
Mswahili et al. Journal of Cheminformatics           (2025) 17:17  
https://doi.org/10.1186/s13321-025-00959-9

RESEARCH Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.

Journal of Cheminformatics

Positional embeddings and zero-shot 
learning using BERT for molecular-property 
prediction
Medard Edmund Mswahili1†, JunHa Hwang1†, Jagath C. Rajapakse2, Kyuri Jo1* and Young-Seob Jeong1* 

Abstract 

Recently, advancements in cheminformatics such as representation learning for chemical structures, deep learning 
(DL) for property prediction, data-driven discovery, and optimization of chemical data handling, have led to increased 
demands for handling chemical simplified molecular input line entry system (SMILES) data, particularly in text analysis 
tasks. These advancements have driven the need to optimize components like positional encoding and positional 
embeddings (PEs) in transformer model to better capture the sequential and contextual information embedded 
in molecular representations. SMILES data represent complex relationships among atoms or elements, rendering 
them critical for various learning tasks within the field of cheminformatics. This study addresses the critical challenge 
of encoding complex relationships among atoms in SMILES strings to explore various PEs within the transformer-
based framework to increase the accuracy and generalization of molecular property predictions. The success of trans-
former-based models, such as the bidirectional encoder representations from transformer (BERT) models, in natural 
language processing tasks has sparked growing interest from the domain of cheminformatics. However, the perfor-
mance of these models during pretraining and fine-tuning is significantly influenced by positional information such 
as PEs, which help in understanding the intricate relationships within sequences. Integrating position information 
within transformer architectures has emerged as a promising approach. This encoding mechanism provides essential 
supervision for modeling dependencies among elements situated at different positions within a given sequence. In 
this study, we first conduct pretraining experiments using various PEs to explore diverse methodologies for incorpo-
rating positional information into the BERT model for chemical text analysis using SMILES strings. Next, for each PE, 
we fine-tune the best-performing BERT (masked language modeling) model on downstream tasks for molecular-
property prediction. Here, we use two molecular representations, SMILES and DeepSMILES, to comprehensively assess 
the potential and limitations of the PEs in zero-shot learning analysis, demonstrating the model’s proficiency in pre-
dicting properties of unseen molecular representations in the context of newly proposed and existing datasets.

Scientific contribution
This study explores the unexplored potential of PEs using BERT model for molecular property prediction. The 
study involved pretraining and fine-tuning the BERT model on various datasets related to COVID-19, bioassay data, 

†Medard Edmund Mswahili and JunHa Hwang contributed equally to this 
study.

*Correspondence:
Kyuri Jo
kyurijo@chungbuk.ac.kr
Young-Seob Jeong
ysjay@chungbuk.ac.kr
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-025-00959-9&domain=pdf


Page 2 of 22Mswahili et al. Journal of Cheminformatics           (2025) 17:17 

and other molecular and biological properties using SMILES and DeepSMILES representations. The study details 
the pretraining architecture, fine-tuning datasets, and the performance of the BERT model with different PEs. It 
also explores zero-shot learning analysis and the model’s performance on various classification and regression 
tasks. In this study, newly proposed datasets from different domains were introduced during fine-tuning in addition 
to the existing and commonly used datasets. The study highlights the robustness of the BERT model in predicting 
chemical properties and its potential applications in cheminformatics and bioinformatics.

Keywords Transformers, BERT, Positional embedding/encoding, Zero-shot learning, Molecular-property prediction, 
SMILES, DeepSMILES

Introduction
Predicting physicochemical molecular properties is 
a critical task in computational chemistry, driving 
research advancements in the domains of drug discov-
ery, materials science, and chemical engineering [1–3]. 
Traditionally, these property predictions have relied pre-
dominantly on extensive experimental data and complex 
simulations, both time-consuming and resource-inten-
sive approaches [4, 5]. However, with the advent of 
machine learning (ML) and deep learning techniques 
[6], these challenges have been overcome. In particular, 
leveraging the extensive available data, predictive mod-
els exhibiting excellent generalization capabilities across 
various chemical compounds have been developed using 
simplified molecular input line entry system (SMILES) 
strings in the field of cheminformatics [7, 8]. Conse-
quently, data-driven ML approaches have recently gained 
traction for various tasks including chemical- and molec-
ular-property prediction [9, 10]. Notably, leveraging the 
massive amounts of unlabeled SMILES data [11] and lim-
ited labeled SMILES data, ML techniques, particularly 
language models (LMs) [12–15], have been trained to 
learn insights or informative molecular representations 
from SMILES strings [16]. This has been accomplished 
by adopting a pretraining and fine-tuning framework or 
a semi-supervised learning architecture [17]. In this effi-
cient framework, unsupervised pretraining using unla-
beled SMILES data (molecules) is followed by fine-tuning 
using labeled data for specific downstream tasks. Given 
that obtaining abundant labeled molecular-property data 
through screening experiments and data labeling is both 
labor-intensive and resource-demanding, this approach 
provides a practical solution for the drug discovery pipe-
line [14, 18, 19].

In the field of natural language processing (NLP), 
various LM approaches have been extensively adopted, 
yielding promising prediction results in cheminformat-
ics, particularly for accelerating and improving vari-
ous molecular-property-prediction tasks [18, 20, 21]. 
Importantly, in recent years, transformer-based LMs, 
particularly the bidirectional encoder representations 
from transformer (BERT) models, have demonstrated 

exceptional performance in various NLP tasks in com-
putational chemistry by effectively capturing contex-
tual relationships within SMILES data [1, 2, 22–24]. 
These models particularly leverage generalized knowl-
edge obtained during pretraining on extensive chemi-
cal datasets, such as SMILES representations, and are 
then fine-tuned on specific tasks. This approach has 
been shown to improve predictive performance for dif-
ferent tasks such as molecular properties or biological 
properties of chemical compounds [25–27]. Remarkably, 
this approach significantly enhances the generalization 
ability of the model, reducing the reliance on extensive, 
annotated chemical datasets. Notably, BERT’s architec-
ture [28], characterized by its self-attention mechanisms 
combined with masked language modeling (MLM) and 
next sentence prediction (NSP), allows it to effectively 
model dependencies between words or tokens in a given 
sequence. However, in the context of SMILES or Deep-
SMILES input representations, the NSP approach is often 
neglected [22]. A key innovation of BERT is its use of 
PEs, which encode the order of input tokens, thus ena-
bling the model to distinguish between various sequences 
and comprehend the relative positioning of tokens.

Positional encoding and PEs are essential for repre-
senting sequential data, ensuring that models capture 
not only the presence of tokens but also their order 
[29]. Recent studies have underscored the effectiveness 
of PEs within transformer architectures, demonstrat-
ing their ability to accurately model the dependencies 
between elements or tokens across various orders or 
positions within a given sequence [29]. This concept 
extends beyond NLP to other domains where the order 
and structure of input data are of paramount impor-
tance, such as the representation of chemical com-
pounds using SMILES and DeepSMILES [30]. Notably, 
PEs effectively encode the positional information con-
tained in SMILES sequences, thereby improving the 
ability of the BERT pretrained model to identify and 
interpret potential information regarding molecu-
lar substructures for molecular-property prediction. 
By encoding the positional information of atoms and 
bonds in chemical representations such as SMILES 
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or DeepSMILES, transformer LMs such as the BERT 
model can potentially learn the underlying patterns 
governing chemical properties.

While BERT-based chemical LMs have demonstrated 
better scaling when applied to tremendously large unla-
beled datasets and have shown promising performance 
across a wide range of chemical and cheminformat-
ics tasks [31], the application and potential of PEs in 
this context remain underexplored, both in terms of the 
diversity of tasks they can handle and their domain of 
application such as zero-shot learning. Zero-shot learn-
ing-an approach wherein a model engages in predic-
tions in classes or tasks not explicitly encountered during 
training. This is achieved using pre-existing knowledge 
and semantic relationships to generalize from known to 
unknown classes or tasks. For example, a model trained 
on text data might employ linguistic patterns and contex-
tual understanding to analyze and categorize new chemi-
cal properties without having seen specific examples of 
those properties before. Zero-shot learning represents 
a promising direction for chemical-property prediction 
[32].

Although no single study has specifically focused on 
PEs and zero-shot learning using BERT for chemical-
property prediction, several related studies provide 
relevant insights. For instance, Li et al. introduced Mol-
BERT [1], which utilizes absolute PEs, while Liu et  al. 
expanded this frame and developed MolRoPE-BERT [2], 
incorporating rotary PEs. Notably, both studies demon-
strated notable improvements in chemical-property pre-
diction, underscoring the significance of PEs. However, 
they share some common limitations, including inad-
equate evaluation of downstream and zero-shot learning 
tasks, limited pretraining datasets, and increased reliance 
on standard fine-tuning datasets. Future research must 
overcome these shortcomings by exploring more diverse 
and extensive pretraining datasets and conducting thor-
ough evaluations of PEs across various tasks to compre-
hensively understand their potential and limitations.

In this study, to understand the potential of PEs, we 
adapt the BERT model with various PEs for chemical-
property prediction across multiple real-world data-
sets. Specifically, we investigate ways in which the BERT 
architecture, traditionally used in NLP, can be effectively 
adapted to encode chemical information through a com-
prehensive experimental review of various PEs. Further-
more, we assess the potential of zero-shot learning for 
predicting the properties of novel compounds, offering 
insights into the generalization ability of the model across 
diverse chemical structures. Our findings suggest that 
transformer-based models equipped with appropriate 
embeddings and training strategies can serve as powerful 
tools in computational chemistry, providing efficient and 

accurate predictions of chemical properties. In summary, 
this study makes the following contributions.

• The study adopts a two-stage approach. First, the 
BERT model is pretrained on each types of position 
encoding and PE using SMILES representations. Sec-
ond, the model is fine-tuned on various downstream 
tasks using both SMILES and DeepSMILES molecu-
lar representations. Furthermore, their performance 
on these tasks is compared to evaluate the potential 
of the BERT model and PEs in the context of zero-
shot learning.

• In this study through a detailed experimental analy-
sis, we compare different position encoding and PEs, 
including absolute, relative_key, relative_key_query, 
and sinusoidal PE, used in transformer-based mod-
els such as BERT for prediction of physicochemical-
properties, and biological properties or biological 
activity.

• We introduce new datasets for fine-tuning from new 
domains, which are not typically included in standard 
fine-tuning databases [7] such as COVID-19, anti-
malarial drugs, and cocrystal formation using active 
pharmaceutical ingredients (APIs) and co-formers, 
are incorporated.

Materials and methods
Dataset
The BERT-based model was pretrained and fine-tuned 
using various datasets to evaluate its performance across 
cheminformatics and bioinformatics tasks. The data-
sets used for pretraining and fine-tuning are summa-
rized in Table  1. Fine-tuning datasets were selected to 
address either regression or classification tasks, focus-
ing on molecular properties, biological activities and 
drug responses. The datasets include SMILES and Deep-
SMILES [30] representations of chemical compounds 
and are categorized into two groups based on their use in 
pretraining and fine-tuning strategies, as shown in Fig. 1. 
This categorization supports the effective utilization and 
application of the BERT-based LM. Pretraining datasets 
play a critical role in assisting the model learn patterns 
and influence its performance and generalization to 
unseen data. The effectiveness of the pretraining dataset 
relies on meticulous data collection, pre-processing, and 
cleaning to ensure that the model learns meaningful pat-
terns. In this study, the dataset used for model pretrain-
ing was sourced from publicly available databases and 
previous studies, as indicated in Table 1. As depicted, this 
dataset comprises 7,949,003 SMILES-string instances, 
following the removal of 411,621 duplicated instances.
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The fine-tuning phase employed datasets tailored for 
various tasks, such as molecular-property prediction and 
drug discovery, in cheminformatics and bioinformatics. 
Fine-tuning datasets are important for adapting a pre-
trained model to specialized tasks or domains, allowing 
the model to learn task-specific patterns and improve its 
performance. In the fine-tuning datasets, SMILES and 
DeepSMILES strings are employed to represent the input 
molecules, as shown in Fig.  1. A detailed breakdown of 
the fine-tuning datasets utilized in this study, along with 

their corresponding tasks, is outlined in Table 1. In addi-
tion to the commonly used fine-tuning datasets, this 
study adopted several new datasets (i.e., Newly proposed) 
to evaluate the model’s performance on more specific 
tasks.

Antimalarial [39]
The Antimalarial dataset comprises experimentally veri-
fied antimalarial drug candidates sourced from public 
chemical databases. It includes compounds labeled 

Table 1 Dataset used for pretraining and fine-tuning of the BERT-based model

Bold values highlight the newly proposed datasets introduced in this study, representing the key focus areas

Pretraining data Fine-tuning data Task target Task type # Task # Compounds

ZINC [33, 34] Physical Chemistry [7] ESOL Regression 1 1128

PubChem [35, 36] FreeSolv Regression 1 642

ChEMBL [37, 38] Lipophilicity Regression 1 4200

Research studies [1, 2] Physiology [7] BBBP Classification 1 2039

Tox21 Classification 12 7831

ClinTox Classification 2 1478

SIDER Classification 27 1427

Newly proposed Antimalarial [39] Classification 1 4794

Cocrystals [40] Classification 1 3282

COVID [41] Classification 1 740

COVID-19 [42] Classification 1 2601

Fig. 1 Pretraining and fine-tuning architectures employed in BERT model for SMILES and DeepSMILES (zero-shot learning analysis). During 
the fine-tuning phase, we utilized both SMILES and DeepSMILES representations by employing a Python module (converter) to transform 
well-formed SMILES strings into DeepSMILES format [30]
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“active”, indicating successful reactivity against the para-
site species Plasmodium falciparum, and compounds 
labeled “inactive”, that have no reactivity against the para-
site species Plasmodium falciparum.

Cocrystals [40, 43]
The Cocrystal dataset, wherein each API can chemi-
cally interact with multiple coformers, includes 79 
unique APIs and 462 unique coformers, resulting in 1641 
instances. In this dataset, 880 interactions are labeled 
“0”, indicating instances where no cocrystal formation 
occurred, while 761 interactions are labeled “1” to signify 
successful cocrystal formation. The raw data were col-
lected from various sources, including previous research 
studies, experimental documentation, and ongoing 
experiments related to cocrystal formation. Notably, in 
the case of the cocrystals dataset, the input sequences 
processed by the inherited BERT model consisted of two 
distinct compounds: the API and coformers. Unlike other 
datasets that contained a single compound per sequence, 
the cocrystals dataset required concatenation of the 
SMILES or DeepSMILES representations of both com-
pounds, resulting in significantly longer single sequences.

COVID [41]
The COVID dataset comprises 740 chemical compounds 
that have exhibited experimental activity against various 
coronavirus targets. These targets include SARS-CoV, 
MERS-CoV, SARS-CoV-2, ORF1ab/ORF1a polypro-
teins, ORF1ab polyprotein (Betacoronavirus England 1), 
surface glycoprotein (SARS-CoV-2), and replicase poly-
protein 1ab (SARS-CoV-2). This dataset is curated from 
public databases of bioactive molecules with drug-like 
properties. We further expanded this dataset by includ-
ing information regarding the structure of the viral 
3-chymotrypsin-like cysteine protease (3CLpro ) enzyme, 
a proven drug target essential for coronavirus replication 
and life cycle of SARS-Cov-2. Notably, SARS-Cov-2 has a 
genome sequence similar to that of other members of the 
beta-coronavirus group such as SARS-Cov, MERS-CoV, 
and bat coronavirus.

COVID‑19 [42]
The COVID-19 data collection process involved three 
main approaches:

• Literature mining: Data  were gathered from peer-
reviewed studies on molecules identified as antic-
oronavirus agents, focusing on two beta-coronavirus 
species: SARS-CoV (2003) and SARS-CoV-2 (2019).

• Cocrystal data retrieval: Information regard-
ing molecules cocrystallized with SARS-CoV and 

SARS-CoV-2 proteins, such as 3CL-protease and 
papain-like protease, was obtained from the research 
collaboratory for structural bioinformatics (RCSB 
PDB). Activity data for these inhibitors were also 
sourced from relevant scientific publications.

• Bioassay data retrieval: Data were extracted from bio-
assays in the PubChem database, prioritizing those 
targeting SARS-CoV-2 or similar molecular targets, 
particularly large bioassays on other coronaviruses. 
This included viral growth inhibition and cell-based 
tests targeting specific viral enzymes.

The dataset comprised 1301 active molecules labeled “1”, 
and 1300 inactive molecules labeled “0”. The balanced 
distribution of active and inactive compounds ensured 
a robust evaluation of our model’s performance, as it 
allowed for equitable comparison of predictions across 
both classes.

The remaining fine-tuning datasets utilized in this 
study were discussed by Wu et al. [7] as shown in Table 1. 
These new datasets were selected to facilitate a compre-
hensive assessment of the capabilities of the BERT-based 
model across various molecular and biological proper-
ties. The diverse nature of the datasets ensures that the 
model is tested on both regression and classification 
tasks, providing a thorough evaluation of its performance 
in cheminformatics and bioinformatics applications.

Class weights for imbalance datasets
Zhu et  al. [44], class weights are typically computed to 
address the issue of class imbalance in datasets such as 
Side Effect Resource (SIDER), Blood–Brain Barrier Pen-
etration (BBBP) or Tox21 (a toxicity dataset). These 
weights are used to adjust the importance of each class 
during training, ensuring that the minority class contrib-
utes proportionally to the loss function and the model 
learns its features effectively. In this study, we used com-
mon method for calculating class weights which is based 
on the inverse of the class frequencies. For example, if a 
dataset contains N samples and nc samples for class c, the 
weight for that class is computed as shown in Eq. 1.

where |C| is the total number of classes. This approach 
assigns higher weights to underrepresented classes, mak-
ing their contribution to the loss function equal to that of 
more frequent classes.

Pretraining architecture
Our model leverages a BERT-base architecture spe-
cifically tailored for SMILES or DeepSMILES rep-
resentations. This architecture includes several key 

(1)wc =
N

(|C| · nc)
,
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components such as an embedding layer to translate 
input tokens (SMILES or DeepSMILES strings) into 
continuous vector representations. In this context, 
various PEs, such as absolute, relative_key, and rela-
tive_key_query, and positional encodings such as sinu-
soidal positional encodings were investigated.

The transformer block or encoder layer-compris-
ing multiple layers of self-attention mechanisms, also 
known as multi head self-attention and feed-forward 
neural networks-constituted the core of our model, as 
illustrated in Fig. 2. Notably, this structure enables the 
model to capture the intricate dependencies and rela-
tionships within SMILES or DeepSMILES sequences. 
Finally, the MLM task, a prediction head is used to 
reconstruct masked tokens based on their context.

Tokenizer
We adopted the SmilesTokenizer module from Deep-
Chem [45, 46] to generate embedding features (X), 
as depicted in Fig.  1. The SmilesTokenizer module is 
derived from the implementation of the BertTokenizer 
class in Hugging Face’s Transformers library. This 
tokenizer predominantly employs the byte-pair encod-
ing (BPE) tokenization strategy from the Hugging Face 
tokenizers library [23, 47]. In particular, it executes a 
WordPiece tokenization algorithm on the collected 

SMILES strings, utilizing the tokenization SMILES 
regex developed by Schwaller et al. [48, 49].

PEs and positional encoding
Positional encoding and PEs are essential for represent-
ing sequential data and understanding intricate relation-
ships within sequences, ensuring that models capture not 
only the presence of tokens but also their order [29].

Absolute PE [50, 51]
These embeddings represent the absolute positions of 
tokens in a sequence. For example: If a SMILES or Deep-
SMILES token is the 3rd word in a SMILES or Deep-
SMILES sequence, its position embedding specifically 
encodes the number 3. The absolute position embedding 
in self-attention [52] is as shown in Eq. 2.

where xi , i ∈ {0, ...., n− i} is the input embedding to the 
first transformer layer, ti , si and wi ∈ R

dx are the token 
embeddings, segment embeddings, and absolute position 
embeddings respectively. However si is not incorporated 
in our case since we are only utilizing single SMILES 
or DeepSMILES sequence, and ti and wi are learnable 
parameters.

(2)xi = ti + si + wi

Fig. 2 PEs, position encoding, and Self-attention mechanism employed in BERT architecture (Position Encoding resembles both position 
embeddings and position encoding utilized in this study)
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Relative key PE [50, 51]
This technique encodes the relative positions or dis-
tances between tokens into the self-attention mechanism. 
It often incorporates sinusoidal functions or learnable 
parameters. For example, If token A in this case SMILES 
or DeepSMILES is two positions away from token B in 
SMILES or DeepSMILES sequences, the model captures 
this relative distance (e.g., + 2 or − 2). A notable imple-
mentation was introduced by Shaw et al. [53], which adds 
position-specific information into the attention compu-
tation via Eq. 3:

where eij attention score, qi and kj are the query and key 
vectors, and aij represents the relative position embed-
ding based on the distance between tokens i and j. This 
method allows the model to focus on how tokens relate 
to each other based on their relative distances.

Relative key‑query PE [29, 50]
Building on the concept of relative position embeddings, 
this approach models interactions not just between 
tokens and their relative distances but also between keys, 
queries, and relative position embeddings simultane-
ously. This approach combines relative positions of both 
the keys and the queries in the attention mechanism as 
shown in Eq. 4. For example: If token A (as a query) in a 
SMILES or DeepSMILES sequence attends to token B (as 
a key) and token B is three positions ahead, this specific 
relative position is encoded.

where R is a rotational matrix applied to query and key 
vectors based on their positional indices. Since this 
approach captures both query and key position informa-
tion, it enhances the model’s ability to capture relative 
positional dependencies in a computationally efficient 
manner and assists in improving the model’s contextual 
understanding.

Sinusoidal position encoding [52]
This technique is used in transformer models to provide 
information about the order of input tokens, since trans-
formers lack inherent sequence awareness. It involves 
assigning each position in a sequence a unique vector, 
where each element of the vector is computed using sine 
or cosine functions of different frequencies. Specifically, 
the even-indexed dimensions use sine functions, and 
the odd-indexed dimensions use cosine functions as in 
shown in Eq. 5

(3)eij = qTi kj + aij ,

(4)q′i = R(qi, pi), k ′j = R(kj , pj),

where pos is the position index and d is the embedding 
dimension. This method provides a fixed encoding that is 
consistent across different input sequences. This encod-
ing ensures that the position representations are continu-
ous and periodic, allowing the model to capture relative 
distances between tokens and generalize to sequences 
longer than those it was trained on.

Zero-shot learning analysis
Zero-shot learning, which involves making predic-
tions for classes or tasks not encountered during train-
ing, offers a promising approach for predicting chemical 
properties [32, 54]. In this study, we explored zero-shot 
learning by fine-tuning models initially trained using 
SMILES data. We utilized initial SMILES data from the 
collected fine-tuning dataset and converted them into 
DeepSMILES data for zero-shot learning analysis using 
the DeepSMILES converter [30]. To comprehensively 
evaluate the capabilities and potential of our models, 
we fine-tuned our best-performing models using both 
SMILES and DeepSMILES datasets, as illustrated in 
Fig. 1. Notably, DeepSMILES is an extension of SMILES 
designed to be more compatible with deep learning mod-
els. This framework simplifies some aspects of SMILES to 
facilitate neural network processing [30]. This approach 
allows us to assess the adaptability and generalization 
ability of our models to novel, related datasets, offering 
insights into their zero-shot learning capabilities.

Experiments and results
Experiments on BERT pretraining
In this study, standard BERT pretraining and fine-tuning 
procedures were adopted to train our model, specifically 
BERT for each PE. Notably, our implementation of the 
BERT model involves 12 attention heads and 12 layers, 
resulting in 144 distinct attention mechanisms. Notably, 
during the pretraining phase without NSP, the model 
is pretrained using only MLM on an extensive corpus 
of pre-processed SMILES data obtained from various 
sources, as outlined in Table 1. In this case, MLM masks 
15% of the tokens in each input string, and the objective 
is to enable the BERT model to predict masked tokens 
from the input sequences. We used a maximum sequence 
length and vocabulary size of 512 and 592 tokens, respec-
tively. To facilitate large-scale pretraining, we pre-pro-
cessed and shuffled the remaining unique SMILES strings 
after removing duplicates from our dataset. The BERT 
model for each PE was trained over five epochs to avoid 
overfitting, and the best-performing model was utilized 
for subsequent fine-tuning on downstream tasks.

(5)
PE(pos,2i) = sin

( pos

100002i/d

)

, PE(pos,2i+1) = cos

( pos

100002i/d

)

,
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Fine-tuning of the architecture
Fine-tuning experiments were conducted on classifica-
tion and regression tasks using the best-performing pre-
trained models. Notably, these pretrained models were 
fine-tuned according to the parameter settings detailed 
in Table  2 on specific datasets. These datasets covered 
various tasks, including the prediction of chemical prop-
erties, bioactivity of chemical compounds against vary-
ing targets, and drug discovery, as outlined in Table  1. 
Each fine-tuning dataset was split into training, vali-
dation, and test sets with proportions of 80%, 10%, and 
10%, respectively. The performance metrics utilized dur-
ing fine-tuning involved the test loss, accuracy, preci-
sion, recall, and F1-score for classification tasks, as well 
as test loss and root mean squared error (RMSE) for 
regression tasks. The pretrained models were evaluated 
on several tasks using fine-tuning datasets from Molecu-
leNet [7]. However, most existing datasets struggle with 
complex tasks owing to data scarcity issues and highly 
imbalanced classification. To address this, we employed 
a balanced class-weighted function during fine-tuning 
to handle imbalanced classes during classification tasks. 
Furthermore, as indicated in Table  1, we proposed new 
balanced datasets to evaluate model performance on 
additional tasks such as predicting anti-COVID drugs 
for all variants (i.e., SARS-CoV-2, and MERS-CoV, and 
bat coronavirus), antimalarial drugs against Plasmo-
dium falciparum, and cocrystal formation using API and 
co-formers.

Pre-training BERT on SMILES
Tables  2 and 3 detail training parameter settings, per-
formance metrics, evaluation metrics, and training time 

for each PE. The pretraining results of the proposed 
BERT model for each PE are summarized in Table 3. All 
PEs integrated into the BERT model demonstrated high 
accuracy, with all exceeding 95%. The relative_key_query 
PE showed slightly higher performance compared to 
the relative_key PE and sinusoidal positional encoding, 
although the differences in accuracy across the PEs were 
generally small, as indicated in Table 3.

Fine-tuning BERT on SMILES vs DeepSMILES (Zero-shot)
The performance of the BERT model with various posi-
tional encoding and PE methods was evaluated and fine-
tuned on multiple classification and regression tasks 
using both SMILES and DeepSMILES representations for 
zero-shot learning analysis. The key performance metrics 
in this case included test loss, accuracy, and F1-score for 
classification tasks and test loss and RMSE for regres-
sion tasks. The hyperparameters for our experiments 
were selected using empirical methods. We followed a 
trial-and-error approach to identify the most promising 
parameters. This process involved systematically adjust-
ing and testing various hyperparameter values to opti-
mize the performance of our models. By iterating through 
various configurations, we fine-tuned the parameters and 
obtain improved results. This empirical approach, albeit 
time-consuming, ensured that we explored a wide range 
of possibilities to determine the optimal settings for our 
specific experimental context.

Relative key query PE
The fine-tuning results of the BERT model correspond-
ing to the relative_key_query PE in classification tasks 
are outlined in Table 4. Notably, the model achieved high 
accuracy across all tasks, demonstrating notable perfor-
mance on datasets such as ClinTox and Tox21, indicating 
its robustness, as illustrated in Supplemental Figure S1. 
For instance, the model achieved similar accuracy (i.e., 
0.9262 and 0.9394, respectively) and F1-score (i.e., 0.9617 
and 0.9688, respectively) values on the ClinTox and 
Tox21 datasets, using both SMILES and DeepSMILES 

Table 2 Optimal parameters for pretaining and fine-tuning of 
the BERT model on SMILES and DeepSMILES data

Parameters Pretraining Fine-tuning Position encoding/
PEs

Learning rate 1e−4 5e−6

Batch size 16 16

Warm-up ratio 0.016 0.1

Weight decay 0.01 0.01

Number of epochs 5 10

Optimizer AdamW AdamW

Warm up schedular Linear Linear

Number of param-
eters

85,054,464 86,496,002 Absolute

85,840,128 87,281,666 Relative_key

85,840,128 87,281,666 Relative_key_query

85,054,464 86,496,002 Sinusoidal [52]

Table 3 Comparison results of different PEs and position 
encoding methods during pretraining of the BERT model on 
SMILES data

Bold value denotes the best-achieved performance for clarity and emphasis

PEs and position encoding Training 
time (h)

Optimal 
learning rate

Accuracy

Absolute 167 8.14e−5 0.9568

Relative_key 180 8.68e−6 0.9746

Relative_key_query 120 4.59e−6 0.9763
Sinusoidal [52] 105 1.67e−7 0.9755



Page 9 of 22Mswahili et al. Journal of Cheminformatics           (2025) 17:17  

representations. In the Tox21 dataset, with imbalanced 
class instances, a class-weight function set to a balanced 
ratio (denoted as Tox21cw ) was adopted to evaluate per-
formance outcomes. On newly proposed datasets (such 
as malaria, COVID, COVID-19, and cocrystals), BERT 
achieved similar and comparable performance with both 
SMILES and DeepSMILES representations. Although we 
hypothesized that DeepSMILES (i.e., for zero-shot learn-
ing analysis) would yield less robust results due to the 
model being pretrained only on SMILES representations, 
the differences in downstream performance between 
SMILES and DeepSMILES were minimal in most tasks.

This observation is detailed in Table 4 and illustrated in 
Supplemental Figure S1, highlighting comparable efficacy 
across both encoding methods.

Similarly, in regression tasks, the BERT model using 
the relative_key_query PE demonstrated robust perfor-
mance in predicting chemical properties, as detailed in 
Table 5 and Supplemental Figure S2. The model achieved 
an RMSE of 0.5704 for the Lipophilicity dataset using 
SMILES representations and 0.6333 on zero-shot learn-
ing using DeepSMILES representations. The model also 
demonstrated reliable predictive power, with RMSE val-
ues of 0.6185 for the ESOL dataset using SMILES repre-
sentations and 0.6557 using DeepSMILES for zero-shot 
learning. This demonstrated the capability of the model 
to handle diverse regression tasks effectively. However, 
for the FreeSolv dataset, as illustrated in Supplemental 
Figure S2, the model exhibited slightly poorer predictive 

Table 4 Performance of fine-tuned BERT with relative_key_query PE on various datasets

Bold values denote the best-achieved performance for clarity and emphasis

cw class-weighted function, DeepSMILES the zero-shot learning analysis of BERT

Task Data Sequence Test loss Accuracy Precision Recall F1-score

Classification Malaria SMILES 0.4858 0.8017 0.8118 0.6866 0.7439
DeepSMILES 0.5203 0.7495 0.7793 0.5622 0.6532

COVID SMILES 0.5851 0.7568 0.8484 0.6829 0.7568
DeepSMILES 0.4855 0.7568 0.8485 0.6829 0.7568

COVID-19 SMILES 0.4855 0.7885 0.7881 0.7561 0.7718
DeepSMILES 0.5171 0.7462 0.7568 0.6829 0.7179

Cocrystals SMILES 0.6089 0.6463 0.6102 0.5070 0.5538

DeepSMILES 0.6011 0.6402 0.5882 0.5634 0.5755
BBBPcw SMILES 0.5876 0.7171 0.8039 0.8146 0.8092

DeepSMILES 0.5422 0.7756 0.8571 0.8344 0.8456
BBBP SMILES 0.4679 0.7512 0.7475 1.0000 0.8555

DeepSMILES 0.5592 0.7366 0.7366 1.0000 0.8483

ClinTox SMILES 0.4511 0.9262 0.9262 1.0000 0.9617
DeepSMILES 0.4561 0.9262 0.9262 1.0000 0.9617

Tox21cw SMILES 0.6579 0.9040 0.9426 0.9560 0.9493
DeepSMILES 0.6685 0.8419 0.9357 0.8931 0.9139

Tox21 SMILES 0.3477 0.9394 0.9394 1.0000 0.9688
DeepSMILES 0.2884 0.9394 0.9394 1.0000 0.9688

Table 5 Performance of the fine-tuned BERT using RMSE for all PEs/position encoding on regression tasks

Bold values denote the best-achieved performance for clarity and emphasis

DeepSMILES zero-shot learning analysis of BERT, RMSE Root Mean Squared Error

Data Sequence Relative_key_query Sinusoidal Relative_key Absolute

ESOL SMILES 0.6185 0.5883 0.7878 0.5983

DeepSMILES 0.6557 0.6256 0.8431 0.5584
FreeSolv SMILES 1.8858 2.0491 2.6242 2.4169

DeepSMILES 2.1103 2.1572 2.0209 1.9840
Lipophilicity SMILES 0.5704 0.5732 0.5716 0.6025

DeepSMILES 0.6333 0.6707 0.6857 0.6747
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performance compared to its performance in other 
regression tasks.

Sinusoidal positional encoding
The results of BERT using sinusoidal positional encod-
ing in classification and regression tasks are summarized 
in Tables  5 and 6 respectively. Notably, this positional 
encoding demonstrated competitive performance, with 
notably high accuracy and F1-score values of 0.9380 
and 0.9680, respectively, on the Tox21 dataset using the 
SMILES and DeepSMILES representations. Notably, in 
zero-shot learning scenarios on the ClinTox and SIDER 
datasets, using DeepSMILES yielded slightly better 
results compared to using SMILES, resulting in F1-score 
values of 0.9577 for SMILES and 0.9617 for DeepSMILES 
and 0.8546 for SMILES and 0.8600 for DeepSMILES, 
respectively, as depicted in Supplemental Figure S3. 
When employing a class-weight function on imbal-
anced datasets (such as BBBPcw , ClinToxcw , Tox21cw , and 
SIDERcw ), DeepSMILES outperformed SMILES in zero-
shot learning on the Tox21cw dataset with an F1-score of 
0.9647 compared to an F1-score of 0.9058 for SMILES 

representations. Meanwhile, on the ClinToxcw dataset, 
the performance gap between SMILES and DeepSMILES 
representations in zero-shot learning was narrow, par-
ticularly compared to the BBBPcw and SIDERcw datasets, 
as indicated in Supplemental Figure S4.

In regression tasks, the performance of the model 
resembled that in the case with the relative_key_query 
PE. Overall, the model demonstrated robust perfor-
mance in predicting chemical properties, as detailed in 
Table 5 and Supplemental Figure S5. The performance of 
the model in terms of the loss and RMSE was relatively 
consistent across the ESOL and Freesolv datasets. How-
ever, on the Lipophilicity dataset, the model achieved an 
RMSE of 0.5732 using SMILES and an RMSE of 0.6707 
using DeepSMILES.

Relative key PE
As detailed in Table  7, the BERT model demonstrated 
optimal performance in terms of the accuracy and 
F1-score on the Tox21 classification task using both 
SMILES and zero-shot DeepSMILES representations. 
Specifically, on the ClinTox dataset, the model peak 

Table 6 Performance results of fine-tuned BERT with sinusoidal positional encoding on various datasets

Bold values denote the best-achieved performance for clarity and emphasis

cw class-weighted function, DeepSMILES zero-shot learning analysis of BERT

Task Data Sequence Test loss Accuracy Precision Recall F1-score

Classification Malaria SMILES 0.5255 0.7537 0.7456 0.6269 0.6811

DeepSMILES 0.5199 0.7599 0.7590 0.6269 0.6866
COVID SMILES 0.6062 0.7568 0.7805 0.7805 0.7805

DeepSMILES 0.5300 0.7703 0.8750 0.6829 0.7671

COVID-19 SMILES 0.4529 0.8115 0.8190 0.7724 0.7950
DeepSMILES 0.5056 0.7615 0.7607 0.7236 0.7417

Cocrystals SMILES 0.5664 0.7134 0.6667 0.6761 0.6713

DeepSMILES 0.4838 0.7500 0.6875 0.7746 0.7285
BBBPcw SMILES 0.5596 0.8439 0.8742 0.9205 0.8967

DeepSMILES 0.5382 0.7024 0.9245 0.6490 0.7626

BBBP SMILES 0.5280 0.7463 0.7438 1.0000 0.8531
DeepSMILES 0.5285 0.7415 0.7500 0.9735 0.8473

ClinToxcw SMILES 0.6518 0.8859 0.9291 0.9493 0.9391
DeepSMILES 0.6036 0.7718 0.9815 0.7681 0.8618

ClinTox SMILES 0.4534 0.9195 0.9315 0.9855 0.9577

DeepSMILES 0.4210 0.9262 0.9262 1.0000 0.9617
Tox21cw SMILES 0.6502 0.8316 0.9530 0.8630 0.9058

DeepSMILES 0.6466 0.9321 0.9402 0.9906 0.9647
Tox21 SMILES 0.3963 0.9380 0.9380 1.0000 0.9680

DeepSMILES 0.2207 0.9380 0.9380 1.0000 0.9680
SIDERcw SMILES 0.5005 0.7892 0.7687 0.9759 0.8600

DeepSMILES 0.4697 0.5594 0.6708 0.6596 0.6651

SIDER SMILES 0.5908 0.7852 0.7755 0.9518 0.8546

DeepSMILES 0.5054 0.7892 0.7687 0.9759 0.8600
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accuracy scores of 0.9799 and 0.9866 using SMILES 
and DeepSMILES representations, respectively. Mean-
while, for the newly proposed datasets, using zero-shot 
DeepSMILES representations yielded better outcomes 
compared to SMILES representations in two classifica-
tion tasks but demonstrated comparable performance in 
others tasks. Overall, the accuracy and F1-score of the 
method demonstrated a similar trend, with DeepSMILES 
generally yielding higher values for most tasks compared 
to SMILES, as depicted in Supplemental Figure S6 and 
Table 7.

As illustrated in Table  5 and Supplemental Figure S7, 
the model with relative_key PE demonstrated similar per-
formance trends in terms of the loss and RMSE as when 
using the relative_key_query PE and sinusoidal positional 
encoding for regression tasks. Specifically, compared to 
the Lipophilicity dataset, the model demonstrated rela-
tively similar performance in terms of the loss and RMSE 
on the ESOL and FreeSolv datasets when using SMILES 
and DeepSMILES representations. Specifically, for the 
Lipophilicity dataset, the model achieved an RMSE of 
0.5716 using SMILES and 0.6857 on zero-shot learning 
using DeepSMILES. Furthermore, when using the rela-
tive_key PE, using DeepSMILES for zero-shot learning 
analysis yielded better outcomes compared to SMILES 
on the FreeSolv dataset, as depicted in Supplemental Fig-
ure S7 and Table 7. This indicates a slightly greater per-
formance variability when applying zero-shot learning 
with DeepSMILES in this context.

Absolute PE
Tables  8 and 5 present the results of the BERT model 
using the absolute PE for classification and regres-
sion tasks respectively. Notably, in classification tasks, 
the proposed model achieved the highest performance 
accuracy (i.e., 0.9365) and F1-score (i.e., 0.9672) on the 
Tox21 dataset, followed by the ClinTox dataset. Further-
more, when a class-weight function was implemented on 
imbalanced datasets such as BBBPcw and Tox21cw , the dif-
ferences in the accuracy and F1 scores of the model when 
using the SMILES and DeepSMILES representations 
in zero-shot analysis were minimal, resulting in similar 
loss values on both datasets. Unlike other PEs, when the 
model adopted the absolute PE, using DeepSMILES for 
zero-shot learning yielded better outcomes compared to 
SMILES on two of the regression tasks, as indicated in 
Table 5. In summary, the BERT exhibited slightly better 
performance on most regression tasks when using the 
absolute PE.

We evaluate the performance of BERT transformer-
encoder-based models using zero-shot learning (Deep-
SMILES) and different positional encoding and PEs 
across various classification and regression tasks, identi-
fying distinct performance patterns based on the choice 
of molecular representations. The Table  9 compares F1 
scores for classification tasks and RMSE for regression 
tasks across different types of position encoding and PEs 
using BERT. The higher prediction errors on the FreeSolv 
dataset observed in our experiments shown in Table  9 
and Fig.  3 could stem from several factors inherent to 

Table 7 Performance of fine-tuned BERT with “relative_key” PE on various datasets

Bold values denote the best-achieved performance for clarity and emphasis

cw class-weighted function, DeepSMILES zero-shot learning analysis of BERT

Task Data Sequence Test loss Accuracy Precision Recall F1-score

Classification Malaria SMILES 0.4643 0.7787 0.7568 0.6965 0.7254
DeepSMILES 0.5220 0.7557 0.7360 0.6517 0.6913

COVID SMILES 0.4617 0.7973 0.8824 0.7317 0.8000

DeepSMILES 0.4425 0.8108 0.9091 0.7317 0.8180
COVID-19 SMILES 0.4526 0.7962 0.7917 0.7724 0.7819

DeepSMILES 0.4986 0.7808 0.7750 0.7561 0.7654

Cocrystals SMILES 0.5827 0.7134 0.6935 0.6056 0.6466

DeepSMILES 0.5249 0.7012 0.6410 0.7042 0.6711
BBBPcw SMILES 0.5651 0.7707 0.8210 0.8808 0.8498

DeepSMILES 0.5436 0.7902 0.8913 0.8146 0.8512
BBBP SMILES 0.2910 0.8585 0.8861 0.9272 0.9061

DeepSMILES 0.2836 0.8780 0.8938 0.9470 0.9196
ClinTox SMILES 0.0804 0.9799 1.0000 0.7857 0.8800

DeepSMILES 0.0421 0.9866 1.0000 0.8571 0.9231
Tox21 SMILES 0.3964 0.9380 0.9393 0.9984 0.9680

DeepSMILES 0.2282 0.9394 0.9394 1.0000 0.9688
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the dataset. The FreeSolv dataset, which focuses on sol-
vation free energy prediction, poses unique challenges 
due to; Small Dataset Size: FreeSolv contains a relatively 
small number of samples compared to other molecular 
datasets, making it harder for our models to generalize 
effectively.

Inherent Complexity of Solvation Free Energy: Predict-
ing solvation free energy involves intricate intermolecu-
lar interactions, which may not be captured adequately 
by the BERT model’s architecture or learned embeddings 
without domain-specific augmentations.

K‑fold cross‑validation
Alternative data-splitting strategies could be considered 
to assess the robustness and generalizability of the model. 
We conducted experiments using a diverse data-splitting 
strategy, leveraging K-fold cross-validation on the newly 
proposed datasets as shown in Table 10. Specifically, the 
dataset was partitioned into five consecutive folds (K=5) 
with shuffling to ensure representative subsets across the 
splits. This methodology helps minimize bias and vari-
ance in the performance evaluation by training the model 
iteratively on four folds while validating on the fifth, 
rotating through all folds. The experiments employed 
the our proposed model with only “absolute” and “rela-
tive_key_query” PEs, optimized for predicting molecu-
lar properties. Herein, significant improvement patterns 

were observed on both PEs for few of the newly proposed 
datasets (e.g., COVID and Cocrystals), except for the 
Malaria dataset, as shown in Table 10.

Molecule splitters (ScaffoldSplitter)
To further evaluate the performance of molecular repre-
sentations in our study, we employed the ScaffoldSplitter 
strategy, a specialized tool from DeepChem designed to 
split datasets based on the molecular scaffolds of small 
molecules [55]. This approach leverages the Bemis-
Murcko scaffold framework to group molecules with 
similar core structures. While ScaffoldSplitter is opti-
mized for standard SMILES strings, it does not natively 
support the alternative encoding style introduced by 
DeepSMILES, which requires preprocessing for compati-
bility. In this study, we applied ScaffoldSplitter exclusively 
to SMILES representations, with the results presented in 
Table 11. Interestingly, compared to other data-splitting 
strategies utilized in this work, the scaffold-based split-
ting approach demonstrated lower predictive perfor-
mance across both classification tasks (i.e., on newly 
proposed datasets) and regression tasks. These findings 
suggest that scaffold-based splitting may pose additional 
challenges for learning models when applied to the data-
sets considered in this study.

Table 8 Performance of fine-tuned BERT with “absolute” on various datasets

Bold values denote the best-achieved performance for clarity and emphasis

cw class-weighted function, DeepSMILES zero-shot learning analysis of BERT

Task Data Sequence Test loss Accuracy Precision Recall F1 score

Classification Malaria SMILES 0.5205 0.7537 0.7677 0.5920 0.6685
DeepSMILES 0.5505 0.7307 0.7368 0.5572 0.6346

COVID SMILES 0.6077 0.7703 0.8529 0.7703 0.7733
DeepSMILES 0.4851 0.7703 0.8529 0.7073 0.7733

COVID-19 SMILES 0.4163 0.8154 0.8049 0.8049 0.8049
DeepSMILES 0.4903 0.7577 0.7500 0.7317 0.7407

Cocrystals SMILES 0.6089 0.6463 0.6102 0.5070 0.5538
DeepSMILES 0.6203 0.6098 0.5574 0.4789 0.5152

BBBPcw SMILES 0.6037 0.7951 0.8978 0.8146 0.8542
DeepSMILES 0.6201 0.7756 0.8477 0.8477 0.8477

BBBP SMILES 0.6045 0.7268 0.7387 0.9735 0.8400

DeepSMILES 0.6098 0.7366 0.7366 1.0000 0.8483
ClinTox SMILES 0.4795 0.9195 0.9257 0.9928 0.9580

DeepSMILES 0.4298 0.9262 0.9262 1.0000 0.9617
Tox21cw SMILES 0.6814 0.7903 0.9427 0.8270 0.8811

DeepSMILES 0.6831 0.7223 0.9462 0.7469 0.8348

Tox21 SMILES 0.3563 0.9365 0.9393 0.9969 0.9672
DeepSMILES 0.3148 0.9365 0.9393 0.9969 0.9672
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Result on polaris benchmark
To address the limitations associated with the Molecu-
leNet dataset, which has been criticized for not being 
representative of real-world datasets [56], we conducted 
experiments on a selection of fine-tuning benchmarks 
from improved dataset sources, such as Polaris [57], for 
comparison as shown in Table  12. The selected data-
sets were initially split into training and test sets from 
Polaris. Compared to the MoleculeNet benchmark, 
notable performance improvements were observed 
on the BBBP dataset for both PEs (i.e., Absolute and 
Relative_key_query).

Newly proposed datasets
On the newly proposed datasets, our inherited BERT 
model also exhibited similar or comparable performance 
when fine-tuned using SMILES and zero-shot learning, 
as shown in Tables  4, 6, 7, and 8. During the zero-shot 
learning analysis (i.e., DeepSMILES representations) 
most PEs employed in our inherited model showed per-
formance improvements over SMILES representations in 

at least two of the four tasks, though the magnitude of 
improvement varied by task. Despite differences in per-
formance across various tasks, the BERT model consist-
ently seemed to handle best the COVID and COVID-19 
datasets, indicating its strong capability to handle com-
plex, real-world data related to viral outbreaks.

However, BERT exhibited the lowest F1-score with all 
PEs except for sinusoidal PE when applied to the cocrys-
tals dataset, suggesting that certain chemical structures 
might pose a greater challenge for the model. This may 
also be due to the nature of the cocrystals dataset fed into 
BERT involved two compounds, namely API and cofor-
mers, resulting in a long single sequence compared with 
the other datasets comprising a single compound. This 
increased sequence length may posed unique challenges 
for tokenization and encoding, potentially affecting the 
model’s ability to capture the interactions and relation-
ships between the two components effectively. There-
fore, these findings show that, in this field PEs might still 
struggle with long input sequences, which impact their 
performance on downstream tasks. This highlights the 

Table 9 Summary on F1 score and RMSE comparisons among position encoding/PEs using BERT

Bold values denote the best-achieved performance for clarity and emphasis

cw class-weighted function, DeepSMILES zero-shot learning analysis of BERT, F1 score classification tasks, RMSE regression tasks

Task Data Sequence Relative_key_
query

Sinusoidal Relative_key Absolute

Classification (F1 score) Malaria SMILES 0.7439 0.6811 0.7254 0.6685

DeepSMILES 0.6532 0.6866 0.6913 0.6346

COVID SMILES 0.7568 0.7805 0.8000 0.7733

DeepSMILES 0.7568 0.7671 0.8180 0.7733

COVID-19 SMILES 0.7718 0.7950 0.7819 0.8049
DeepSMILES 0.7179 0.7417 0.7654 0.7407

Cocrystals SMILES 0.5538 0.6713 0.6466 0.5538

DeepSMILES 0.5755 0.7285 0.6711 0.5152

BBBPcw SMILES 0.8092 0.8967 0.8498 0.8542

DeepSMILES 0.8456 0.7626 0.8512 0.8477

BBBP SMILES 0.8555 0.8531 0.9061 0.8400

DeepSMILES 0.8483 0.8473 0.9196 0.8483

ClinTox SMILES 0.9617 0.9577 0.8800 0.9580

DeepSMILES 0.9617 0.9617 0.9231 0.9617
Tox21cw SMILES 0.9493 0.9058 – 0.8811

DeepSMILES 0.9139 0.9647 – 0.8348

Tox21 SMILES 0.9688 0.9680 0.9680 0.9672

DeepSMILES 0.9688 0.9680 0.9680 0.9672

Regression (RMSE) ESOL SMILES 0.6185 0.5883 0.7878 0.5983

DeepSMILES 0.6557 0.6256 0.8431 0.5584
FreeSolv SMILES 1.8858 2.0491 2.6242 2.4169

DeepSMILES 2.1103 2.1572 2.0209 1.9840
Lipophilicity SMILES 0.5704 0.5732 0.5716 0.6025

DeepSMILES 0.6333 0.6707 0.6857 0.6747
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Table 10 Averaged performance of fine-tuned BERT using K-fold cross-validation on newly proposed datasets

Bold values denote the best-achieved performance for clarity and emphasis

Aver. Averaged, RKQ Relative_key_query, DeepSMILES zero-shot learning analysis of BERT

PE Data Sequence Aver. loss Aver. accuracy Aver. precision Aver. recall Aver. F1-score

Absolute Malaria SMILES 0.5364 ± 0.01 0.7332 ± 0.01 0.7227 ± 0.04 0.6203 ± 0.01 0.6672 ± 0.02
DeepSMILES 0.5662 ± 0.01 0.7130 ± 0.02 0.7189 ± 0.02 0.5510 ± 0.02 0.6234 ± 0.02

COVID SMILES 0.5640 ± 0.02 0.7973 ± 0.04 0.8472 ± 0.06 0.7530 ± 0.06 0.7959 ± 0.05
DeepSMILES 0.5316 ± 0.01 0.7716 ± 0.04 0.8010 ± 0.04 0.7560 ± 0.05 0.7770 ± 0.04

Cocrystals SMILES 0.5795 ± 0.01 0.6953 ± 0.02 0.6888 ± 0.03 0.6286v0.04 0.6560 ± 0.02
DeepSMILES 0.5723 ± 0.02 0.6807 ± 0.03 0.6692 ± 0.04 0.6188 ± 0.05 0.6418 ± 0.03

RKQ Malaria SMILES 0.5025 ± 0.01 0.7616 ± 0.01 0.7542 ± 0.02 0.6647 ± 0.02 0.7062 ± 0.01
DeepSMILES 0.5546 ± 0.01 0.7263 ± 0.01 0.7669 ± 0.04 0.5288 ± 0.04 0.6244 ± 0.02

COVID SMILES 0.4777 ± 0.02 0.8432 ± 0.02 0.9079 ± 0.03 0.7818 ± 0.03 0.8398 ± 0.03
DeepSMILES 0.4408 ± 0.04 0.8068 ± 0.03 0.8752 ± 0.01 0.7385 ± 0.06 0.8002 ± 0.04

Cocrystals SMILES 0.5247 ± 0.03 0.7197 ± 0.02 0.7127 ± 0.02 0.6633 ± 0.03 0.6867 ± 0.02

DeepSMILES 0.5154 ± 0.03 0.7416 ± 0.02 0.7323 ± 0.03 0.7041 ± 0.07 0.7151 ± 0.03

Fig. 3 Analysis of the similarity between the pretraining and downstream (i.e., FreeSolv) SMILES dataset samples (i.e., 8 randomly selected samples) 
based on the molecular structures. PCA Visualization of molecular embeddings in latent space using BERT model with a Absolute, b Relative_key_
query, c Relative_key PEs
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potential of exploring and selecting appropriate tokeni-
zation and PE strategies customized to specific tasks for 
optimal model performance.

Physiology datasets
On the physiology dataset, BERT with all PEs strongly 
performed well with and without class weight func-
tion, particularly with sinusoidal PE during fine-tuning, 
as shown in Supplemental Figure S3 and S4. This might 
be due to the following reasons: Structural Similarity 
Impact: If the chemical compounds used during pre-
training are structurally similar to those in downstream 
datasets, the pretrained BERT model may exhibit bet-
ter performance. This is because the model has already 
learned to represent patterns, relationships, and features 
present in similar chemical structures during pretrain-
ing. Consequently, the embeddings and attention mecha-
nisms of the model can directly transfer this knowledge 

to downstream tasks, improving predictive accuracy; 
Semantic Similarity in Text Representations: Physiol-
ogy-related datasets might encode information (e.g., 
functional groups, chemical interactions, or pharmaco-
logical properties) that align closely with textual patterns 
seen in pretraining corpora, such as chemical databases 
or SMILES/DeepSMILES notations. When this overlap 
occurs, the model benefits from reduced domain dis-
crepancy, as it doesn’t need to generalize across entirely 
unseen contexts.

We perform experimental analyses using three PEs 
(i.e., “absolute”, “relative_key_query”, and “relative_key”) 
to derive insights regarding how well the pretraining 
SMILES data aligns with the downstream SMILES data-
sets in terms of structural and latent features as shown 
in Figs.  4, 5, and 6. If the datasets show high similarity, 
it indicates that the pretrained model was well-suited 
for downstream tasks. Conversely, low similarity could 
highlight a potential domain gap requiring additional 

Table 11 Averaged performance of fine-tuned BERT using ScaffoldSplitter on newly proposed and regression datasets

Aver.: Averaged; RKQ: Relative_key_query; cls: Classification; reg: Regression

Sequence PE Datacls Aver. loss Aver. accuracy Aver. precision Aver. recall Aver. F1-score

SMILES Absolute Malaria 0.6195 0.6696 0.6622 0.5883 0.5728

COVID 0.5894 0.7608 0.8013 0.7311 0.7617

Cocrystals 0.7413 0.4877 0.5179 0.2464 0.2719

RKQ Malaria 0.5942 0.6898 0.6902 0.6018 0.5939

COVID 0.5028 0.8230 0.8981 0.7414 0.8100

Cocrystals 0.7228 0.6060 0.6990 0.3939 0.4521

Sequence PE Datareg Aver. loss Aver. RMSE

SMILES Absolute ESOL 0.8908 0.9366

FreeSolv 8.8316 2.7923

Lipophilicity 0.4697 0.6840

RKQ ESOL 1.1851 1.0529

FreeSolv 4.9600 2.1698

Lipophilicity 0.4666 0.6826

Table 12 Performance of fine-tuned BERT on polaris benchmark datasets

RKQ Relative_key_query, cls Classification, reg Regression

Sequence Datacls PE Loss Accuracy Precision Recall F1-score

SMILES BBBP Absolute 0.5189 0.8054 0.8074 0.9970 0.8922

RKQ 0.4732 0.8079 0.8079 1.0000 0.8937

Tox21 Absolute 0.3327 0.8952 0.8952 1.0000 0.9447

RKQ 0.3111 0.8952 0.8952 1.0000 0.9447

Sequence Datareg PE Loss RMSE

SMILES Lipophilicity Absolute 0.4573 0.6763

RKQ 0.4297 0.6555
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domain-specific fine-tuning. Similarity analysis between 
the pretraining and downstream SMILES dataset samples 
was performed based on the molecular structures using 
techniques like structural similarity measures (e.g., Tani-
moto score or Morgan fingerprints) and embedding simi-
larity in latent spaces as follows;

• Figures 4a, 5a, and 6a represent the Tanimoto Simi-
larity Heatmaps for BERT model with “absolute”, 
“relative_key_query”, and “relative_key” PEs respec-
tively. These heatmaps show a matrix of similarity 
scores between pretraining and downstream molecu-
lar SMILES samples, based on the Tanimoto coeffi-
cient derived from Morgan fingerprints. Each cell in 
the matrix will have a value between 0 and 1, where 

1 indicates identical structural fingerprints and 0 
means no similarity. Higher values suggest stronger 
structural similarity between molecules from the two 
datasets.

• Figures  4b, 5b, and 6b represent the Embedding 
Similarity Heatmaps for BERT model with “abso-
lute”, “relative_key_query”, and “relative_key” PEs 
respectively. These heatmaps represent the cosine 
similarity between the embeddings of the pretrain-
ing and downstream SMILES samples. Each value 
represents how similar the latent space represen-
tations of the molecules are, with values close to 
1 meaning very similar molecular representations 
(based on BERT’s learned embeddings), and values 
close to 0 suggesting dissimilarity. This provides a 

Fig. 4 Analysis of the similarity between the pretraining and downstream (i.e., Clintox) SMILES dataset samples (i.e., 100 randomly selected samples) 
based on the molecular structures using BERT with “Absolute” PE. a Tanimoto similarity heatmap, b Embedding similarity heatmap, and c PCA 
Visualization of molecular embeddings in latent space
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deeper, contextual understanding of how similar 
the datasets are in terms of molecular features.

• Figures  4c, 5c, and 6c also represent 2D principal 
component analysis (PCA) Plot for BERT model 
with three PEs respectively. In this plot, pretrain-
ing compounds and downstream compounds 
are plotted in a 2D space, and the molecules are 
reduced to two principal components using PCA 
to visualize the relationships between them. Points 
that are closer together indicate higher similarity 
(structural or embedding-based). Points that are 
far apart suggest significant differences between 
samples.

Physical chemistry datasets
From Tables  4, 6, 7, and 8, we can observe that all PEs 
in a pretrained BERT model exhibit similar low RMSEs 

on the ESOL and Lipophilicity datasets but consistently 
higher RMSEs on the FreeSolv dataset. The following fac-
tors could be contributing to this pattern.

Uniform Performance Across PEs: The fact that all PEs 
result in similar RMSEs suggests that the PE type might 
not be the primary factor influencing model performance 
on these datasets. This could mean that the nature of 
the task is not heavily dependent on the nuances of PEs. 
Instead, it relies more on the model’s ability to under-
stand the overall structure and relationships within the 
SMILES and DeepSMILES data.

Training Data Coverage: If the pretraining or fine-
tuning data has better coverage or representation of the 
types of molecules found in ESOL and Lipophilicity, the 
model will naturally perform better on these datasets. 
Conversely, the model will struggle more if FreeSolv con-
tains data points that are less well-represented or more 
diverse compared with the training data, resulting in 
higher errors.

Fig. 5 Analysis of the similarity between the pretraining and downstream (i.e., Clintox) SMILES dataset samples (i.e., 100 randomly selected samples) 
based on the molecular structures using BERT with “Relative_key_query” PE. a Tanimoto similarity heatmap, b Embedding similarity heatmap, and c 
PCA Visualization of molecular embeddings in latent space
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Discussion
Initially, we hypothesized that DeepSMILES represen-
tations would lead to less robust outcomes as the BERT 
for each PE was pretrained using only SMILES represen-
tations. However, our findings indicated slightly lower 
differences in downstream performance between the 
SMILES and DeepSMILES representations for all PEs 
across various classification and regression tasks. Both 
the accuracy and F1-score were higher for most tasks 
when using DeepSMILES compared to SMILES. Fur-
thermore, the test loss was generally lower for tasks using 
DeepSMILES, indicating improved model performance. 
Our findings suggest that the proposed BERT model, 
fine-tuned with various positional encodings and PEs, 
demonstrates competitive performance across both clas-
sification and regression tasks, with certain PEs (such as 
relative_key_query) showing advantages in specific con-
texts particularly in zero-shot learning scenarios. This 
consistent performance demonstrates the BERT model’s 

ability to generalize well across unseen data and high-
lights the potential of advanced PEs in enhancing the 
performance of pretrained LMs on chemical and bioac-
tivity prediction tasks.

Limitations
Despite these promising results, this study has several 
limitations that are important to consider. Firstly, the 
datasets used especially the fine-tuning datasets from 
MoleculeNet [7], may not encompass the complete diver-
sity of chemical structures encountered in real-world 
applications. This limitation could impact the generaliz-
ability of the findings, as the model’s performance might 
not be fully representative of the complexities present in 
real-world chemical data [56].

Another limitation is the evaluation of molecular rep-
resentations, which was limited to SMILES and Deep-
SMILES for zero-shot learning. This suggests the need to 
explore other representations such as SELFIES or InChI 

Fig. 6 Analysis of the similarity between the pretraining and downstream (i.e., Clintox) SMILES dataset samples (i.e., 100 randomly selected samples) 
based on the molecular structures using BERT with “Relative_key” PE. a Tanimoto similarity heatmap, b Embedding similarity heatmap, and c PCA 
Visualization of molecular embeddings in latent space
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to ensure a more comprehensive assessment of molecular 
representations and their impact on model performance.

Furthermore, the study used the same tokenization 
algorithm for SMILES and DeepSMILES, indicating that 
different tokenization strategies could be examined for 
potential improvements. Exploring alternative tokeni-
zation strategies could provide valuable insights into 
the impact of tokenization on model performance and 
generalizability.

Additionally, the computational complexity associ-
ated with BERT models necessitates considerations 
for practical implementation in resource-constrained 
environments. The study mentions that the complex-
ity of the model during pretraining necessitated the use 
of a smaller batch size and a reduction in the number of 
training epochs as observed in Tables 2 and 3. This limi-
tation highlights the need to address the computational 
overhead of BERT-based models without compromising 
accuracy, especially in practical applications.

Overall, these limitations underscore the need for fur-
ther research to address the diversity of datasets, explore 
alternative molecular representations and tokenization 
strategies, and optimize the practical implementation 
of BERT-based models in resource-constrained envi-
ronments. Addressing these limitations can enhance 
the comprehensiveness and applicability of the study’s 
findings.

Finally, we compared our work with other ML mod-
els reported in previous studies for classification tasks 
using two newly proposed datasets (i.e., malaria and 

cocrystals). For the malaria dataset, we implemented a 
BERT model incorporating the relative key-query PE, 
showcasing its adaptability for sequence-based data. In 
contrast, for the cocrystal dataset, we utilized a BERT 
model with sinusoidal positional encoding, which has 
been a standard approach in transformer architectures. 
The comparative results, summarized in Table 13, high-
light the performance differences between these models 
and provide insights into the impact of different posi-
tional encodings on dataset-specific tasks.

From the Table, it can be concluded that the BERT-based 
models utilizing SMILES and DeepSMILES sequences 
demonstrate competitive performance compared to tra-
ditional ML models. While the accuracy of BERT with 
SMILES and DeepSMILES sequences in both datasets is 
lower than graph neural networks (GNNs) models, the use 
of sequence-based inputs reflects the flexibility of BERT in 
handling text-based chemical representations. This high-
lights the potential of transformer-based architectures like 
BERT in cheminformatics tasks, particularly for applica-
tions where pretraining on chemical sequences might 
provide broader generalization capabilities compared to 
traditional feature engineering approaches.

Conclusion and future work
In classification tasks, the BERT model demonstrates 
lower performance on newly proposed datasets regard-
less of the PEs, such as the cocrystals dataset [40]. 
However, the model utilizing DeepSMILES occasion-
ally showed performance improvement compared to 

Table 13 Performance Comparison of ML models from previous studies for Classification Using different feature representations 
versus our study (i.e., BERT with different positional encoding strategies)

Bold values denote the best-achieved performance for clarity and emphasis

DeepSMILES zero-shot learning analysis of BERT, ECFP Extended-connectivity fingerprints, SVM Support Vector Machine, LR Logistic Regression, RF Random Forest, ANN 
Artificial Neural Network, XGB Extreme Gradient Boosting, RGCN Relational Graph Convolution Network, GCN  Graph Convolution Network

Dataset Study Features Model Accurary

Malaria Mswahili et al. [58] PaDEL SVM/LR 0.7850/0.7795

RF/ANN 0.8294/0.8223

Egieyeh et al.[59] RDKit SVM 0.8593

Danishuddin et al. [60] PaDEL SVM & XGBoost 0.8500

Mswahili et al. [39] Mordred/BERT RGCN 0.9958/0.9958
Our work SMILES sequences BERT (RKQ) 0.8017

DeepSMILES sequences BERT (RKQ) 0.7495

Cocrystals Wicker et al. [61] RDKit SVM 0.6400

Mswahili et al. [40] Mordred ANN/RF 0.8330/0.8290

XGB/SVM 0.8320/0.7460

Devogealer et al. [62] ECFP ANN 0.8000

Mswahili et al. [43] Mordred RGCN/GCN 0.9595/0.9136
Our work SMILES sequences BERT (Sinusoidal PE) 0.7134

DeepSMILES sequences BERT (Sinusoidal PE) 0.7500
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SMILES in terms of accuracy and F1-score. This suggests 
that the DeepSMILES representation captures more rel-
evant information for these tasks, leading to improved 
performance. The lower test loss observed when using 
DeepSMILES across most tasks further corroborates its 
effectiveness. Notably, the relative_key_query PE method 
demonstrates slightly better performance compared 
to the other PEs, indicating its remarkable capability to 
capture dependencies within SMILES and DeepSMILES 
input sequences.

For regression tasks, the performance tends to vary. 
Although DeepSMILES generally outperforms SMILES, 
particularly for the FreeSolv dataset, the performance 
difference is less pronounced on the ESOL and Lipophi-
licity dataset. The significant test loss and RMSE increase 
on the FreeSolv dataset using SMILES suggest that the 
model struggles with this representation in specific con-
texts, emphasizing the importance of choosing an appro-
priate molecular representation for different tasks.

Future research should address these limitations by 
expanding the range of molecular representations and 
datasets to confirm the generalizability of the findings. 
As observed during training, Table  3 suggests that fur-
ther investigations into reducing the computational 
overhead of BERT-based models without compromising 
accuracy could enhance their practical utility. Explor-
ing hybrid approaches that combine BERT with other 
machine learning techniques or domain-specific knowl-
edge may also yield notable improvements. Long-term 
observational research evaluating the real-world impact 
of these models on drug discovery and material science 
applications would provide valuable insights into their 
practical benefits.

Additionally, several tokenizers are available in chem-
informatics, such as SMILESTokenizer [23], Atom-in-
SMILES [63], SMILES pair encoding imitating BPE [64], 
Atom-level tokenization [64], k-mer (also known as 
n-grams) tokenization [64], and BPE [3, 23]. Of these, we 
adopted the SmilesTokenizer module from DeepChem 
[45, 46]. While other tokenizers were not considered in 
this study, they will be explored for comparison purposes 
in future research, provided that tokenization consider-
ably impacts quality of predictions in text generation 
frameworks [63], such as SMILES-based predictions 
[65]. In this case, we aim to not only explore the tokeni-
zation algorithms but also to investigate the effects and 
contributions of individual tokens, including branches, 
bonds, and the first, middle, and last elements from both 
SMILES and DeepSMILES representations.

Future work
In the near future, we aim to focus our research efforts on 
addressing the following critical issues. This will involve 

an in-depth exploration of the underlying challenges, a 
thorough evaluation of existing methodologies and data-
sets, and the development of innovative solutions.

• We aim to extend our research by exploring alterna-
tive PE techniques, with a particular focus on Rotary 
Position Embedding (RoPE) to effectively leverage 
the positional information [29]. RoPE has shown 
potential in improving the representation of sequen-
tial data, which may lead to more efficient encoding 
of chemical structures.

• Additionally, we plan to extend this study to gain a 
deeper understanding of the tokenization process, 
specifically investigating the contribution of indi-
vidual tokens in both SMILES and DeepSMILES 
representations. With an improved pretraining data-
sets, this analysis could provide valuable insights into 
how tokenization influences model performance and 
chemical related task predictions.

• We intend to incorporate zero-shot learning mech-
anism to evaluate the model’s ability to general-
ize across unseen data, assessing its robustness and 
adaptability to new tasks or domains.

• Furthermore to address the flaws associated with 
MoleculeNet dataset like to be considered not rep-
resentative of real-world data set [56], we anticipate 
in utilizing other fine-tuning benchmarks from other 
improved datasets sources such as Polaris [57], Meta-
MolNet [66].

We believe these extensions will not only broaden the 
scope of our research but also to contribute meaning-
ful advancements to the field and bridge existing gaps in 
knowledge or application of NLP LMs in cheminformatics.
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