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Abstract Accurate prediction of drug–target interactions is critical for advancing drug discovery. By reducing 
time and cost, machine learning and deep learning can accelerate this laborious discovery process. In a novel 
approach, BarlowDTI, we utilise the powerful Barlow Twins architecture for feature-extraction while considering 
the structure of the target protein. Our method achieves state-of-the-art predictive performance against mul-
tiple established benchmarks using only one-dimensional input. The use of our hybrid approach of deep 
learning and gradient boosting machine as the underlying predictor ensures fast and efficient predictions with-
out the need for substantial computational resources. We also propose the use of an influence method to investi-
gate how the model reaches its decision based on individual training samples. By comparing co-crystal structures, 
we find that BarlowDTI effectively exploits catalytically active and stabilising residues, highlighting the model’s 
ability to generalise from one-dimensional input data. In addition, we further benchmark new baselines 
against existing methods. Together, these innovations improve the efficiency and effectiveness of drug–target 
interactions predictions, providing robust tools for accelerating drug development and deepening the under-
standing of molecular interactions. Therefore, we provide an easy-to-use web interface that can be freely accessed 
at https:// www. bio. nat. tum. de/ oc2/ barlo wdti.

Scientific contribution Our computationally efficient and effective hybrid approach, combining the deep learn-
ing model Barlow Twins and gradient boosting machines, outperforms state-of-the-art methods across multiple 
splits and benchmarks using only one-dimensional input. Furthermore, we advance the field by proposing an influ-
ence method that elucidates model decision-making, thereby providing deeper insights into molecular interactions 
and improving the interpretability of drug-target interactions predictions.
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Graphical Abstract

Introduction
Studying drug-target interactions (DTI) is crucial for 
understanding the biochemical mechanisms that govern 
how molecules interact with proteins [1]. Key challenges 
in drug discovery are the identification of proteins that 
can be used as targets for the treatment of diseases [2]. 
To achieve the desired therapeutic effects, the discovery 
of molecules that interact with and activate or inhibit tar-
get proteins is essential [3–5].

Recent advances in computational methods have trans-
formed the drug discovery landscape, providing robust 
tools for cost-effective exploration of the chemical space. 
These in silico approaches facilitate the prediction and 
analysis of drug-target interactions, aiding in the identifi-
cation of potential drug candidates and their correspond-
ing protein targets [6–11]. The use of computational 
techniques allows researchers to gain a comprehensive 
understanding of the molecular mechanisms underlying 
drug-target interactions, thereby accelerating the drug 
discovery process and minimising reliance on traditional, 
resource-intensive experimental methods [12, 13]. Dif-
ferent methods have been used to understand how drugs 
interact with target proteins. These methods are grouped 
into three main categories: structure-agnostic, structure-
based and complex-based.

Structure-agnostic approaches use one-dimensional 
(1D) representations like molecule simplified molecular-
input line-entry system (SMILES) strings and protein 
amino acid sequences, graphs, or two-dimensional (2D) 
representations like predicted contact maps [14–17]. 
These methods are cost-effective and sufficiently accurate 
compared to experimental or in silico structure predic-
tion [18], as they are independent of the protein’s struc-
ture when predicting effects.

Structure-based approaches require three-dimensional 
(3D) protein structures and 1D or 2D molecular inputs. 
3D structures are usually derived from experimental 

data, although computational predictions are increas-
ingly employed [19–23]. These methods have great 
potential but can be unreliable. They depend on accurate 
3D protein structures and may be limited in their abil-
ity to generalise beyond experimentally observed DTIs 
[24]. Due to the complexity of the experimental setup, 3D 
protein structures can be difficult to obtain. In addition, 
models often overlook the fact that proteins are not rigid 
structures, but are generally in motion, e.g., ligand bind-
ing induces a conformational change [20, 22, 23].

Finally, complex-based approaches require protein–
ligand co-crystal structures, which additionally require 
3D information, as well as protein interaction informa-
tion about the ligand [25]. For this reason, complex-
based approaches can provide a more detailed insight 
into the interactions, but they are by far the most difficult 
to obtain data for.

Considering these different approaches, we designed 
BarlowDTI  as a fully data-driven, sequence-based 
approach that relies on SMILES and amino acid 
sequences as the most accessible data, avoiding costly 
and time-consuming experimental data such as crystal 
structures. Additionally, we use a specialised bilingual 
protein language model (PLM) to embed the 1D amino 
acid sequence, which uses a 3D-alignment method that 
results in a “structure-sequence” representation [26, 27]. 
This approach makes BarlowDTI  input data structure-
agnostic, yet benefits from “structure-sequence” PLM 
embeddings. Unlike most other methods, we have devel-
oped a system that uses a hybrid “best of both worlds” 
machine learning (ML) and deep learning (DL) approach 
to improve drug-target interactions prediction perfor-
mance in low data regimes where training data is lim-
ited [28, 29]. We have found that DL architectures such 
as Barlow Twins [30, 31] are excellent at learning repre-
sentations [29] that can then be used for gradient boost-
ing machine (GBM) training to achieve state-of-the-art 
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performance, as the size of datasets is usually too small to 
reliably train a DL model that will perform competitively.

To overcome the limitation of data scarcity, we built 
 BarlowDTIXXL, which is trained on millions of curated 
drug-target interactions pairs [32], to apply the model 
to real-world examples, as we have done in case studies. 
Here,  BarlowDTIXXL  captures the correlation between 
experimentally determined affinities and the predicted 
likelihood of interaction, proving our approach use-
ful in drug discovery settings. By comparing co-crystal 
biochemical structures and their active sites, we also 
investigate and explain how  BarlowDTIXXL arrives at its 
decision. We conduct our investigation by employing 
an influence method and adapting it in a novel way to 
identify the most important training DTIs [33]. We also 
assess whether  BarlowDTIXXL can identify ligand binding 
sites. Additionally, we evaluate its performance in virtual 
screening experiments, focusing on early detection of 
hit molecules. This work culminates in a freely available 
web interface that takes 1D input of molecule and protein 
information and predicts the likelihood of interaction.

Results and discussion
BarlowDTI design
We propose a novel method for predicting DTIs using 
SMILES notations, primary amino acid sequences, 
both 1D, and annotated interaction properties. Bar-
lowDTI  relies on several key components, visualised in 
Fig. 1: 

1. Firstly, the input needs to be vectorised. We investi-
gate all combinations of several molecular and amino 
acid representations, and selected the best perform-
ing pair of modality representations (Additional file 1: 
Table  S3). This is achieved by converting SMILES 
into extended-connectivity fingerprint (ECFP). Fur-
thermore, we process amino acid sequences with a 
PLM that uses both modalities, combining 1D pro-
tein sequences and 3D protein structure [26].

2. Secondly, we teach the self-supervised learning (SSL) 
based Barlow Twins model interaction of molecule 
and protein [30, 31]. The objective function imple-
ments invariance of both representations of one 
interaction while ensuring non-redundancy of the 
features [30, 31].

3. Finally, BarlowDTI  takes a combination of embed-
dings generated by the encoders from the Barlow 
Twins DL model and uses them as features to train a 
GBM based on the interaction annotations [28]. This 
approach exploits two key strengths: it uses DL to 
refine representations, and it leverages the power of 
machine learning in scenarios with limited data. This 
is particularly relevant for current drug–target inter-

actions benchmarks/datasets, where only around 
50000 annotated pairs are publicly available [34–37]. 
Consequently, we propose  BarlowDTIXXL  which is 
trained on more than 3600000 curated drug-tar-
get interactions pairs, additionally sourced from 
PubChem and ChEMBL [38, 39], to obtain generalis-
ability in real-world scenarios [32].

Benchmark selection
We selected a comprehensive set of literature-based 
benchmarks to evaluate the performance of Bar-
lowDTI  against several leading methods. The bench-
marks considered in this study are derived from several 
key sources. These sources include biomedical networks 
[34], the US patent database [35], and data detailing the 
interactions of 72 kinase inhibitors with 442 kinases, 
representing over 80  % of the human catalytic protein 
kinome [36], as well as a collection of binding affinities 
for the protein–ligand complexes in the Protein Data 
Bank [40]. These datasets provide DTIs as pairs of mol-
ecules and amino acid sequences, each coupled to an 
interaction annotation.

To ensure a fair comparison, BarlowDTI was retrained 
across all benchmarks. Finally, we assessed the model’s 
performance in a binary classification as well as regres-
sion setting, where the task is to distinguish between 
interacting and non-interacting drug–target pairs:

• We compared BarlowDTI with a total of seven estab-
lished drug-target interactions classification models: 
the model by Kang et al. (1D structure-agnostic) [41], 
MolTrans (1D substructure-based) [42], DLM-DTI 
(1D structure-agnostic) [17], ConPLex (1D struc-
ture-agnostic) [43], DrugBAN (2D structure-agnos-
tic) [44], PSICHIC (2D structure-agnostic),[16] and 
STAMP-DPI (2D structure-based) [45]. For instance, 
Kang et al. fine-tuned a large language model (LLM) 
based on amino acid sequences [41]. MolTrans uses 
an efficient transformer architecture to increase the 
scalability of the model [42]. DLM-DTI introduced 
a dual language model approach combined with 
hint-based learning to improve prediction accuracy 
[17]. ConPLex leveraged contrastive learning to bet-
ter understand DTIs [43], while DrugBAN focused 
on interpretable attention mechanisms that provide 
insights into the interaction process [44]. PSICHIC 
utilised physicochemical properties to predict inter-
actions more accurately [16], and STAMP-DPI incor-
porated structure-aware, multi-modal learning to 
enhance its predictive capabilities [45]. Overall, we 
evaluated our architecture against the various model 
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implementations. These models have demonstrated 
state-of-the-art performance in benchmarks.

• This comparison is performed on a total of four 
classification datasets with twelve predefined liter-
ature-proposed splits: 4 × BioSNAP [16, 34, 41], 4 
× BindingDB [16, 35, 41], 1 × DAVIS [36, 41] and 3 
× Human [16, 42]. In addition, regression perfor-
mance is evaluated on the benchmarks PDBBind 
v2016 and v2020.[25, 46–48] Our aim is to investi-
gate the behaviour of different methods in diverse 
splitting scenarios, where a whole dataset is split 

into model training, validation, and evaluation 
subsets. These predefined splits help us to assess 
how well models generalise under challenging 
evaluation conditions, for example where either 
the drug or the target has not been seen before, 
thus providing insight into their real-world appli-
cability. A detailed analysis of all benchmarks can 
be found in the Supporting Information “Dataset 
analysis”.

• In addition, we investigated the addition of a more 
rigorous model baseline. The GBM XGBoost is 
known to be one of the best models, e.g. in quanti-

Fig. 1 BarlowDTI architecture. Drug and target serve as 1D input, where they are processed and converted into vectors. Molecules are provided 
as SMILES and converted to ECFP. On the other hand, the primary amino acid sequence is vectorised using a bilingual 3D structure-aware 
PLM. The Barlow Twins architecture learns to understand drug-target interactions. The objective function forces both representations 
of the drug-target interactions to be as close as possible to the unity matrix. Finally, this DL model is used as a feature-extractor and a GBM is trained 
on the embeddings and the interaction label. The GBM is then used as the predictor



Page 5 of 14Schuh et al. Journal of Cheminformatics           (2025) 17:18  

tative structure-activity relationship (QSAR) tasks, 
often outperforming DL-based approaches [49–51].

BarlowDTI shows state‑of‑the‑art performance 
in predicting DTIs
 We assessed the performance of BarlowDTI  in binary 
classification across four distinct datasets, each employ-
ing different data splitting procedures. For each data-
set, we predicted whether drug–target pairs in the 
predefined test subset interact or not. We then statisti-
cally evaluated these predictions by comparing them to 
the actual outcomes provided in the benchmark test 
set, using the metrics receiver operating characteristic 
area under curve  (ROC AUC) and precision recall area 
under curve (PR AUC). Overall, BarlowDTI significantly 
outperforms all other models in Fig.  2a and Tables  1 
and Additional file  1: Table  S5. Looking at BioSNAP, 
we improve 6  % over the leading method DLM-DTI in 
terms of PR AUC. Furthermore, as shown in Table 2 Bar-
lowDTI again outperforms the PSICHIC method with a 
7 % PR AUC improvement independent of the split.

When switching to BindingDB, BarlowDTI  signifi-
cantly outperforms DLM-DTI in terms of PR AUC 
with a >14  % improvement (Table  1). Investigating the 

Table 1 Benchmarking BarlowDTI against other models using 
Kang et al. splits [41]

Performance was evaluated against three established benchmarks, and 
the mean and standard deviation of the performance of five replicates are 
presented. Results per benchmark that are both the best and statistically 
significant (Two-sided Welch’s t-test [52, 53], α = 0.001 with Benjamini-Hochberg 
[54] multiple test correction) are highlighted in bold

Dataset Model ROC AUC PR AUC 

BioSNAP BarlowDTI 0.9599 ± 0.0004 0.9670 ± 0.0004
XGBoost 0.9142 0.9229

MolTrans [42] 0.895 ± 0.002 0.901 ± 0. 004

Kang et al. [41] 0.914 ± 0.006 0.900 ± 0.007

DLM-DTI [17] 0.914 ± 0.003 0.914 ± 0.006

ConPLex [43] – 0.897 ± 0.001

BindingDB BarlowDTI 0.9364 ± 0.0003 0.7344 ± 0.0018
XGBoost 0.9261 0.6948

MolTrans [42] 0.914 ± 0.001 0.622 ± 0.007

Kang et al. [41] 0.922 ± 0.001 0.623 ± 0.010

DLM-DTI [17] 0.912 ± 0.004 0.643 ± 0.006

ConPLex [43] – 0.628 ± 0.012

DAVIS BarlowDTI 0.9480 ± 0.0008 0.5524 ± 0.0011
XGBoost 0.9285 0.4782

MolTrans [42] 0.907 ± 0.002 0.404 ± 0.016

Kang et al. [41] 0.920 ± 0.002 0.395 ± 0.007

DLM-DTI [17] 0.895 ± 0.003 0.373 ± 0.017

ConPLex [43] – 0.458 ± 0.016

Table 2 Benchmarking BarlowDTI against other models using 
Koh et al. splits [16]

Performance was evaluated against three established benchmarks, and the 
mean of the BarlowDTI performance of five replicates are presented. All 
other metrics are taken from Koh et al. Best result per benchmark and split is 
highlighted in bold. Koh et al. does not present replicates or sample-correlated 
predictions [16]

Dataset Split Model ROC AUC PR AUC 

BioSNAP Unseen protein BarlowDTI 0.9572 0.9679

DrugBAN [16, 44] 0.7327 0.7971

PSICHIC [16] 0.8819 0.9071

STAMP-DPI [16, 45] 0.8372 0.8738

XGBoost 0.8506 0.8794

Random split BarlowDTI 0.9718 0.9755

DrugBAN [16, 44] 0.9089 0.9159

PSICHIC [16] 0.9246 0.9226

STAMP-DPI [16, 45] 0.8993 0.9056

XGBoost 0.9146 0.9242

Unseen ligand BarlowDTI 0.9666 0.9706

DrugBAN [16, 44] 0.8775 0.8843

PSICHIC [16] 0.9019 0.9030

STAMP-DPI [16, 45] 0.8902 0.8915

XGBoost 0.8909 0.9026

BindingDB Unseen protein BarlowDTI 0.6939 0.5791

DrugBAN [16, 44] 0.6523 0.5295

PSICHIC [16] 0.7537 0.6241

STAMP-DPI [16, 45] 0.6828 0.5735

XGBoost 0.6460 0.5233

Random split BarlowDTI 0.9640 0.9513

DrugBAN [16, 44] 0.9640 0.9539

PSICHIC [16] 0.9503 0.9280

STAMP-DPI [16, 45] 0.9318 0.9085

XGBoost 0.9582 0.9462

Unseen ligand BarlowDTI 0.9456 0.9263

DrugBAN [16, 44] 0.9409 0.9188

PSICHIC [16] 0.9264 0.8975

STAMP-DPI [16, 45] 0.9027 0.8683

XGBoost 0.9374 0.9141

Human Unseen protein BarlowDTI 0.9630 0.9693

DrugBAN [16, 44] 0.9298 0.9417

PSICHIC [16] 0.9503 0.9595

STAMP-DPI [16, 45] 0.8563 0.8748

XGBoost 0.8961 0.9171

Random split BarlowDTI 0.9917 0.9905

DrugBAN [16, 44] 0.9841 0.9753

PSICHIC [16] 0.9861 0.9840

STAMP-DPI [16, 45] 0.9659 0.9582

XGBoost 0.9813 0.9782

Unseen ligand BarlowDTI 0.9346 0.9348

DrugBAN [16, 44] 0.9459 0.9387

PSICHIC [16] 0.9500 0.9371

STAMP-DPI [16, 45] 0.9156 0.8980

XGBoost 0.9391 0.9337
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BindingDB splits shows that BarlowDTI  outperforms 
all existing methods when looking at unseen ligands, 
matches the ROC AUC performance of DrugBAN in the 
random setting and becomes second best in the unseen 
protein split (Table 2). Overall, BarlowDTI performs best 
in two out of four splits in this benchmark.

BarlowDTI  once again outperforms all of the estab-
lished approaches when looking at the DAVIS bench-
mark, with a 21  % improvement over the leading 
ConPLex model in terms of PR AUC (Table 1).

Furthermore, we evaluated the performance on 
the Human benchmark. BarlowDTI  shows the best 

performance when looking at the unseen protein split as 
well as the random split (Table 2). PSICHIC comes first 
in the unseen ligand setting, when looking at ROC AUC, 
while DrugBAN is best in PR AUC. In summary, Bar-
lowDTI outperforms all other models in two out of three 
splits.

Lastly, BarlowDTI  and XGBoost regression perfor-
mance was determined on two regression benchmarks: 
PDBBind v2016 and v2020 (Additional file 1: Tables S4 
and S8) [25, 46–48]. Overall, BarlowDTI demonstrates 
competitive regression performance, ranking third on 
PDBBind v2016 and second on PDBBind v2020 among 

Fig. 2 A comparison of the performance of methods established in the literature. a The state-of-the-art performance of BarlowDTI in terms of PR 
AUC was visualised in comparison to other models (for metrics and their statistics refer to Table 1). b The change in performance was examined 
as key elements of the BarlowDTI architecture were incrementally removed. Ablations are denoted as Abl. 1, 2 and 3. c The newly introduced model 
baseline, XGBoost, was compared with other established methods. A per dataset and split difference in PR AUC was calculated based on BarlowDTI 
in (b) performance or the baseline model in (c). The overall change was investigated for statistical significance (****p < 0.0001 , two-sided Welch’s 
t-test [52, 53], with Benjamini-Hochberg [54] multiple testing correction)
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twelve literature-known models (Supporting Informa-
tion “Regression performance”). XGBoost places third 
and fourth, still putting our proposed baseline ahead of 
two-thirds of all methods.

We looked at the architecture and its components, 
removing one at a time and measuring the effect on 
performance to investigate why BarlowDTI  outper-
forms other methods in various benchmarks.

Unravelling the performance contributions 
of the BarlowDTI architecture
 To investigate the impact of each element of the Bar-
lowDTI architecture, we removed them one at a time. We 
have done this across all baselines and splits with the fol-
lowing ablations: 

1. We removed the hyperparameter optimisation step 
of the BarlowDTI classifier (Fig. 2b Abl. 1).

2. From the first removal, we replaced the Barlow Twins 
architecture entirely and instead concatenate ECFP 
and PLM embeddings for training (Fig.  2b Abl. 2). 
We kept the hyperparameter optimisation procedure 
as in BarlowDTI.

3. Finally, we removed the hyperparameter optimisa-
tion procedure from the previous ablation, analogous 
to the first modification (Fig. 2b Abl. 3).

We observe a significant decline in performance, as illus-
trated in Fig.  2b and Additional file  1: Table  S6 for the 
initial ablation, emphasising the crucial role of hyper-
parameter optimisation for achieving optimal model 
performance.

The second ablation also indicates a significant reduc-
tion in performance. However, for the DAVIS bench-
mark, the optimised GBM demonstrated surprisingly 
strong performance. We hypothesise that this may result 
from the hyperparameter search potentially leading to 
overfitting on the test set. This would be consistent with 
the improvement from the third ablation experiment to 
the first experiment comparing the two non-optimised 
model variants. On the whole, model performance is 
likely attributed to the DL architecture based on the SSL 
Barlow Twins model, which effectively learns embed-
dings to describe DTIs. The Barlow Twins objective pro-
motes orthogonality between drug and target modalities 
while ensuring the non-redundancy of both, thus pre-
venting informational collapse. As a result, this leads to 
an overall state-of-the-art predictive performance.

The final ablation shows a further decline in perfor-
mance, consistent with the results of the initial ablation 
experiment.

In summary, the sustained reduction in performance 
of our ablation experiments demonstrates that each 

component of our BarlowDTI pipeline is needed to max-
imise performance. This architecture integrates the “best 
of both worlds”: DL and GBM to enhance predictive 
performance. Compared to other pure machine learn-
ing- or DL-based approaches, we can demonstrate a per-
formance boost. In particular, the use of a state-of-the-art 
PLM [26] could offer an advantage over other methods. 
Other PLM variants are ProtTrans [55] in ConPLex [43] 
and ProtBERT proposed by Kang et al. also used in DLM-
DTI [41]. The structural awareness of BarlowDTI added 
by the inclusion of 3D-alignment in ProstT5 [26] hints 
towards better generalisation capabilities, yielding 
increased performance.

Choosing baseline models
Selecting an appropriate baseline model is critical to 
effectively comparing different machine learning and DL 
techniques. Robust baselines are the basis for meaning-
ful comparisons and highlight improvements from new 
methods. Without appropriate baselines, it becomes dif-
ficult to determine whether new approaches are truly 
advancing the field.

Current leading drug-target interactions models pre-
dominantly use DL methods and are often evaluated 
against simple baseline models such as logistic regres-
sion, ridge or deep neural network (DNN) classifiers [42, 
43]. To improve the benchmarking process, we propose 
to add GBMs as a baseline for drug-target interactions 
benchmarking purposes, as shown in the final abla-
tion configuration. GBMs such as XGBoost have dem-
onstrated broad adaptability, e.g. in QSAR modelling, 
offering strong predictive performance and fast training 
times, particularly in scenarios with limited data avail-
ability, such as drug-target interactions prediction.

We compared the overall model performance across all 
datasets in Fig. 2c and Tables 1, 2, and Additional file 1: 
Tables S4, S7, and S8. Here, the performance of XGBoost 
trained on ECFP and PLM embeddings is highlighted as 
it shows competitive performance across all methods and 
datasets.

Demonstration of the capabilities of  BarlowDTIXXL
 To use BarlowDTI  in real-world applications, more 
training data is needed to predict meaningful interac-
tions. For this purpose, we have built  BarlowDTIXXL, 
which is trained on more than 3600000 curated drug-tar-
get interactions pairs [32]. We have kept the same model 
design to ensure the comparability and performance of 
our hybrid approach. We looked at several co-crystal 
structures as case studies to provide insight into the pos-
sibilities using  BarlowDTIXXL. In order to demonstrate 
the ability to generalise beyond the learnt DTIs, we eval-
uated our approach on structures which are not part of 
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the training set. Our aim is to demonstrate the applicabil-
ity of the model to multiple structures and affinities, as in 
the study performed by Dienemann et al. The importance 
of this work is further emphasised by its relevance to the 
malaria-causing parasite Plasmodium falciparum [56].

We first analysed the co-crystal structures Plasmodium 
falciparum lipoate protein ligase 1 LipL1 (5T8U) and 
Listeria monocytogenes lplA1 (8CRI), which share a low 
sequence identity (28.7  %) despite their structural simi-
larity. Our objective is to evaluate the model’s ability to 
generalise, particularly when only 1D input is provided. 
This evaluation focuses on the model’s performance in 
capturing both biological function and structural attrib-
utes under these conditions. Secondly, we examined 
the predictive shifts induced by ligand methylation and 
explored the interaction dynamics of a novel enzyme 
inhibitor C3 (8CRL). This case study is further enriched 
with  isothermal titration calorimetry (ITC) data [56], 
offering insights into the ligand’s affinity towards the tar-
get proteins.

Our results indicate, that  BarlowDTIXXL is able to accu-
rately predict the correlation between the experimentally 
determined affinity measured via ITC and the likelihood 
of the DTI (Fig.  3b). These capabilities provide useful 
insight in the drug discovery process, as researchers are 
able to prioritise chemical scaffolds.  BarlowDTIXXL  is 
able to catch small changes in the ligands structure and 
accurately predict the shift in interaction likelihood. This 
is illustrated by the methylation of LA, where our method 
predicts a significant decrease in interaction likelihood, 
consistent with the decrease in affinity measured by ITC.

To further validate the performance of  BarlowDTIXXL, 
we conducted a virtual screening experiment (Additional 
file  1: Fig.  S2) focused on identifying kinase inhibitors. 
Kinase inhibitors are pivotal in drug discovery, targeting 
dysregulated protein kinases linked to cancer, autoim-
mune disorders, and inflammation [57–59]. Our results 
show that  BarlowDTIXXL  effectively prioritised kinase 
inhibitors while remaining computationally efficient, 
reducing costs and time, and thereby accelerating the 
drug discovery process (Supporting Information “Virtual 
screening”).

We looked at Shapley additive explanation (SHAP) 
values to examine the influence of each input modal-
ity on the model (Additional file  1: Fig.  S6). Regardless 
of the ligand molecule chosen, each modality proved 
equally important for prediction. This finding highlights 
the functionality and predictive power of BarlowDTI’s 
architecture.

Explaining BarlowDTI by investigating sample importance
 We analysed the importance of individual sam-
ples within the training set to understand how Bar-
lowDTI  classifies DTIs. Our adjusted influence method 
was therefore applied. In Fig. 3d,e, we identified the most 
influential training pairs by examining those with the 
highest Jaccard similarity, calculated from the leaf indices 
of the GBM in  BarlowDTIXXL. The most influential train-
ing sample is the Homo sapiens lipoyl amidotransferase 
LIPT1 for both lplA1 and LipL1, with LA as the com-
mon ligand (Fig. 3a,e). LIPT1 and lplA1 ( J = 0.909 ) share 
a sequence identity of 31.8  %, while LIPT1 and LipL1 
( J = 0.913 ) only share 29.7 % (Fig. S7).

To investigate the biochemical implications of the 
training sample to the model’s prediction, we performed 
a structural study. We leveraged protein crystal struc-
tures to perform in-depth 3D analyses on lplA1 (8CRI) 
and LipL1 (5T8U). The superposition of lplA1 with 
LIPT1 revealed a root mean square deviation of atomic 
positions (RMSD) of 2.07  Å, while LipL1 exhibited a 
RMSD of 1.72 Å. These RMSD values reflect a significant 
structural congruence among these enzymes, notwith-
standing their low sequence identity. Despite this struc-
tural similarity, it is noteworthy that human LIPT1 does 
not catalyse the same reaction as lplA1 and LipL1 [61].

Furthermore, we looked at the active site of LipL1, 
where all residues are conserved relative to LIPT1 
(Fig.  3c). In lplA1, one notable substitution can be 
observed. L181 in LIPT1 is replaced by M151, possibly 

Table 3 Barlow Twins hyperparameters

The best values are marked in bold

Hyperparameter Value/Range

enc_n_neurons 1024, 2048, 4096
enc_n_layers 1, 2, 3
proj_n_neurons 1024, 2048, 4096

proj_n_layers 1, 2, 3

embedding_dim 512, 1024, 2048

act_function ReLU

aa_emb_size 1024

loss_weight 1 ×10
−5 , 0.005, 0.1

batch_size 4096

epochs 250

optimizer AdamW

learning_rate 1 ×10
−5 , 3 ×10

−4 , 0.1

beta_1 0.9

beta_2 0.999

weight_decay 5×10
−5

step_size 10

gamma 0.1

val_split 0.1

https://doi.org/10.2210/pdb5T8U/pdb
https://doi.org/10.2210/pdb8CRI/pdb
https://doi.org/10.2210/pdb8CRL/pdb
https://doi.org/10.2210/pdb8CRI/pdb
https://doi.org/10.2210/pdb5T8U/pdb
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Fig. 3 Structure-based explanation of  BarlowDTIXXL predictions. a Co-crystal structures of lplA1 and LipL1 with LA as ligand are shown 
in superposition, together with the most influential training sample (structure predicted using RoseTTAFold-AllAtom (RF-AA) [21]). b The squared 
Pearson R [60] correlation of  BarlowDTIXXL and ITC measurements is presented [56]. c The protein residue–ligand interactions at the active site are 
compared. d We identified the most influential training samples for LA predictions. The distribution of Jaccard similarity for all training samples 
is shown. We applied kernel density estimation to the histogram to improve visibility, due to the large training set size. e The most influential 
training samples are highlighted ( ↓)
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explaining the higher Jaccard similarity of LipL1 over 
lplA1. This conservation pattern underscores a highly 
conserved binding pocket across species, as confirmed by 
sequence alignment data (Additional file 1: Fig. S7). Fur-
thermore, we investigated whether  BarlowDTIXXL  dem-
onstrates sequence-based awareness of ligand interaction 
sites. The strongest shifts in predicted drug–target inter-
action likelihood is observed when active site residues are 
substituted (Additional file 1: Figs. S3 and S4, Supporting 
Information “Ligand interaction”). These results highlight 
the awareness of  BarlowDTIXXL  to ligand-binding resi-
dues and help to understand how the prediction of the 
model is achieved.

In summary,  BarlowDTIXXL  effectively learns DTIs by 
leveraging catalytically active and stabilising residues, 
demonstrating the model’s ability to generalise from 1D 
input data. This capability makes  BarlowDTIXXL  well-
suited for applications in drug discovery.

Conclusions
Our proposed method, BarlowDTI, integrates sequence 
information with the Barlow Twins SSL architecture and 
GBM models, representing a powerful fusion of machine 
learning and DL techniques.

Our approach demonstrates state-of-the-art drug-
target interactions prediction capabilities, validated 
across multiple benchmarks and data splits. Notably, our 
method outperforms existing literature benchmarks in 
ten out of fourteen datasets evaluated.

To elucidate the efficacy of BarlowDTI, we conducted 
an ablation study to investigate the contribution of its 
core components and their impact on performance. 
In addition, we re-evaluated the choice of baselines in 
numerous publications and advocate the inclusion of 
GBM baselines. Furthermore, we explored the classifica-
tion mechanism of BarlowDTI for DTIs by performing a 
structure-based analysis of the most influential training 
samples. This was done by adapting a previously devel-
oped influence method to gain deeper insight into train-
ing sample importance.

Given the model’s exceptional performance, we are 
confident that BarlowDTI can significantly accelerate the 
drug discovery process and offer significant time and cost 
savings through the use of virtual screening campaigns. 
To make BarlowDTI accessible to the scientific commu-
nity, we provide an easy-to-use and free web interface at 
https:// www. bio. nat. tum. de/ oc2/ barlo wdti.

Methods
Datasets
To evaluate the performance of BarlowDTI, three estab-
lished benchmarks are used. They all provide fixed splits 
for training, evaluation and testing. In some publications 
the training and evaluation is merged to improve predic-
tive performance. To ensure comparability, this was not 
done in this work. All the metrics presented are taken 
from other publications in which only the training set is 
used.

In addition, Kang et  al. first proposed splits for large 
drug-target interactions datasets, BioSNAP [34], Bind-
ingDB [35] and DAVIS [36, 41].

The addition of a variety of splits with an additional 
benchmark Human [42] are proposed by Koh et  al. We 
evaluate these separately [16]. Regression performance 
is evaluated on two regression benchmarks: PDBBind 
v2016 and v2020 [25, 46–48]. For all datasets, to reduce 
bias and improve model performance, the SMILES are 
cleaned using the Python ChEMBL curation pipeline 
[62]. All duplicate and erroneous molecule and protein 
information that could not be parsed is removed. Train-
ing is performed on the predefined training splits.

Representations
Molecular information
 The SMILES are converted into Atom Pair [63], ECFP 
[64], Electrotopological State (EState) [65], MACCS [66], 
MinHashed Atom Pair (MAP) [67], PubChem and RDKit 
fingerprints [68] using scikit-fingerprints and RDKit [68, 
69]. We used 1024bit and a radius of 2 where possible, 
otherwise the default parameters were used.

Amino acid sequence information
 The amino acid sequences are converted into vectors, by 
using the PLM ProtTrans [55], ProtT5 [55] and ProstT5 
[26]

Additionally, the protein sequences were encoded 
using one-hot encoding, In this method, each amino 
acid is represented by a unique binary vector where one 
position is set to 1, and all others are set to 0. For this 
encoding, we used the standard set of 20 amino acids 
A : Each amino acid a ∈ A is mapped to a unique index: 
index(a) = i, where i ∈ {0, 1, . . . , 19}. For a given 
amino acid sequence S = (s1, s2, . . . , sn) , where each 
sj ∈ A , we encode each amino acid sj as a one-hot vec-
tor vj ∈ R

20 , defined as:

https://www.bio.nat.tum.de/oc2/barlowdti
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For sequences shorter than a predefined maximum 
length lmax , padding is applied using a placeholder 
amino acid X , which is mapped to a zero vector: 
vX = (0, 0, . . . , 0) ∈ R

20. Given a sequence of length n , we 
ensure the final encoded vector has length 20× lmax by 
either truncating or padding the sequence. Thus, for each 
sequence S of length n , the one-hot encoded representa-
tion V(S) is given by:

Barlow Twins model configuration
The proposed method is based on the Barlow Twins 
[30] network architecture, which employs one encoder 
for each modality and a unified projector. The encoders 
and projector are multilayer perceptron (MLP) based.

Both encoders as well as the projector have the fol-
lowing structure

where li is the input layer and li+1 is its output, with a 
flexible number of layers n and adjustable dimensional-
ity of input and output. Furthermore, variables W  , b 
represent learnable weights and biases. A linear layer is 
followed by batch normalisation [70], ReLU activation 
function [71], and the last linear layer. The network was 
constructed using PyTorch [72].

The loss function LBT  is adapted from the original 
Barlow Twins publication and enforces cross-correla-
tion (matrix C ) between the projections of the modali-
ties [30].

where � is a constant that trades off the invariance term 
and redundancy reduction term.

vj[i] =

{
1 if i = index(sj),
0 otherwise.

V(S) = [v1, v2, . . . , vlmax
] ∈ R

20×lmax .

li+1 = Linear
(
ReLU(BatchNorm(Linear(Wli + b)))
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Pre‑training Barlow Twins
Here we pre-train the Barlow Twins architecture on our 
joint drug-target interactions dataset, based on BioSNAP, 
BindingDB, DAVIS (Kang et  al. splits) and DrugBank 
[37], removing duplicates and without labels to teach 
DTIs. Early stopping is implemented to avoid overfitting, 
which is carried out using a 15 % validation split.

Hyperparameter optimisation Manual hyperparameter 
optimisation is performed, shown in Table 3.

Feature‑extractor
When performing feature-extraction, we use the pre-
trained BarlowDTI  model. For training and predic-
tion, we extract the embeddings after the encoders for 
each modality and concatenate them. Finally, a GBM, 
XGBoost [28] Python implementation, is trained on 
the embeddings in combination with the labels for each 
training sets respectively.

Hyperparameter optimisation
If a benchmark provides a dedicated validation set, this 
was used for Optuna [73] hyperparameter optimisation. 
Therefore, in classification Lc = ROC AUC+ PR AUC 
was used as validation loss and Optuna was config-
ured to maximise the summed loss. For regression 
Lr = −ρ +MAE was applied as validation loss and 
Optuna was configured to minimise the summed loss.

The optimisation was carried out for 100 trials with the 
parameters shown in Table  4. The obtained benchmark 
specific hyperparameters were then used to fit the GBM 
on the training set. All detailed hyperparameters are pro-
vided in the Additional File gbm_hyperparameters.
csv.

BarlowDTIXXL We introduce  BarlowDTIXXL, a model 
trained for use in real-world applications. To build 

Table 4 GBM hyperparameters 

Best parameters differ for each benchmarking dataset and split

Hyperparameter Value/Range

n_estimators [100, 1000] (step = 100)

learning_rate [1e−8, 1.0] (log scale)

max_depth [2, 12]

gamma [1e−8, 1.0] (log scale)

min_child_weight [1e−8, 1e2] (log scale)

subsample [0.4, 1.0]

reg_lambda [1e−6, 10] (log scale)
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 BarlowDTIXXL, we curated and standardised the large 
drug-target interactions dataset proposed by Golts et al. 
(procedure adapted from the “Datasets” section) [32]. Fur-
thermore, we used random undersampling with a 3:1 ratio 
of non-interactors to interactors to improve model gen-
eralisation. Then we added the training splits from BioS-
NAP, BindingDB and DAVIS (Kang et al. splits), resulting 
in a model trained with 3653631 drug-target interactions 
pairs (2 789 498 non-interactors, 864 133 interactors).

BarlowDTIXXL  uses the same architecture as Bar-
lowDTI, using the powerful Barlow Twins network as 
feature-extraction method in combination with the GBM 
XGBoost [28, 30].

Baseline model configuration As a baseline, we have 
selected a GBM. Similar to our feature-extraction imple-
mentation, for all features we concatenate both ECFP 
and PLM embeddings. Finally, a GBM, XGBoost Python 
implementation, is trained on the ECFP and PLM embed-
ding concatenation in combination with the labels for 
each training set, respectively.

Case study Amino acid sequence information as well as 
ligand information is taken from The Protein Data Bank 
to perform predictions using BarlowDTI [74]. Complex 
structures were generated using RoseTTAFold-AllAtom 
(RF-AA) [21].

Sequence identity was determined. Therefore, 
sequences were aligned using the BLASTP [75, 76] algo-
rithm at https:// blast. ncbi. nlm. nih. gov [77]. PyMOL 2 is 
used for structure visualisation and RMSD value calcula-
tion [78].

Explainability based on Shapley additive explanation 
values
We applied the TreeExplainer [79, 80] algorithm to 
the GBM of  BarlowDTIXXL  extracted and visualised the 
SHAP values.

Explainability based on sample importance
To assess how the model decides to classify drug–target 
pairs as interacting or non-interacting, we looked at the 
influence of training samples, as similarly proposed by 
Brophy et al. for uncertainty estimation [33]. We used a 
similar concept but changed the approach to identify the 
most influential training data. This is done by obtaining 
the leaf indices of the GBM of all training samples. Then 
we compare the leaf indices at inference time with the 
leaf indices of the training samples. Finally, we find the 
most influential samples by computing the pairwise Jac-
card similarity of the leaf index vectors [81],

The most influential training sample is represented by the 
maximum Jaccard similarity.
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