of interest across a set of assay endpoints designed to 
capture the cytotoxicity burst. SDACCcytotox

 is derived from 
the median absolute deviation of the respective ACC val-
ues. Additionally, in the statistical approach, Pcytotox is 
multiplied by the ratio of the number of cytotoxicity burst 
assay endpoints in which the compound exhibited activ-
ity ( nhit ) to the total number of cytotoxicity burst assay 
endpoints in which the compound was tested ( ntested ), to 
account for the bias introduced by calculating the median 
ACC only from ‘hits’ according to the tcpl pipeline [25].

Structural data
The structural data used for training were obtained 
from U.S. EPA’s Chemistry DSSTox database [21, 29] 
as ToxCast_invitroDB_v4_1.csv containing a compila-
tion of identifiers (e.g., DTXSID, name, CAS number, 
and InChI Key), chemical representations (e.g., InChI, 
SMILES), and chemical data (e.g., molecular formula, 
average and monoisotopic mass). The initial list con-
taining 9559 entries was filtered to remove duplicates 
and entries without DTXSID and SMILES represent-
ing unspecified organic groups, inorganic molecules, or 
for which no structural representation could be gener-
ated. Lastly, the structures were rigorously cleaned [26, 
31]. They were standardized (removal of explicit hydro-
gen atoms, ring aromatization, normalization of specific 
chemotypes, curation of tautomeric forms, removal of 
charges, removal of metals, reionization, removal of 
stereoisomers, removal of inorganic counter ions). The 
rdkit package was used for processing. Post-curation, 
9358 chemicals were available for modeling. Structures 
were not used directly as input but were converted into 
mathematical representations of molecules, namely, as 
molecular fingerprints encoding the chemical structures 
as binary vectors of fixed length where each bit describes 
the presence (1) or absence (0) of a particular substruc-
ture. The cleaned data was used to generate the molecu-
lar fingerprints via pybel (based on openbabel [55]) and 
CDK-pywrapper [9] packages. With openbabel, FP3 (55 
bits) and FP4 (307 bits) fingerprints were generated. 
With CDK-pywrapper, MACCS (166 bit), PubChem (881 
bits), and Klekota-Roth fingerprints (4860 bits) were 
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generated. The 6269 bits were cross-referenced with 
the SIRIUS fingerprint definitions for the positive mode 
containing 3877 bits. The SIRIUS fingerprint addition-
ally covers extended connectivity (ECFP), custom-made 
SMARTS, and ring systems, which were omitted in the 
current work, as their generation is challenging and they 
did not significantly improve the predictive power of the 
models in the proof of concept [5]. Scripts for cleaning 
up and generating molecular fingerprints are released 
as part of the MLinvitroTox package, and the reader 
is referred to the documentation for more details. The 
continuous hitcalls from the pytcpl and their identi-
fiers (DTXSID) were combined with molecular finger-
prints derived from structures. The dataset per assay 
endpoint consisted of a data frame with an index identi-
fier (DTXSID from the CompTox Dashboard), a feature 
matrix with n = 1797 columns (molecular fingerprint 
bits) named with the absolute indexes used by SIRIUS, 
and a continuous target vector (‘hitcall’) binarized to 0/1 
according to the activity_threshold (set to 0.9) in the con-
figuration provided in the Code snippets in Section S5. 
While all 596 endpoints provided by the pytcpl pack-
age (with more than 10 active chemicals and 100 input 
chemicals, respectively) were initially used as input to 
MLinvitroTox, the purging of records tagged with 
’QC-omit’ or ’Flag-omit’ according to the cHTS curation 
pipeline recommendations [52], along with ML-specific 
data splitting (see Sect. "Machine learning for bioactivity 
prediction"), reduced the number of viable endpoints for 
ML model training to 490.

Machine learning for bioactivity prediction
Model training
As the first step in processing, the data splitting for the 
validation was done. For each assay endpoint data-
set, compounds also present in the MassBank database 
(release version 2024.06 with 117,732 spectra was used, 
including 2879 spectra submitted by Eawag since 2022) 
were assigned to the corresponding assay’s MassBank 
validation set. The remaining records were partitioned 
into training and test sets (80:20 split) through a cus-
tom stratification method based on k-means cluster-
ing, ensuring a balanced representation of active and 
chemically diverse samples in the training and test sets. 
A substantial proportion of the studied assay endpoints 
exhibited an unequal distribution of active and nonactive 
compounds, with the nonactive class typically outweigh-
ing the active class. For such imbalanced datasets, models 
may become biased toward predicting the majority class 
more frequently unless corrective measures are imple-
mented [40]. To address this, we applied oversampling 
to rebalance the underrepresented class. We applied fea-
ture selection using a random forest model to narrow 

the relevant fingerprint bits. Features that exceeded the 
mean importance threshold (average importance across 
all input features) were selected and used as input for 
model training.

Based on the proof of concept study, the XGBoost 
(eXtreme Gradient Boosting, [15]) algorithm was 
selected due to its robustness and good performance 
[5]. XGBoost is a regularizing gradient-boosting ensem-
ble learning technique that combines multiple weak 
learner decision trees sequentially, with each new learner 
giving more weight to the examples that the previous 
learners struggled with. For each assay endpoint, the 
model training was based on a grid search hyperpa-
rameter tuning nested within 5-fold cross-validation. 
The k-fold cross-validation modeling performance 
and hyperparameter tuning details are reported in the 
model training log files. The applied hyperparameter 
grid and a snippet of the log file for one endpoint are 
provided in Section S5. The hyperparameters were opti-
mized for binary classification based on the Fβ score 
( Fβ = (1+ β2) ∗ (precision ∗ recall)/((β2 ∗ precision)+ recall) , 
β = 2 ). The backbone of the code showing modeling logic 
and a snippet of the log generated during the pipeline run 
for one endpoint is provided in Section S5. Extensive log-
ging features ensured full traceability of each run.

Model evaluation
The fine-tuned ML models were validated in three stages: 

1.	 ‘Internal’: Evaluation on the internal test set drawn 
randomly from the input data (excluding MassBank 
compounds) by stratified sampling with an 80:20 
train test split ratio to obtain an unbiased perfor-
mance measure of the model-building process with 
molecular fingerprints from structures as input.

2.	 ‘MB structure’: External validation on MassBank 
compounds (molecular fingerprints from structures) 
to evaluate the model’s generalization capabilities on 
structural data. Models were retrained on the com-
bined train/test data with optimal hyperparameters 
for the validation.

3.	 ‘MB spectra’: External validation on the MassBank 
spectral MS2 records (predicted molecular finger-
prints from SIRIUS) focusing on the gap between 
chemical structure space and fragmentation spectra, 
providing an overall performance measure of the 
whole pipeline.

The two validations based on MassBank data are per-
formed for the same compounds, once with the struc-
tural information and once with the spectral information. 
In each case, the model’s predictions were obtained as 
probabilities for a compound to belong to the active class. 
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These were subsequently binarized based on a thresh-
old. We varied thresholds for binarizing the probabilities 
into binary hitcalls at four levels: (1) the default thresh-
old of 0.5, (2) the custom threshold determined by the 
cost function weighting TPR (True Positive Rates) twice 
as FPR (False Positive Rates, to value recall), (3) TPR = 
0.5, and (4) TNR = 0.5. At each threshold, the hitcalls 
were compared to the ground truth, i.e., the correspond-
ing invitroDB data, and a comprehensive set of model 
metrics and summaries (e.g., confusion matrix, recall, 
precision, F1 score, accuracy, AUC-ROC, and PR-ROC) 
were computed to evaluate the performance of each clas-
sification model. The validation results here focus on the 
default threshold and evaluate overall and balanced accu-
racy. We reported overall and balanced accuracy metrics 
for MLinvitroTox models to provide insights from two 
perspectives. While overall accuracy (Eq.  8) is a global 
performance measure emphasizing the majority class (in 
our case, nonactive), balanced accuracy (Eq. 9) highlights 
the performance of the active minority class as it weights 
the performance of each equally.

To best leverage MLinvitroTox in environmental anal-
ysis, it is essential to combine a robust prioritization of 
active chemicals (maximize TP) to focus analytical efforts 
on signals with the highest potential for harm while also 
accurately classifying nonactive features (maximize TN) 
to avoid unnecessary expenditure of efforts and resources 
on harmless signals. In addition to evaluating model per-
formance, we also extracted feature importance values to 
understand which chemical structures are most predic-
tive of toxicity. This improves model interpretability and 
offers valuable insights for future toxicological research.

Molecular fingerprints from MS2 spectra
SIRIUS 5.8.3, with an academic license, was used to gen-
erate molecular fingerprints from spectra for MassBank 
validation and environmental application. The following 
settings were applied: ‘Instrument’: Orbitrap, ‘Isotope 
pattern filter’: Yes (environmental data) or No (MassBank 
data), ‘Mass accuracy’: 5 ppm MS2, ‘MS2 isotope scorer’: 
Score, ‘Candidates stored’: 10. Neither Zodiac nor CAN-
OPUS (Compound class prediction) modules were used. 
For CSI:FingerID, adducts [M+H]+ , [M+ K]+ , and 
[M+Na]+ and complete DB search were selected. Stand-
ard settings for ILP (Integer Linear Programming) solver, 
as well as other options, were used for the remaining 

(8)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(9)

Balanced Accuracy =
1

2

(

TP

TP+ FN
+

TN

TN+ FP

)

parameters. Due to the significant increase in process-
ing time associated with larger molecular weights of the 
precursor and the focus on small molecules in this study, 
a limit of 750 Da was established to avoid excessive com-
putational demands. 187 of the ToxCast invitroDB 
chemicals have a mass of 750 Da or higher, so Mass-
Bank validation did not cover the full mass range uti-
lized during training. MassBank spectra (imported as.txt 
with only MS2 data), as well as the environmental data 
(imported as.mgf from MZmine with both MS2 as well 
as MS1 isotopic patterns), were analyzed with the same 
settings except the ‘Isotope pattern filter’ as specified 
above. Uploading and processing.raw or.mzML files to 
SIRIUS is possible but not advisable. It increases the pro-
cessing time significantly, and the user loses control over 
processing parameters. SIRIUS generated molecular for-
mula proposals (the maximum is defined in settings, e.g., 
10) per successfully imported spectrum, corresponding 
molecular fingerprints, and structure proposals. For the 
MassBank data, the SIRIUS output corresponding to the 
same compounds available in replicates (e.g., measured 
by different institutes with varying collision energies) 
was concatenated to obtain the most comprehensive and 
representative fingerprint possible. For environmental 
data, feature consolidation occurred downstream in the 
MLinvitroTox application. It is important to note that 
the current version of MLinvitroTox supports only 
the positive electrospray ionization  mode HRMS data 
analyzed in SIRIUS v5.8.7 or lower.

The accuracy of SIRIUS in predicting molecular fin-
gerprints from MS2 was evaluated on 1.5 k MassBank 
compounds to identify potential sources of error while 
applying MLinvitroTox on environmental data. The 
process involved comparing molecular fingerprints gen-
erated from structures and MS2 spectra. Structural fin-
gerprints were generated as described in Sect. "Structural 
data". Tanimoto similarity, recall, precision, and overall 
accuracy were used as evaluation metrics. Compounds 
from MassBank that were used to train the CSI:FingerID 
algorithm were excluded from the evaluation to prevent 
overfitting and provide a realistic performance measure.

Environmental application on groundwater
MLinvitroTox was applied to environmental ground-
water data generated by Kiefer et al. [39], who collected 
samples from 60 monitoring sites across Switzerland (44 
abstraction wells, 16 springs) and analyzed them using 
target, suspect, and nontarget approaches to classify pol-
lution sources as urban or agricultural. We selected four 
sites/sample types associated in the original analysis 
with intensive pollution from urban sources for demon-
stration. For each site, three consecutive measurements 
were available, along with three blanks, resulting in 15 
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samples. Only the data from the positive ionization mode 
were used. The exact details regarding sample collection, 
preparation, and analysis can be found in the source pub-
lication. In short, the samples were enriched by applying 
vacuum-assisted evaporation and injected in triplicate 
into an HPLC system featuring a reversed-phase C18 
column using gradient elution with water and metha-
nol containing 0.1% formic acid at a flow rate of 0.3 mL/
min. Analytes were ionized using electrospray ionization 
and detected on an Orbitrap mass spectrometer (Fusion 
Lumos) with a resolution of 240k at m/z 200 in MS1 full-
scan mode, followed by data-dependent (DDA) MS2 
scans. The AcquireX software enhanced MS2 coverage 
by dynamically updating the mass list of already meas-
ured (with MS2) features across triplicate injections. The 
raw HRMS files were converted without compression to 
an open-source.mzML format with ProteoWizard and 
processed with MZmine via a general pipeline for untar-
geted LC-MS designed to resemble the original workflow 
in enviMass covering, e.g., peak picking, retention time 
alignment, grouping of adducts and isotopologues into 
components based on intensity correlation and m/z dis-
tance, replicate filtering, and target annotation. Addi-
tional steps described in more detail in Section S3 were 
incorporated into the data processing workflow to uti-
lize the advanced features of MZmine fully, enhance the 
quality of the results, and streamline the post-processing 
procedures with parameters derived from the data as rec-
ommended by Damiani et al. [17].

Results
Model choice for concentration‑response curve fitting
Processing data from the invitroDB database, particularly 
fitting concentration-response curves before training ML 

models, is crucial for accurate outcomes. The breakdown 
of model choices and results in the ‘all models’ approach, 
where all models used in the EPA’s tcpl package are con-
sidered, and the best fitting model is chosen, are shown 
in Fig.  3. Considerable variability is seen in potency 
estimates between models. The bootstrap results were 
used to compare the ‘all models’ approach to the ‘forced 
hill’ data processing method and to explore uncertainty 
in curve fit parameters in both cases. Compared to the 
‘all models’ approach, the ‘forced hill’ method delivered 
lower estimates of ACC, AC50, and standard deviation 
in ACC and AC50 (Figure SF2a–d). The median hitcalls 
were higher for the ‘all models’ approach in nearly all 
cases, and thus, the ‘forced hill’ method produces fewer 
positive hitcalls (Figure SF2e). The lower standard devi-
ation of ACC and AC50 for the ‘forced hill’ case shows 
that the curve fitting is more reproducible when fewer 
different models are used, in agreement with the findings 
of Watt and Judson.

Using the ‘all models’ approach, the ‘cnst’ and ‘poly1’ 
models are chosen most often across all curve fits, while 
the ‘exp5’, ‘gnls’, ‘hill’ and ‘power’ models are chosen most 
often for curves representing positive hitcalls (Fig.  3a). 
The ‘exp5’, ‘gnls’ and ‘hill’ models show similar AC50 and 
ACC estimates to each other and the ‘forced hill’ esti-
mate (Fig.  3b, c). However, the ‘exp2’, ‘poly’, and ‘power’ 
models-accounting for nearly a third of all positive hit-
call fits-show a strong overestimation of ACC and AC50 
and, consequently, more false positive hitcalls. We expect 
this because these models have no true plateau, making 
it challenging to estimate the top of the curve reproduc-
ibly. We conclude that using ’all models’ makes curve fit-
ting less reproducible and reliable than the ‘forced hill’ 

Fig. 3  Bootstrapping results for the different models used in the ‘all models’ setup. (a) Frequency with which each model is chosen 
(i.e., was the ‘winning’ model) across all dose-response curve fits (paler bars) and across fits with a hit probability of > 0.9 . (b) and (c) 
Histogram of the differences between the AC50 (b) and ACC (c) determined with each model and with the ‘forced hill’ method for all cases 
where the designated model was the ‘winning’ model. Models with the largest differences are highlighted in bold in the legend
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method, which also has a biological meaning with recep-
tor-ligand binding.

Bootstrapping is an ideal method to investigate the 
reproducibility of curve fit parameters in detail, however, 
the computational cost is high and thus this could not be 
applied to the entire database. We, therefore, compared 
results from single curve fits with the bootstrap results 
to investigate how well the single curve fits can capture 
the bootstrap results (Figure SF3). The single fits hit-
calls are scattered compared to the fraction of fits in the 
bootstraps (Figure SF3a) and the median hitcall from the 
bootstraps (Figure SF3b), but there is no bias, showing 
that the single fits can adequately predict hitcalls. The 
single fits somewhat underestimate the ACC compared 
to the bootstrap results, and the uncertainty in ACC 
across bootstraps is linearly related to the magnitude of 
the ACC up to an ACC of 100 µM.

Final structure of the toxicity dataset
The final assignments of the 1499 assays in invitroDBv4.1 
are shown in Fig. 4. 596 assays fulfilled the criteria ( ≥ 10 
active and ≥ 100 total cases) to be included in the training 

and validation datasets for MLinvitroTox. 452 assays 
were rejected because they were not cell-based. Non-
cellular assays do not consider kinetic interactions in liv-
ing cells, such as uptake through cell membranes, and 
therefore, their sensitivity cannot be directly compared 
to cellular assays. Background and control assays were 
also dropped on tcpl processing levels 0–3 in invit-
roDB. The 596 selected assays had an average of 2,000 
(median = 1061) chemicals tested per assay. 1.1 million 
valid curve fits were conducted, and 72,561 (6.6%) posi-
tive hitcalls were assigned, averaging 122 positive hitcalls 
per assay. The majority of endpoints had 15 or more con-
centration levels tested.

MLinvitroTox modeling
Out of the 596 selected assay datasets from pytcpl, 
models could be trained for 490 unique assay endpoints. 
A total of 108 assay endpoints were excluded because 
they did not meet the defined minimum population cri-
teria (at least 10 active hits and 100 total training exam-
ples) following the application of cHTS curation pipeline 
steps (removal of ‘QC-omit’ and ‘Flag-omit’ records) 
and partitioning of the data into training, validation, and 

Fig. 4  Summary of the invitroDBv4.1 dataset: a Classification of the 1499 assay endpoints: ’Selected assays’ were finally used for ML. b Histogram 
of the unique concentrations measured in each concentration-response curve. c Histogram of the number of unique compounds tested per assay. 
d Histogram of the number of assays on which each unique chemical was tested. The dataset contains 9559 unique compounds selectively tested 
across 1499 assay endpoints
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test sets. The 490 assay endpoints covered 62 out of 106 
unique mechanistic targets and 31 out of 47 unique ‘MT_
NCIm_term’ terms as defined by the National Toxicology 
Program of the U.S. Department of Health and Human 
Services (NICEATM) [1]. The NICEATM mapping 
aims to link molecular bioactivities in invitroDB to their 
meaningful biological effects. The 62 mechanistic targets 
covered were concatenated into 29 unique shorthand tar-
get annotations to present the modeling and validation 
results concisely. For example, terms such as ’Estrogen 
Receptor Modulation’, ’Estrogen-related Receptor Modu-
lation’, and ’Estrogen Biosynthesis and Metabolism’ were 
collectively assigned to a single target: ’Estrogen Receptor 
(ER)’. Notably, the ‘Cell Processes’ mapping used in the 
current study covered a wide range of cell-related end-
points with a broad spectrum of terms, e.g., ‘Cell Cycle’, 
‘Cell Growth’, ‘Extracellular Matrix Degradation’, ‘Cell 
Morphology’, ‘Malformation’, ‘Proliferation’, and ‘Clot-
ting’. Mechanistic targets and their acronyms are listed in 
Table ST1. 213 out of 490 endpoints did not have a mech-
anistic target annotation. Figure SF4 shows the number 
of endpoints, ranging from 1 to 64, available per mecha-
nistic target.

MLinvitroTox validation
The evaluation of each fine-tuned MLinvitroTox 
model was conducted using three validation sets: Inter-
nal (a test set drawn from the input data), MB structure 
(validation on MassBank compounds using structural 
data), and MB spectra (validation on MassBank com-
pounds using MS2 data) (Fig.  1). Confusion matri-
ces on true positives (correctly predicted active cases), 
false positives (incorrectly predicted active cases), true 

negatives (correctly predicted nonactive cases), and false 
negatives (incorrectly predicted nonactive cases) were 
constructed (Fig.  5). The AUC-ROC (Area Under the 
Receiver Operating Characteristic Curve) was computed 
from the confusion matrices at different thresholds. Dif-
ferent thresholds can be employed to balance the trade-
off between maximizing true positives and minimizing 
false positives, thus tailoring the model towards specific 
goals, such as prioritizing detecting toxic compounds 
or reducing false alarms. An example is shown in Fig. 5, 
where confusion matrices at two distinct thresholds, the 
default 0.5 and a custom threshold based on a cost func-
tion, are visualized along with the corresponding ROC-
AUC curve for the classifier predicting assay endpoint 
‘aeid=1134’ (associated with genotoxicity) validated on 
the ‘Internal’ set. According to the figure, with the default 
threshold, we catch most true positives (90) but misla-
bel 61 nonactive chemicals as active. However, when we 
decrease the threshold to catch additional true positives, 
a 55% increase in TPR results in a 180% increase in FPR, 
which is an example of FPR increasing faster TPR. Similar 
trends were observed across multiple endpoints, leading 
to the default threshold selection to minimize the mis-
classification of nonactive features and avoid unnecessary 
analytical efforts for identification. Confusion matrices at 
four distinct thresholds, along with ROC-AUC and PR-
ROC (precision-recall Receiver Operating Characteristic) 
curves for all assay endpoint/validation sets, are available 
in the Streamlit dashboard provided with the MLinvit-
roTox package. The dashboard also includes a dedicated 
page with comprehensive summary figures to inspect the 
validation results.

Fig. 5  Confusion Matrices and AUC-ROC Curve. Confusion matrices for the classifier of assay endpoint ‘aeid=1134’ (associated with genotoxic 
mechanistic target) validated on the Internal set at the default threshold (green) and the custom threshold to maximize the TPR (yellow). On 
the right, the corresponding AUC-ROC curve (Area Under the Receiver Operating Characteristic Curve) visualizes the changes in true and false 
positive rates with varying thresholds
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A general performance consistency (overall accuracy 
0.89 for ‘Internal’ vs. 0.88 for both ‘MB’ validation sets) 
across all validation sets suggested no overfitting. Dif-
ferences in performance between the ‘Internal’ and ‘MB’ 
sets could be attributed not only to the models’ predic-
tive power in general but also to the varying number of 
cases/chemicals used for evaluation, here referred to as 
total (all), positive (active), and negative (nonactive) sup-
port values. As shown in Figure SF6, the MassBank sets 
had to be evaluated based on fewer support values. This 
resulted from these sets being composed of the overlap 
between invitroDB and MassBank data, which was not 
uniformly distributed across all endpoints or mechanis-
tic targets. The support values used for evaluating the 
models are as crucial as the obtained model performance, 
as the latter can be severely underestimated or overesti-
mated when tested on a small, non-representative sample 
of chemicals. Depending on the structural similarity of 
the validation compounds to the training data, the evalu-
ation metrics can be skewed, leading to an inaccurate 
representation of the model’s unbiased performance on 
unseen data.

Comparing the ‘MB structure’ and ‘MB spectra’ sets 
was crucial to assess the models’ ability to predict bio-
activity from spectra, which is the core objective of the 
MLinvitroTox package. According to the results 
in Fig.  6 and SF5, for most mechanistic targets, ‘MB 
spectra’ performed on par with the ‘MB structure’ set, 
indicating the models’ robustness in predicting activ-
ity from both structural data and MS2 spectra. This 
outcome was supported by the assessment of SIRIUS 
(Figure SF7 in the SI), demonstrating that molecular 
fingerprints derived from MS2 spectra were accurately 
predicted. The overall accuracy of the MLinvitro-
Tox approach was primarily influenced by the perfor-
mance of the activity prediction rather than SIRIUS’s 
capability to generate plausible molecular fingerprints. 
Additional modeling and validation results are shown 
in SI. For example, Figure SF8 shows that endpoints 
with more training data and active chemicals were pre-
dicted more accurately. This outcome was expected, as 
ample training data and diverse examples are standard 
requirements for achieving high performance in ML.

After validation, the fine-tuned ML models were 
retrained on the complete dataset, and the final version 

Fig. 6  Comparison of accuracy (top) and balanced accuracy (bottom) by mechanistic target for ‘Internal’, ‘MB structure’, and ‘MB spectra’ validation 
sets. Endpoints are grouped by their mechanistic target annotation: AR-androgen receptor, AhR-aryl hydrocarbon receptor, ER-estrogen receptor, 
PXR-pregnane X receptor, THR-thyroid receptor, OSR-oxidative stress response, INF-inflammation, CP-Cell Processes, GTX-genotoxicity, NA-Not 
Annotated, i.e., all other endpoints not linked to the mechanistic targets. The number of associated endpoints is shown in parentheses. A box plot 
was drawn for mechanistic targets with at least seven endpoints. Figure SF5 shows the corresponding model performances across all covered 
mechanistic targets
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was released as MLinvitroTox in Python. The package 
can be installed via pip install mlinvitrotox 
[7]. An easy-to-follow tutorial on installing and using 
the package is available [4], which includes download-
ing the final models from Zenodo [6]. Although not all 
490 endpoints performed equally well, we retained all 
of them in the MLinvitroTox package to allow users 
the flexibility to select appropriate endpoints based on 
the provided model performance metrics, contentious 
prediction probabilities, mechanistic target endpoint 
scores, HRMS feature similarity to the training data, 
and metadata from HRMS data processing as well as 
research question, e.g., for comparison of predictions 
with experimental bioassay data. Furthermore, the 
performance will keep improving with the addition of 
more structurally diverse data. This approach ensures 
broad applicability across diverse fields and applica-
tions, catering to specific needs and enhancing the 
package’s utility.

Application on groundwater data
The MLinvitroTox package was applied on ground-
water data previously analyzed and published by Kiefer 
et  al. following the data processing strategy described 
in Sect.  "Environmental application on groundwater". 
A summary of feature detection and filtering is shown 
in Fig.  7. In total, 27,611 features (processed and com-
ponentized signals with unique m/z, RT, and intensity 
values) were detected in the selected samples  (Fig.  7a: 
HRMS features measured)). After background and 
blank removal and filtering based on the presence of 
MS2 spectra, 1254 signals remained. From these 1,254 
signals, molecular fingerprints could be predicted with 

SIRIUS for 874 features: 630 nontarget signals, 185 spec-
tral matches (Tables ST4-ST6, MS1 match, partial MS2 
match to spectral data, confidence level 2a [87 annota-
tions with match score ≥ 0.95] or level 3 [the remaining 
98 annotations] according to Schymanski et  al.) and 59 
target compounds (Table ST3, MS1, MS2, and RT match 
to experimental data, confidence level 1). For the remain-
ing 380 features, the quality of the MS2 spectra was 
insufficient to produce molecular fingerprints. Up to 10 
formulas were predicted for each successfully processed 
spectrum, but only the formula tagged with the highest 
rank in SIRIUS was propagated in the analysis. Despite 
the componentization of features in MZmine, multiple 
adducts per chemical were present in the processed data, 
and, as a result, multiple adducts for the same formula 
could be present in SIRIUS.

The generated SIRIUS folder structure with the 
exported summaries was used as input to MLinvit-
roTox. For the 874 unique features, some with mul-
tiple adducts, the activity probability for the 490 assay 
endpoints modeled in MLinvitroTox were predicted, 
generating 943,792 rows  (Fig.  7b: MLinvitroTox predic-
tions). For features with multiple adducts, the median 
activity probability was calculated across the adducts, 
reducing the number of predictions to 428,260 unique 
feature/endpoint pairs. Out of those, around 4% (16,400) 
were active based on a threshold of 0.5. In addition to 
continuous and binarized activities per feature/endpoint, 
MLinvitroTox generates model performance metrics, 
the similarity of the feature to the chemical space used 
for training, the number of endpoints associated with a 
particular mechanistic target (endpoint_count); and the 
strength of effect toward a particular mechanistic target 

Fig. 7  Prioritization of the groundwater NTS data in numbers. The step-wise approach with counts for (a) HRMS features measured (features 
detected, features processed by MZmine with MS2 spectra, features for which SIRIUS could predict fingerprints, and then the tentative spectral 
and target matches and the remaining nontargets (NTS); (b) MLinvitroTox predictions (total predictions, predictions for unique features 
concatenated after adduct, bioactive features differentiated in nonbioactive NTS features, tentative spectral, and target matches), and (c) Bioactive 
relationships per mechanistic target: distribution of the 16,400 active feature/endpoint pairs across mechanistic targets. 9540 active relationships 
did not have an assigned mechanistic target. Table ST1 explains the mechanistic target acronyms
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(endpoint_score, calculated as the number of assays in 
which a feature was called active divided by the num-
ber of endpoints in which the feature was tested for that 
target).

Out of the 7055 predictions, which could be confirmed 
with experimental data from invitroDBv4.1, 120 (53 
for targets and 67 for spectral matches) were correctly 
labeled as active. Additionally, 6791 nonactive relation-
ships were correctly assigned. In contrast, 56 nonactive 
relationships were mislabeled as active, 88 active rela-
tionships were mislabeled as nonactive (correspond-
ing to accuracy and balanced accuracy of 0.98 and 0.78, 
respectively). Of the 16,400 active predictions, 1982 
were for targets, 3074 for spectral matches, and 11,344 
for NTS, respectively. They were distributed unevenly 
across the covered mechanistic targets  (Fig.  7c: Bioac-
tive relationships per mechanistic target). Most belonged 
to the category ‘NA’ (9540 active predictions across 204 
endpoints without mechanistic target annotations), ‘NT’ 
(‘Neurotransmission’, 1793 active predictions for 19 assay 
endpoints), ‘CP’ (‘Cell Processes’, 1376 active predic-
tions across 64 endpoints), and ‘ER’ (‘Estrogen Recep-
tor’, 1350 active predictions for 32 assay endpoints). The 
list of active predictions can be further narrowed by fil-
tering according to specific assay endpoint, model per-
formance metrics, activity probability, HRMS signal’s 
similarity to the training data, and endpoint scores. An 
example is demonstrated in Fig.  8, where the 16,400 
active relationships have been grouped by mechanistic 

target and visualized in Venn diagrams showing the over-
lap between the features with high probability (HP ≥ 
0.7), high similarity (HS ≥ 0.7), and high endpoint score 
(HES ≥ 0.5). In each case, the initial number of prior-
itized features could be reduced by orders of magnitude 
for overlapping categories. The use of similarity score has 
an additional potential application as features with very 
high similarity scores (HS ≥ 0.90) can either be directly 
matched to the training data or used indirectly to help 
elucidate the features’ structure by comparing it to the 
closely resembling training chemical, thus resulting in a 
fast-track identification with small effort based on MS2. 
In the analyzed groundwater data, 65 features had such 
high similarity scores. Using endpoint scores for prioriti-
zation is particularly meaningful for mechanistic targets 
resembling endpoints such as receptor-based assays. For 
targets such as ‘Cell Processes’ covering a wide range of 
cellular reactions, endpoint scores are less meaning-
ful. In addition to the applied probability, similarity, 
and endpoint scores, prioritization can be tailored to 
research-specific outcomes by filtering based on model 
validation performance, selecting specific endpoints with 
corresponding experimental data, and leveraging meta-
data from the HRMS analysis, such as peak intensity and 
quality, tentative identification confidence, spectral score 
quality, statistical trends, and mass accuracy. The appli-
cation demonstrated in this work serves as an illustrative 
example, and a more in-depth analysis was beyond the 
scope of this study.

Fig. 8  Venn diagrams of the score-based prioritization of active predictions for the groundwater data according to 10 selected mechanistic targets. 
Each figure shows the overlap between the number of features with high activity probability (HP ≥ 0.7, blue), high similarity to the training data (HS 
≥ 0.7, yellow), and high endpoint similarity (HES ≥ 0.5, red) per mechanistic target from the initial pool of 16,400 active predictions. The light-green 
zone shows the number of predictions fulfilling all three criteria. The number of input predictions (shown in the parentheses beside the mechanistic 
target acronym) was reduced by around one order of magnitude for each target. Active predictions, which do not fulfill any of the conditions, were 
not shown. Table ST1 explains the mechanistic target acronyms
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Conclusions and outlook
Package
MLinvitroTox is an open-source Python package 

designed to provide an automated high-throughput pipe-
line for a hazard-driven prioritization of toxicologically 
relevant signals among tens of thousands of HRMS sig-
nals commonly found in complex environmental samples 
via nontarget screening. This prioritization aids further 
elucidation and analytical confirmation  of NTS features 
in typical HRMS/MS analysis. In addition to its core 
functionality of predicting bioactivity from molecular 
fingerprints computed from MS2 spectra, MLinvitro-
Tox can perform tasks such as standardizing molecular 
structures, generating molecular fingerprints, predict-
ing bioactivity from structures (SMILES), and extract-
ing SIRIUS output. MLinvitroTox can be applied with 
default settings described in Sect. "Methods" and demon-
strated in Sect.  "Application on groundwater data", or it 
can be retrained with custom data (user’s data or invit-
roDB reprocessed using pytcpl), modified input data 
processing steps (e.g., without removal of QC-omit or 
Flag-omit records), adapted feature selection (based on 
correlation and variability thresholds instead of random 
forest), and customized modeling parameters (hyper-
parameter tuning grid, cross-validation settings, train-
test split ratio, oversampling). The reader is referred to 
the MLinvitroTox documentation for the full set of 
options.

Bioactivity is not toxicity
MLinvitroTox is a novel tool for identifying poten-

tially toxic chemicals across 490 assay endpoints from 
invitroDB. MLinvitroTox can be used as a prioritiza-
tion tool for experimental testing and should not be used 
directly as a measure of toxicity. While using in vitro 
data allows for broader coverage of potentially harm-
ful effects, it comes at the cost of reduced interpretabil-
ity, as an active prediction does not necessarily indicate 
general toxicity. To enhance interpretability, predictions 
from MLinvitroTox should be considered within the 
context of broader mechanistic targets, such as those 
developed by NICEATM, which map activities in invit-
roDB to their relevant biological effects. Furthermore, 
additional mechanistic information from AOP-Wiki [2] 
connects individual endpoints from in vitro bioassays to 
over 300 signaling pathways linked to nearly 400 Adverse 
Outcome Pathways (AOPs). This integration helps bridge 
the gap between molecular events observed at the cel-
lular level and adverse effects at the organ or organism 
level, thereby enhancing the relevance of predictions in 
environmental analysis.

Binary classification for prioritization
MLinvitroTox was developed as a tool for prioriti-

zation, opting for the classification of features as active/

nonactive within the tested concentration range rather 
than quantifying the effects through regression by pre-
dicting potency estimates (e.g., AC50 or EC50). While 
considering dose is crucial in toxicity evaluation-after all, 
“the dose makes the poison” (Paracelsus)-we chose a clas-
sification strategy within a well-defined concentration 
range in which the endpoint models were trained. This 
approach helps to avoid potential misinterpretation of 
quantitative effects and the uncertainties associated with 
them. Although the exact concentration range in invit-
roDB varies by assay endpoint and chemical pair, typical 
doses in dose-response curves generally fall between 0.1 

Table 1  Performance comparison between MLinvitroTox 
v1 and MLinvitroTox v2

Balanced accuracy for 29 mechanistic targets on the ‘MB spectra’ validation 
set. Each value represents the best-performing endpoint for the respective 
mechanistic target

Target v1 v2
Increased performance

AR 0.62 0.87

CP 0.66 0.69

GC 0.76 0.89

NR 0.58 0.72

NRC 0.59 0.60

OSR 0.60 0.65

P4 0.70 0.92

XNR 0.51 0.63

Decreased performance

AA 0.69 0.63

ER 0.85 0.80

GTX 0.77 0.71

INF 0.83 0.68

THR 0.78 0.60

Newly introduced targets in v2

AhR – 0.56

AN – 0.58

APO – 0.70

FXR – 0.62

IM – 0.64

LXR – 0.60

MF – 0.69

NIS – 0.50

PPARG​ – 0.65

PR – 0.59

PXR – 0.69

RAR​ – 0.64

ROR – 0.56

RXR – 0.73

TF – 0.67

TRH – 0.59
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and 100 µ M. In aquatic toxicology, chemicals with LC50 
values greater than 100 mg/L (equivalent to 200 µ M for a 
compound with a molecular weight of 500 Da) are con-
sidered nontoxic [22].

Performance and comparison to MLinvitroTox v1
The substantial modifications between the proof of 

concept release [5] and MLinvitroTox v2, including 
changes in data volume, expanded coverage of mecha-
nistic targets, utilization of diverse evaluation metrics, 
and differences in the number of chemicals assessed, 
make a direct one-to-one comparison challenging. How-
ever, examining the balanced accuracy for each mecha-
nistic target reveals that MLinvitroTox v2 maintains 
consistent performance across most targets compared 
to MLinvitroTox v1. Despite the implementation of 
stricter toxicity data processing measures-such as qual-
ity filtering, enforcing toxicologically meaningful data 
fitting, outlier removal, and consistent cytotoxicity 
assessment-resulting in fewer training examples, particu-
larly in positive hitcalls per assay endpoint, the updated 
model continues to predict toxicity from MS2 spectra 
robustly. Table  1, which presents the balanced accuracy 
metrics for the top-performing assay endpoints across 
29 mechanistic targets covered by MLinvitroTox v2, 
demonstrates that the updates in data, along with refine-
ments in data preprocessing and model fitting, have led 
to significant performance improvements for numerous 
targets, such as AR (from 0.62 to 0.87), GC (from 0.76 to 
0.89), and P4 (from 0.70 to 0.92). Conversely, some tar-
gets have minor decreases, including ER (from 0.85 to 
0.80) and GTX (0.77 to 0.71). Significantly, MLinvit-
roTox v2 expands its coverage to a broader spectrum of 
mechanistic targets, introducing 17 new targets such as 
RXR (0.73), TF (0.67), and PPARG (0.65), thereby further 
enhancing the model’s utility in environmental analysis.

Compared to state-of-the-art tools for bioactivity 
prediction from structure, such as deepFPlearn+ [64], 
MLinvitroTox performs strongly, achieving median 
accuracies of 0.93 for AR and 0.92 for ER, compared to 
0.87 and 0.84, respectively (based on the internal valida-
tion set). MS2Tox [57] is the only methodology based on 
MS2 spectra as input; however, direct benchmarking is 
not feasible, as MS2Tox predicts in  vivo toxicity rather 
than bioactivity.

Applicability
An informative training set that accurately represents 

the chemical applicability domain of an ML model is a 
crucial prerequisite for its broad applicability. Although 
the ToxCast/Tox21 collection is the most comprehensive 
toxicity dataset available to date and is considered struc-
turally diverse in terms of its size and range of structures 
[42], MLinvitroTox models were trained with at most 
8000 chemicals. The models trained on a constrained 

chemical space cannot be applied to the 100 million 
chemicals known today or the billions of possible chemi-
cals. Although the validation process in this and other 
well-structured ML pipelines is designed to assess how 
the models will perform on previously ‘unseen’ struc-
tures, the chemical applicability domain must be care-
fully considered. MLinvitroTox can only be expected 
to classify HRMS signals that closely resemble the train-
ing data. With the current coverage of toxicity databases, 
predicting the activity of truly novel and chemically dis-
tinct chemicals is not achievable.

Furthermore, it was not surprising that MLinvit-
roTox performed better at classifying nonactive cases, 
for which there were orders of magnitude more train-
ing examples available. In contrast, the sparsity of 
active training examples relative to the vast chemical 
space leads to insufficient chemical ‘resolution’, result-
ing in decreased performance for identifying bioactive 
chemicals. Prioritization of active HRMS features is an 
optimization function that maximizes true positives 
while minimizing false positives. As more extensive and 
diverse bioactivity and toxicity data become available, 
the models will continue to improve, expanding their 
applicability domain and enhancing predictive power. 
Since analytical verification is necessary post-MLin-
vitroTox, a manageable number of false negatives 
and positives are acceptable as long as most nonactive 
cases are correctly labeled and discarded. While trade-
offs have to be accepted and the applicability may be 
constrained, the advantage of MLinvitroTox remains 
evident: MLinvitroTox aids in finding HRMS fea-
tures that are toxicologically meaningful without the 
need for prior identification. A comprehensive risk 
assessment still requires complete structural identifi-
cation, quantification, and toxicity testing of the prior-
itized features.
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