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Abstract 

In October 2024 we celebrated the 15th anniversary of the first launch of ChEMBL, Europe’s most impactful, open-
access drug discovery database, hosted by EMBL’s European Bioinformatics Institute (EMBL-EBI). This is a good 
moment to reflect on ChEMBL’s history, the role that ChEMBL plays in Cheminformatics and Drug Discovery as well 
as innovations accelerated using data extracted from it. The review closes by discussing current challenges and pos-
sible directions that need to be taken to guarantee that ChEMBL continues to be the pioneering resource for highly 
curated, open bioactivity data on the European continent and beyond.
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A short history on the organization of bioactivity 
data
At the beginning of the twenty-first century, the drug dis-
covery community was facing a situation of rapid growth 
of large-scale bioactivity data in the open domain. Several 
interrelated factors were driving this fast-paced develop-
ment, including the rise of high-throughput screening 
(HTS) techniques and other technological advances such 
as chemical syntheses automation, the increasing empha-
sis on pre-competitive collaboration and data sharing, 
and the growing recognition of the value of open data for 
accelerating drug discovery. Moreover, the Sanger Centre 
(now the Wellcome Sanger Institute, located at the Well-
come Genome Campus) in Hinxton, England, was one of 
the most significant contributors to the Human Genome 
Project from 1990 to 2003 (they sequenced about a third 
of the human genome) [1] which led to increased knowl-
edge about the genetics of (potential) drug targets but 
also a growing demand to study targets experimentally.

These developments together spurred the need to col-
lect, curate, standardise, and store bioactivity data in an 
organised way in the early 2000’s. At that point in time, 
Inpharmatica Ltd., a UK-based biotech firm which was 
acquired by Galapagos NV in 2006 focused their data 
collection and storage on small molecules, biological tar-
gets, and their interactions, aiming to create a resource 
that could inform better drug design and target selec-
tion. Their product “StARlite” originated from the vision 
of John Overington and his team [2] was subsequently 
transferred to EMBL-EBI, where it found a new home 
and received funding from the Wellcome trust to launch 
ChEMBL as an open-access database; for the first time in 
October 2009 [3, 4].

As inherent in its original name (“StARlite”), Struc-
ture–Activity Relationship (SAR) data extracted from 
Medicinal Chemistry Literature was the focus at that 
time. The data was extracted from 12 different journals 
(Eur. J. Med. Chem., Nat. Biotechnol., Proc. Natl. Acad. 
Sci. USA, Bioorg. Med. Chem., J. Biol. Chem., Antimicrob. 
Agents Chemother., Drug Metab. Dispos., Science, Bioorg. 
Med. Chem. Lett., J. Med. Chem., J. Nat. Prod., Nature) 
with bioactivity data originating from ~ 26 thousand doc-
uments, covering ~ 330 thousand different assays, ~ 5400 
targets, and ~ 440 thousand chemical compounds. The 
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first version of ChEMBL was composed of only 15 pub-
lic-facing tables [5].

It was, however, anticipated early on that ChEMBL 
would quickly grow into a resource with more diverse 
data types capturing bioactivity data from not only scien-
tific literature but also from direct data depositions and 
from the addition of data partitions from other public 
databases. ChEMBL 03 (released in April 2010) intro-
duced the source column (SRC_ID) in the assays table 
“to capture the fact that, in future, ChEMBL may cap-
ture data from sources other than Scientific Literature” as 
stated in the release notes [6].

In fact, from ChEMBL 04 (released in May 2010) 
onwards, the plan to incoorporate more diverse data 
sources was implemented, with the first direct data 
depositions being in the area of neglegted tropical dis-
eases (NTDs) such as Plasmodium falciparum screening 
data from GSK, Novartis/GNF and St. Jude Children’s 
Research Hospital [7]. In parallel, the ChEMBL-NTD 
server was launched to provide early open access to NTD 
screening data, usually in a raw, uncurated data format. 
Deposition to this platform turns the data set into a cit-
able item even before publication of the curated data set 
in ChEMBL [8].

The ChEMBL database schema has significantly 
changed over time (Fig.  1) to be able to accomodate 

additional data types, but also to promote a FAIR (Find-
able, Accessible, Interoperable, Reusable) representation 
of the data entities. The first major schema changes have 
been performed for ChEMBL 08 (November 2010) and 
09 (February 2011). ChEMBL entities received unique 
identifiers for compounds, targets, assays and docu-
ments in the form ’CHEMBL123456’. From ChEMBL 08 
onwards, the MOLECULE_HIERARCHY table allowed 
to properly store parent-salt relationships for chemi-
cal compounds and the MOLECULE_DICTIONARY 
included many new fields which serve to describe cer-
tain drug properties (e.g., MOLECULE_TYPE, FIRST_
APPROVAL, BLACK_BOX_WARNING, PRODRUG, 
DOSED_INGREDIENT, THERAPEUTIC FLAG) for the 
newly added data on biotherapeutic drugs.

The first data deposition of a partition of another pub-
lic database into ChEMBL happened in the course of the 
ChEMBL 10 release (June 2011): a subset of data from 
the PubChem BioAssay database, namely dose–response 
endpoints (e.g.,  IC50,  Ki, Potency) from confirmatory 
assays in PubChem [9], has been included. This was fol-
lowed by data from the Guide to Receptors and Chan-
nels [10] and some first toxicity datasets, like the Open 
TG-GATEs dataset [11], and some public data sets for 
phospholipidosis and hepatotoxicity (extracted from 
scientific literature) in ChEMBL 11 (August 2011). The 

Fig. 1 Comparison of database schemas for ChEMBL 01 vs. ChEMBL 35. Higher resolution images for both entity-relationship diagrams (ERDs) can 
be found as part of the respective ChEMBL release notes [29] as well as in Supplements (Supplementary Figs. 1 and 2)
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growing amount of data made it necessary to structure 
the organism information of the targets by introducing 
the ORGANISM_CLASS table, based on the NCBI tax-
onomy [12]. In addition, an effort started to automate 
data standardisation protocols to a greater extend from 
ChEMBL 12 (December 2011) onwards, e.g., for meas-
urement types, values and units. Due to a growing num-
ber of targets, target identifiers for non-single protein 
targets (such as protein complexes or protein families) 
have been introduced at the same time.

A big push for increasing the number of toxicity data 
sets, annotated drug data sets, as well as data for NTDs 
happened with ChEMBL 14 and 15 in 2012/13 (with 
DrugMatrix in  vitro pharmacology assays [13], in  vivo 
data from Open TG-Gates [14], USAN applications [15] 
and INNs [16], the MMV Malaria box [17], GSK Tuber-
culosis Screening Data, and Harvard Malaria Screening 
Data etc. being deposited).

Another landmark was certainly the introduction of 
the pChEMBL value with ChEMBL 16 (May 2013) which 
allows a number of roughly comparable measures of half-
maximal response concentration/potency/affinity to be 
compared on a negative logarithmic scale [18]. At the 
same time, the database was also made available in RDF 
format for the first time.

ChEMBL 17 (September 2013) for the first time made 
available information regarding the mechanism of action 
for FDA-approved drugs (stored in the DRUG_MECHA-
NISM table). ChEMBL 18 (April 2014) made an effort to 
improve ontological mappings to, e.g., Cell Line Ontology 
[19], Experimental Factor Ontology (EFO) [20] and Cel-
losaurus Ontology [21]. Moreover, the BioAssay Ontol-
ogy (BAO) [22] was used to map the BAO_ENDPOINT 
(e.g.,  IC50,  Ki) and assign the BAO_FORMAT (e.g., cell-
based format, tissue-based format).

In ChEMBL 19 (July 2014) the content of ChEMBL was 
expanded to include more than 40 K compound records 
and 245 K bioactivity data points relevant to crop protec-
tion research (covering insecticides, fungicides and her-
bicides extracted from a number of different journals). 
Consequently, ChEMBL 20 (February 2015) introduced 
classification schemes for pesticides (fungicides, herbi-
cides, and insecticides) by Mechanism of Action (MoA) 
and chemical class.

Drug Indications for FDA approved drugs have been 
identified from a number of sources for ChEMBL 21 
(March 2016), including Prescribing Information, Clini-
calTrials.gov and the WHO ATC classification [23]. Map-
ping to both Medical Subject Headings (MeSH) disease 
identifiers and EFO disease identifiers guarantees maxi-
mum data FAIRness. Also, drug metabolism and phar-
macokinetic (PK) data from a number of data sources 
was included for the first time. These included curated 

drug metabolism pathway data from a variety of litera-
ture sources, data extracted from FDA drug approval 
packages, as well as data extracted from the Journal Drug 
Metabolism and Disposition.

The scope of ChEMBL was further expanded in a col-
laborative effort with the NIH-funded Illuminating the 
Druggable Genome (IDG) project [24] by including bio-
activity data for understudied targets from selected Sure-
ChEMBL patents; for the first time in ChEMBL 23 (May 
2017) [25]. To date, ~ 57 K compounds measured on 1673 
distinct targets (~ 184 K bioactivities) are reporting bio-
activity data extracted from SureChEMBL patents.

ChEMBL 24 (June 2018) included a major reformatting 
of supplementary data tables (ACTIVITY_PROPERTIES 
table, ACTIVITY_SUPP table) which made it possible to 
store complex assays against one individual assay iden-
tifier, e.g., when measurements at different time points 
or at different compound concentrations have to be 
recorded (e.g., DrugMatrix and Open TG-GATEs bio-
activity data). ChEMBL 25 (March 2019) introduced the 
in  vivo assay classification schema (ASSAY_CLASSIFI-
CATION table) consisting of a three-level classification 
[26].

A new in silico target prediction tool based on confor-
mal prediction was provided with ChEMBL 26 (March 
2020), replacing an older tool [27]. ChEMBL 27 (May 
2020) was a special COVID-19 release, incorporating 
data from eight drug repurposing papers, which tested 
the efficacy of approved drugs, clinical candidates and 
other selected compounds against SARS-CoV-2 infec-
tion/replication in cell-based assays.

ChEMBL 28 (February 2021) was the first release that 
included chemical probe data and a chemogenomic 
library deposited as part of the EUbOPEN project [28].

The latest releases of ChEMBL, versions 32–35, 
included a few schema changes, to introduce new fea-
tures and deprecate some legacy features. These changes 
included an update of the algorithm to calculate natu-
ral product-likeness, the addition of flags for natural 
products, chemical probes, and orphan drugs. The new 
ACTION_TYPE field as part of the ACTIVITIES table 
(released in CHEMBL 33) provides additional detail 
on the mode of action of tested compounds in the spe-
cific assay setup. The information is still sparse but will 
be populated for more bioactivity endpoints in future 
releases. Furthermore, an effort was undertaken to 
improve data provenance by time stamping documents of 
deposited data sets. By introducing the new CHEMBL_
RELEASE table the CREATION_DATE can now more 
easily be retrieved for each document. The very recent 
release of ChEMBL 35 (December 2024), introduced 
additional new features to increase data provenance 
and also FAIRness: the source of every document is now 
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described in more detail in the SOURCE_COMMENT 
and the new CONTACT field in the DOCS table offers 
the option to associate data sets with a primary point of 
contact (ideally ORCID IDs or other stable identifiers of 
researchers).

More detailed information on updates to the ChEMBL 
database in the past ~ 4 years are described in the latest 
database update paper in Nucleic Acids Research [30].

Most of the modifications applied to the database 
schema described in this section are an effect of an 
expanded scope of the ChEMBL database or else they 
resulted from the availability of improved features and 
software to replace outdated tools. As illustrated in 
Fig. 1, the database schema has expanded in size from 15 
(ChEMBL 01) to currently 78 tables (ChEMBL 35). While 
the ChEMBL database is nowadays able to accommodate 
bioactivity data from a wide variety of different data types 
and disease modalities, the same improvements have also 
led to a greater workload for the ChEMBL team when it 
comes to loading and curating data sets with novel data 
types and/or complex metadata information.

The role of ChEMBL in advancing cheminformatics 
and drug discovery
ChEMBL’s contributions to the field of cheminformat-
ics and drug discovery extend beyond providing a valu-
able data resource for research; it was also fundamental 
in catalysing method development in cheminformat-
ics and related fields as well as in spurring more holistic 
approaches by offering a multi-target view on drug dis-
covery. Furthermore, over the years ChEMBL spurred the 
discussion and set standards for FAIR and open data dis-
tribution [31, 32] and therefore serves as a role model for 
other open data providers. The latter influences related 
research fields such as subdomains of bioinformatics that 
focus on biomedical ontology development.

While the intend of this commentary is not to provide 
a comprehensive literature review of publications that 
report the use of ChEMBL in their research, it tries to 
summarise a few impactful studies that were enabled/
facilitated by the existence of ChEMBL.

Before delving into particular publications, some high-
level biblometric analyses were performed in order to 
capture the frequency/importance of specific topics that 
papers published by using data from ChEMBL inves-
tigate. To this end, the PubMed API was leveraged to 
retrieve all articles that mention the term “ChEMBL” in 
either its title or abstract (or both). Frequent terms of 
these articles are visualised in the form of a wordcloud 
in Fig.  2, giving some hints on potential areas of use of 
ChEMBL data, such as for studying molecular interac-
tions, investigating drugs, targets, or inhibitors. In terms 
of methods, we see the prevalent use of terms such as 

docking/virtual screening, machine learning, QSAR 
(quantitative structure–activity relationship). A more 
sophisticated analysis uses a topic modelling approach 
to cluster words on the basis of their prevalence and 
cosine similarity into a defined number of topics. As seen 
in Fig. 3, topics slightly vary for the different time peri-
ods, which were selected in order to have a comparable 
number of papers for each period, respectively (2010–
2019 and 2020–2024). While the topic labels have been 
assigned on the basis of semantic similarity, they were 
pre-defined by using a list of frequent topics in drug dis-
covery and cheminformatics in the past 15  years. Thus, 
the exact meaning of those labels should not be over-
interpreted but rather the list of frequent words for each 
topic shall serve as basis for interpretation of interest in 
a specific research field. Not surprising is the increased 
interest in infectious diseases, specifically research on 
SARS-CoV-2 in more recent years.

One of the most significant impacts of ChEMBL in 
cheminformatics has been its role in supporting QSAR 
modelling. By offering structured and well-curated data 
on chemical compounds and their biological activities, 
ChEMBL serves many researchers as a source for gen-
erating predictive in silico models for specific protein 
targets, or for a plethora of multiple targets simulta-
neously (the latter is often referred to as multi-target 
QSAR). Such investigations also spurred methodologi-
cal developments in the fields of cheminformatics and 
related fields. Examples include, e.g., a study explor-
ing the use of taxonomy-based multi-task learning to 
improve multi-target QSAR models for drug discovery, 

Fig. 2 Wordcloud produced by using the PubMed API to retrieve 
articles between 2010 and 2024 (912 papers in total) that mention 
“ChEMBL” in either the title or abstract (using the nlkt and wordcloud 
packages in python; number of common keywords extracted = 30). 
These are the most common keywords identified: (’drug’, 1105), 
(’molecular’, 824), (’models’, 812), (’targets’, 635), (’molecules’, 606), 
(’activity’, 591), (’inhibitors’, 590), (’target’, 565), (’screening’, 536), (’drugs’, 
522), (’potential’, 495), (’learning’, 476), (’binding’, 440), (’prediction’, 
433), (’protein’, 390), (’machine’, 377), (’docking’, 360), (’novel’, 348), 
(’virtual’, 330), (’design’, 297), (’methods’, 291), (’active’, 259), (’space’, 
246), (’structural’, 243), (’biological’, 242), (’qsar’, 238), (’structures’, 237), 
(’ligands’, 234), (’interactions’, 230), (’performance’, 223)
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Fig. 3 Heatmaps showing the relationships between the identified topics and the top words associated with those topics, which were derived 
from topic modeling based on articles in PubMed that contain the term “ChEMBL” in either title or abstract. Darker colour indicates a higher word 
weight (higher prevalence). Words within a topic are ordered by increasing word weight from left to right. The left heatmap is based on 421 articles 
published between 2010 and 2019; the right heatmap is based on 511 articles published between 2020 and 2024. Topic modelling was performed 
using Latent Dirichlet Allocation (sklearn package in python) by retrieving 5 topics and 10 words, respectively, for each time period. Each topic 
is represented by a list of words initially, with weights indicating how important each word is to the topic. Further a Sentence Transformer model 
(sentence-transformers library in python) was used to match a predefined set of single representative terms using word embeddings and cosine 
similarity
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particularly by leveraging knowledge transfer between 
similar targets by Rosenbaum et  al. [33]; a study by 
Lounkine et  al. introducing a method termed “Chem-
otography”, which visualizes structure–activity rela-
tionships (SAR) in the context of complex biological 
pathways, offering a new paradigm for understanding 
drug interactions within biological systems [34]; and 
the SAR Matrix methodology by Ye Hu et  al. which 
helps systematic extraction and analysis of large-scale 
SARs and exploration of mulitarget actvity spaces in 
chemogenomics [35].

The existence of ChEMBL also encouraged the devel-
opment of new methods for data mining, predictive 
modeling, and machine learning. For these methods, the 
integration of bioactivity data from multiple data sources 
became increasingly important as mentioned in several 
studies over the years [36–38]. Also, the concept of inte-
grating and utilising negative data (inactive bioactivity 
data) in predictive in silico models in order to enhance 
their accuracy was realised by leveraging ChEMBL data 
(among other sources) [39].

Notably, ~ 24% of all articles (222 papers) mentioning 
“ChEMBL” in their abstract or title, do also mention the 
term “machine learning”. There is a clear upward trend 
of such papers being published recently, with 29, 37 and 
45 articles, respectively, published in the years 2022–
2024. Apart from the use of ChEMBL data for generat-
ing machine learning (ML) models and testing new ML 
algorithms, large and highly curated data sets play an 
increasingly important role in benchmarking for the pur-
pose of systematically evaluating and comparing the per-
formance of algorithms. ChEMBL served in that way too 
as demonstrated by multiple papers [40–42]. ChEMBL’s 
bioactivity data was also used in studies combing ligand- 
and structure based molecular modelling, such as ML-
based virtual screening approaches [43–46].

In computational toxicology, ChEMBL plays a sig-
nificant role as well as data from ChEMBL offers mani-
fold ways to explore toxicity. For instance, bioactivity 
data from ChEMBL for specific off-targets can serve to 
build predictive in silico models that can be used in the 
hit-to-lead or lead optimisation phases during drug 
development or as part of a regulatory submission pro-
cess. Examples include models for human Ether-a-go-
go Related Gene (hERG) [47] or hepatic Organic Anion 
Transporting Polypeptides (OATPs) [38]. By including 
mechanistic information from adverse outcome path-
ways (AOPs), one can also leverage information about 
molecular initiating events (MIEs) and extract bioactiv-
ity data for protein targets linked to MIEs as shown by 
Gadaleta et al. [48]. Predictive binary QSAR models built 
for those targets can be used as proxies for, e.g., organ-
specific toxicities of chemicals.

Another way to make use of ChEMBL data for toxic-
ity studies is to start from a chemical structure and query 
ChEMBL for potential (human) protein targets that 
might be affected by the chemical. In a study by Hong 
et  al. [49] the ChEMBL-derived targets served as the 
foundation for further network toxicology and pathway 
enrichment analyses, which provided insights into bio-
logical processes and signaling pathways influenced by 
Bisphenol A.

It is worth noting, that the majority of assays in 
ChEMBL are of type “Functional” (830  K) and “Bind-
ing” (520  K), but ChEMBL 35 also contains 300  K and 
60 K assays of type “ADME” and “Toxicity”, respectively. 
In  vivo data in ChEMBL has been thoroughly curated 
and annotated with the animal disease model or pheno-
typic endpoint [50].

The availability of detailed chemical structure data 
in ChEMBL alongside with bioactivity measures and 
detailed information on protein targets also allows users 
to explore chemical and biological similarity of small 
molecules. These possibilities led to, e.g., advancements 
in the development of methods for chemical similarity 
measures [51–53], target prediction algorithms [54–56], 
the exploration of the concepts of polypharmacology [57, 
58] and activity cliffs [59, 60], and the way how chemi-
cal space is navigated and visualised. Excellent reviews 
on these topics have been provided by, e.g., the research 
group of J.-L. Reymond [61, 62].

In the history of ChEMBL, the deposition of bioactiv-
ity data for neglected diseases has played an important 
role from the start. Academic research relies mostly on 
open data and can also afford to study commercially less 
attractive targets/diseases. Thus, several studies utilizing 
data from ChEMBL do also focus on neglected and tropi-
cal diseases, such us tuberculosis [63], dengue fever [64], 
or malaria [65].

Conclusions
Over the past 15 years, ChEMBL has solidified its role as 
a pioneering database of highly curated and structured 
bioactivity data in the fields of cheminformatics and drug 
discovery. Its evolution, from the foundational StARlite 
database to its current form as ChEMBL 35, reflects its 
adaptability to scientific advancements and expanding 
data needs. ChEMBL’s impact extends beyond being a 
resource; it has catalyzed method development, inspired 
multidisciplinary research, and advanced the principles 
of FAIR data sharing.

ChEMBL’s influence is particularly notable in enabling 
predictive modeling, machine learning applications, com-
putational toxicology, and computational drug discovery. 
Its data has empowered researchers to explore chemi-
cal space, design (safer) drugs, and address challenges in 
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neglected disease areas. The continuous refinement of its 
schema and tools underscores its commitment to meet-
ing the growing complexity of bioactivity data.

Looking forward, ChEMBL’s success depends on navi-
gating challenges such as curating increasingly diverse 
datasets with an ever-expanding diversity of assays 
and experimental conditions as well as supporting new 
modalities in drug discovery. In future, even more accu-
rate annotations of assays will be needed to make optimal 
use of ChEMBL for building large training sets for ML 
applications.

By maintaining its ethos of open-access collaboration 
and innovation coupled with very high standards for data 
curation, ChEMBL is poised to remain a leading resource 
for preclinical bioactivity data as well as clinical candi-
date and drug data globally, accelerating discoveries that 
bridge chemistry and biology for years to come.
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