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Abstract 

Aqueous solubility (AS) is a key physiochemical property that plays a crucial role in drug discovery and material 
design. We report a novel unified approach to predict and infer chemical compounds with the desired AS based 
on simple deterministic graph-theoretic descriptors, multiple linear regression (MLR), and mixed integer linear 
programming (MILP). Selected descriptors based on a forward stepwise procedure enabled the simplest regres-
sion model, MLR, to achieve significantly good prediction accuracy compared to the existing approaches, achieving 
accuracy in the range [0.7191, 0.9377] for 29 diverse datasets. By simulating these descriptors and learning models 
as MILPs, we inferred mathematically exact and optimal compounds with the desired AS, prescribed structures, 
and up to 50 non-hydrogen atoms in a reasonable time range [6, 1166] seconds. These findings indicate a strong cor-
relation between the simple graph-theoretic descriptors and the AS of compounds, potentially leading to a deeper 
understanding of their AS without relying on widely used complicated chemical descriptors and complex machine 
learning models that are computationally expensive, and therefore difficult to use for inference. An implementation 
of the proposed approach is available at https:// github. com/ ku- dml/ mol- infer/ tree/ master/ AqSol.  

Scientific contribution 

We provide a thorough survey of prediction models designed for AS. Based on simple graph-theoretic descrip-
tors, MLR, and MILP, we successfully predicted and inferred optimal compounds with the desired AS across diverse 
datasets. These findings indicate a strong correlation between the simple graph-theoretic descriptors and the AS 
of compounds, potentially leading to a deeper understanding of their AS without relying on widely used complicated 
chemical descriptors and complex machine learning models that are computationally expensive, and therefore dif-
ficult to use for inference.
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Introduction
The study of quantitative structure-activity/property 
relationship (QSAR/QSPR) and inverse QSAR/QSPR 
is crucial in the field of computational chemistry, bio-
informatics and material informatics to understand the 
complex relationships between molecular structures and 
their properties  [1]. QSAR/QSPR aims to predict the 
properties of a given chemical compound, while inverse 
QSAR/QSPR seeks to infer chemical compounds of 
desired properties.

Aqueous solubility (AS) of chemical compounds is a 
physiochemical property with great significance in vari-
ous areas such as drug discovery, and material design [2]. 
There has been a notable focus on QSPR for the accu-
rate prediction of AS through machine learning mod-
els such as multiple linear regression (MLR), logistic 
regression (LR), least absolute shrinkage and selection 
operator (LASSO), partial least square (PLS), and ran-
dom forest (RF). We give a brief review of some recent 
prediction models as follows. Palmer et  al.  [3] devel-
oped a prediction model based on RF with 2D and 3D 
descriptors generated by molecular operating environ-
ment  (MOE). In this study, one dataset was used for 
testing of the model, which may not be sufficient for an 
in-depth analysis. In addition, the 3D descriptors can be 
computationally expensive, and can be difficult to use in 
the inverse QSAR/QSPR (see Table 1). Raevsky et al. [4] 
represented chemical compounds by the descriptors gen-
erated from Hybot, Dragon, and VolSurf, and compared 
the accuracy of prediction models constructed by MLR, 
RF and support vector machine (SVM). They tested their 
models on one dataset, and the use of non-deterministic 

descriptors may limit the application of their model 
to the inverse QSAR/QSPR. Lowe  et  al.  [5] utilized the 
PaDEL-Caret package to generate descriptors, and pre-
dicted aqueous solubility with RF. Similarly, testing was 
performed on only one dataset, and the descriptors were 
non-deterministic. Lovrić et al. [6] used LASSO, RF, and 
light gradient boosting machine (lightGBM). For the rep-
resentation of compounds, they used fingerprints and 
non-deterministic molecular descriptors generated by 
Dragon. The models were tested on only one dataset. 
Tayyebi et al. [7] used MLR and RF with Mordred pack-
age to generate 2D and 3D descriptors and tested the 
models on one dataset. Wang et  al.  [8] employed MLR 
to construct prediction models by using 2D and 3D 
descriptors generated by Sybyl and Amber, respectively. 
In this study, the model was tested on five datasets with 
a minimum evaluation score of 0.4, which is well below 
the acceptable level. Meftahi et al.  [9] generated diverse 
descriptors using Gauusian09, Sybyl, and BioPPSy to pre-
dict AS by MLR. They tested their model on seven data-
sets with a minimum evaluation score of 0.47, which may 
limits the application of their model to other datasets. 
Cao et al. [10] used PLS and advanced machine learning 
tools, back-propagation network (BPN) and support vec-
tor regression (SVR), to model the relationship between 
molecular descriptors and AS. These models were tested 
on one dataset with a minimum evaluation score 0.69 
which is below the acceptable level. Deng et al. [11] used 
different neural networks such as convolution neural 
network (CNN), recurrent neural network (RNN), deep 
neural network (DNN), and shallow neural network 
(SNN) with non-deterministic molecular descriptors 

Table 1 A summary of recent models used to predict aqueous solubility

a Different numbers of descriptors generated by different software

S. no Model # datasets Descriptor information (size) Software R2 Min, Max

1 RF [3] 1 Deterministic 2D, 3D (200) MOE 0.89

2 MLR, RF, SVM [4] 1 Non-deterministic (21) Hybot, Dragon, Sybyl, VolSurf 0.701, 0.736

3 RF [5] 1 Non-deterministic (16) PaDEL-Caret package 0.82

4 LASSO, PLS, RF, LightGBM [6] 1 Non-deterministic (317) Dragon N/A

5 MLR, RF [7] 1 Deterministic 2D, 3D Mordred package 0.80, 0.98

6 MLR [8] 5 Deterministic 2D, 3D (58) Sybyl, Amber 0.4, 0.9

7 MLR [9] 7 Deterministic (2, 3, 8)a Gaussian09 program, Sybyl, BioPPSy 0.47, 0.87

8 PLS, BPN, SVR [10] 1 Deterministic (28) Dragon 0.69, 0.735

9 CNN, RNN, DNN, SNN [11] N/A Non-deterministic (N/A) N/A N/A

10 GNN [12] 1 Non-deterministic 2D, 3D (839) Mordred, Pybel, RDKit 0.76

11 BCSA [13] 5 Non-deterministic Within model 0.83, 0.88

12 STN [14] 5 Deterministic (25) RDKit 0.65, 0.89

13 GCNN [15] 1 Non-deterministic 2D, 3D (839) Mordred, Pybel, RDKit 0.86

14 CS-LightGBM [16] 1 Non-deterministic RDKit 0.8575

15 SAMPN [17] 1 Deterministic MPN N/A
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obtained from Dragon. Panapitiya et al. [12] used RDKit, 
Mordred, and Pybel for generating non-deterministic 2D 
and 3D descriptors and employed a graph neural net-
work (GNN) for prediction. They tested their model on 
only one dataset. Hou et al. [13] proposed a deep learn-
ing model named bidirectional long short-term memory 
with channel and spatial attention network (BCSA) to 
generate non-deterministic descriptors and construct 
prediction models. They tested the model on five data-
sets and attained good evaluation scores. However, BCSA 
is computationally expensive and can be difficult to use 
in inverse QSAR/QSPR. Francoeur  et  al.  [14] presented 
STN, a molecule attention transformer to predict aque-
ous solubility. They used SMILES representations of mol-
ecules and RDKit to generate descriptors. The model was 
tested on five datasets with a minimum evaluation score 
0.65 less than the desired threshold. Moreover atten-
tion transformers are computationally expensive. Graph 
convolution neural networks (GCNN) were utilized by 
Conn et al.  [15]. They used 2D and 3D non-determinis-
tic descriptors generated by RDKit and Mordred, and 
tested the model on only one dataset. Li et al. [16] devel-
oped a model by using cuckoo search algorithm with 
light gradient boosting machine (CS-LightGBM) where 
molecular fingerprints were used as molecular represen-
tation to express the structure of compounds. The model 
was tested on one dataset. Tang et al.  [17] introduced a 
self-attention-based message-passing neural network 
(SAMPN) model. They generated specific descriptors 
by message passing network encoder (MPN), and tested 
the model on a single dataset. A summary of these mod-
els is given in Table  1 with the number of testing data-
sets, descriptor information, software used to generate 
descriptors, and the evaluation scores R2 , where the min-
imum and maximum scores are listed if more than one 
dataset is used in the corresponding model.

From Table  1, we can observe that most of the mod-
els are tested on a single dataset and a few are tested on 
five or seven datasets, which is very limited size for an in-
depth analysis of a prediction model; some models used 
non-deterministic 3D and chemical descriptors, making 
it difficult to use them for the inverse QSAR/QSPR; and 
some of the listed models did not achieve good evaluation 
scores for all the tested datasets, thereby making their 
applicability to other datasets questionable. Furthermore, 
to the best of our knowledge, no inverse QSAR/QSPR 
model exists that is specifically designed to infer chemi-
cal compounds with the desired AS. These limitations of 
the existing models necessitate the exploration of simple 
deterministic descriptors and simple machine learning 
models to achieve high accuracy, thus allowing their effi-
cient use in inverse QSAR/QSPR.

Recently, Azam et  al.  [18] proposed a novel frame-
work based on machine learning models and MILP to 
infer acyclic chemical structures with a desired prop-
erty value. Shi  et  al.  [19] and Zhu  et  al.  [20] extended 
this framework to infer chemical structures with rings. 
Similarly, Ido et al. [21] extended the framework for poly-
mers. The framework has two phases: prediction phase 
and inference phase. A chemical compound is modeled 
as a chemical graph. Instead of using complicated non-
deterministic chemical descriptors that are difficult to 
compute, and hence challenging for inverse QSPR, sim-
ple deterministic graph-theoretic descriptors are devel-
oped to construct prediction functions in the prediction 
phase. Other existing inverse QSPR approaches based 
on heuristics or statistical optimization algorithms do 
not ensure the exactness and optimality of the inferred 
chemical compounds, i.e., such approaches can infer 
invalid compounds, and the inferred compounds may not 
attain the desired property value. To avoid such issues 
in the inference phase of the framework, the descriptors 
and prediction functions are simulated by MILP formula-
tions that are feasible if and only if there exists a desired 
chemical graph, and thus ensures the exactness and opti-
mality of the inferred chemical graph. This formulation 
also allows the users to specify a prescribed structure to 
be preserved in the inferred graph.

Motivated by the importance of AS in drug discov-
ery and material design, we aim to develop an approach 
that can address the shortcomings of the existing mod-
els. For this purpose, we use the framework  [19, 20] to: 
(i) accurately predict AS for diverse datasets; and (ii) effi-
ciently infer mathematically exact and optimal chemical 
compounds with the desired AS. The efficiency of this 
framework highly relies on the accuracy of the prediction 
phase. Therefore we modify the framework by introduc-
ing (a) a forward stepwise procedure (FSP) with MLR to 
select significant descriptors which are crucial for achiev-
ing high accuracy; and (b)  different prediction strate-
gies based on the simplest regression model, MLR, to 
construct good prediction functions. In contrast to the 
existing approaches, which are tested on a very limited 
number of datasets, we collected 29 diverse datasets to 
demonstrate the usefulness of our proposed approach. 
The main advantages of the proposed approach include 
the simple deterministic graph-theoretic descriptors 
that are computationally efficient to compute and a 
straightforward machine learning model, MLR, which 
is efficient to train. Despite its simplicity, the approach 
demonstrated the ability to construct accurate predic-
tive functions for AS across all 29 datasets, achieving 
higher accuracy than recent methods based on advanced 
machine learning tools, such as artificial neural network 
(ANN), for several datasets. Additionally, the approach 
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can infer chemical compounds with desired AS while 
ensuring the validity and optimality of the inferred 
compounds. It also allows users to specify a prescribed 
structure to be preserved in the inferred compounds. 
Computational experiments confirmed that the proposed 
approach successfully inferred several chemical graphs 
with desired AS and prescribed structures in a reason-
able time. All datasets, source codes, and results are pub-
licly available at  https:// github. com/ ku- dml/ mol- infer/ 
tree/ master/ AqSol.

Our approach
Our approach is based on the framework [19, 20] to pre-
dict and infer chemical graphs with the desired AS. The 
inference phase of the framework highly depends on the 
learning performance of the prediction function con-
structed in the prediction phase. Therefore we modify 
the framework by introducing an FSP with MLR to select 
a set of best descriptors, and different learning strategies 
based on MLR to construct good prediction functions. 

The details of our approach are discussed in Sects. Pre-
diction Phase and Inference Phase. An illustration of the 
approach is given in Fig. 1.

Prediction phase
Modeling: We represent a chemical compound as a 
chemical graph based on the modeling introduced by 
Zhu et al.  [20]. A chemical graph C = (H ,α,β) consists 
of a simple connected and undirected graph H, a vertex-
labeling α that keeps the information of chemical ele-
ments, such as C (carbon), O (oxygen), H (hydrogen) and 
N (nitrogen), at each vertex, and an edge-labeling β that 
keeps the information of single, double, and triple bonds 
between two adjacent atoms. The chemical graph C of 
the compound 3-(3-Ethylcyclopentyl) propanoic acid is 
illustrated in Fig. 2a.

A chemical graph is divided into interior part and 
exterior part based on the two-layered model by 
Shi et al. [19]. For a given parameter ρ , the exterior part 
consists of non-root vertices and edges of rooted tree-like 

/FSP
LLR

Fig. 1 An illustration of  our approach to inferring a chemical graph with the desired AS

Fig. 2 a Representation of the chemical compound 3-(3-Ethylcyclopentyl) propanoic acid with CID = 20849290 as a chemical graph C ; b The 
vertices and edges of the interior and exterior parts of C depicted with black and gray colors, respectively, in the two-layered model. The sets 
of interior and exterior vertices are {u1, u2, . . . , u7} and {w1,w2, . . . ,w5} , respectively

https://github.com/ku-dml/mol-infer/tree/master/AqSol
https://github.com/ku-dml/mol-infer/tree/master/AqSol
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chemical subgraphs called ρ-fringe trees of height at most 
ρ . Intuitively, the fringe trees resemble terminal func-
tional groups, which play an important role in the prop-
erties of the compounds. The subgraph other than the 
exterior part of a chemical graph is called the interior 
part (refer to Appendix  A for details). The interior and 
exterior parts of the chemical graph given in Fig. 2a are 
depicted in Fig.  2b, where hydrogen atoms are ignored. 
The 2-fringe trees are illustrated in Fig. 3.

Descriptors and their selection: Instead of using some 
complex chemical descriptors which are hard to compute 
and use in the inverse QSPR, we use simple and effective 
graph-theoretic descriptors introduced by Zhu et al. [20]. 
For a chemical graph C = (H ,α,β) , these descriptors are: 
the number of non-hydrogen atoms in C ; the rank of C ; 
the number of vertices in the interior; the average of mass 
over all atoms in C ; the number of vertices of degree 
d, d ∈ {1, 2, 3, 4} in C ignoring the vertices with hydrogen; 
the number of vertices of degree d, d ∈ {1, 2, 3, 4} in the 
interior ignoring the vertices with hydrogen; the number 
of edges with bond multiplicity m, m ∈ {2, 3} in the inte-
rior; the frequency of chemical elements in the interior; 
the frequency of chemical elements in the exterior; the 
frequency of edge-configurations in the interior which are 
defined to be the triplets (ad, b d′,m) for each edge e = uv 
in the interior with α(u) = a, α(v) = b, degree of u (resp., 
v) equals to d (resp., d′ ) and β(e) = m ; the frequency of 
fringe-configurations in the set of ρ-fringe-trees in C ; and 
the frequency of adjacency-configurations (a, b,m) in the 
set of leaf-edges e = uv with either u or v has degree 1 
in C , where α(u) = a, α(v) = b and β(e) = m . These 
descriptors are listed in Table 2 for an example chemical 
graph C given in Fig. 2a.

Selection of significant descriptors plays a key role in 
constructing good prediction functions. We introduce a 
descriptor selection method based on the forward step-
wise procedure (FSP)  [22] and MLR. FSP selects sig-
nificant descriptors iteratively. That is, it starts with an 
empty set of selected descriptors, at each iteration adds 
a new descriptor from the set of unselected descriptors 
that has the optimal MLR evaluation score when com-
bined with the current set of selected descriptors, and 

terminates the procedure when a desired number of 
descriptors is selected (refer to Appendix B for details). 
We also use LASSO linear regression (LLR) for descrip-
tor selection in our approach.

Prediction strategies: We introduce different predic-
tion strategies by using FSP for descriptor selection, 
MLR for prediction, and evaluation methods. These 
evaluation methods mainly depend on leave-one-out 
validation  (LOOV) and cross validation  (CV) (refer to 
Appendix C for details). The proposed prediction strat-
egies are listed below:

– FSP-MLR: FSP is utilized to identify best descriptors, 
followed by the construction of a prediction function 
using MLR, and is evaluated by 10 times 5-fold CV.

– FSP-MLR-LOO: FSP is applied for selecting best 
descriptors with 5-fold CV for evaluation. Then MLR 
is employed for prediction, and the performance is 
evaluated using LOOV.

– FSP-LOO-MLR: FSP is used for the selection process 
and MLR is used for the prediction process. Both 
processes are evaluated by using LOOV.

Similarly, we also tried some other prediction strate-
gies based on MLR, LLR and ANN. These strategies are 
listed below:

– MLR: MLR is applied without selecting descriptors 
with 10 times 5-fold CV for evaluation.

– MLR-LOO: MLR is applied without selecting 
descriptors utilizing LOOV.

– LLR-ANN: LASSO is used to identify best descrip-
tors, followed by the construction of a prediction 
function using ANN. This strategy is evaluated by 10 
times 5-fold CV. For more details, we refer to [23].

– LLR-ANN-LOO: LASSO is utilized to identify best 
descriptors followed by the construction of a pre-
diction function using ANN which is evaluated by 
LOOV. This strategy is basically a modification of 
LLR-ANN [23].

Fig. 3 The 2-fringe trees C[ui] , i ∈ [1, 7] of the example C in Fig. 2a rooted at ui
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– LLR-LLR: LASSO is utilized for selection of best 
descriptors and construction of a prediction func-
tion. The performance is evaluated by 10 times 5-fold 
CV. For more details, we refer to [20].

For all these strategies, we use the graph-theoretic 
descriptors.

Inference phase
Several inverse QSPR models are available in the lit-
erature. However, most of these models heavily rely on 
heuristic algorithms or statistical optimization tech-
niques, which often result in the inference of inva-
lid compounds or compounds that do not attain the 
desired property value, and hence can be quite compu-
tationally expensive. In order to avoid such situations, 

we simulate the computation process of a prediction 
function by an MILP formulation due to Zhu et al. [20] 
to infer chemical graphs with the desired AS. A key 
advantage of this formulation is that it is feasible if and 
only if a desired chemical graph exists, implying that 
the inferred graphs will always be valid and achieve the 
desired AS. Furthermore, this formulation allows users 
to specify an abstract structure that is preserved in the 
inferred graph by using a topological specification. A 
topological specification is described as a set of follow-
ing rules: 

 (i) a seed graph GC that represents an abstract form of 
a target chemical graph C;

 (ii) a set F  of chemical rooted trees that are selected 
for a tree C[u] with root at each vertex u in the 
exterior; and

Table 2 Descriptors for the chemical graph C given in Fig. 2a

Descriptor Descriptor value

Number of non-hydrogen atoms in C 12

Rank of C 1

Number of vertices in the interior 7

Average mass 56.667

Number of non-hydrogen vertices of degree 1 0

Number of non-hydrogen vertices of degree 2 5

Number of non-hydrogen vertices of degree 3 2

Number of non-hydrogen vertices of degree 4 0

Number of vertices of degree 1 in the interior 1

Number of vertices of degree 2 in the interior 5

Number of vertices of degree 3 in the interior 1

Number of vertices of degree 4 in the interior 0

Number of edges of bond multiplicity 2 in the interior 0

Number of edges of bond multiplicity 3 in the interior 0

Frequency of chemical elements in the interior:

C 7

Frequency of chemical elements in the exterior:

C 3

O 2

Frequency of edge-configurations in the interior:

C 2 C 2 1 2

C 2 C 3 1 5

Frequency of fringe-configurations in the set of ρ-fringe trees:

C 0 H 1 1

C 0 H 1 H 1 4

C 0 H 1 H 1 C 1 O 2 H 3 1

C 0 H 1 C 1 H 2 C 2 H 3 H 3 1

Frequency of adjacency-configurations in the set of leaf-edges:

C C 1 1

O C 1 1

O C 2 1
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 (iii) lower and upper bounds for the number of compo-
nents such as vertices in the interior and double/
triple bonds within a target chemical graph C.

For a given seed graph GC , the formulation constructs the 
interior of a target chemical graph C by replacing typical 
edges with paths, and exterior by attaching fringe trees. 
Figures  4a, 4b illustrate an example of a seed graph GC 
with a typical edge, and a set F  of chemical rooted trees, 
respectively. The chemical graph given in Fig. 2a can be 
obtained from the seed graph GC by replacing the typi-
cal edge with a path of length 2, and then attaching the 
fringe trees from F  accordingly.

Experimental results and discussion
We implemented and tested the proposed approach on a 
PC with Processor: Core i3 (2.6 GHz at the maximum) 
and Memory:  6  GB  RAM. In contrast to the existing 
approaches that are tested on a very limited number of 
datasets, we collected 29 diverse datasets to demonstrate 
the usefulness of our approach.

Datasets: The 29 diverse datasets are: Protac, Alex 
Manfred, Ran Yalkowsky, Llinas, Water set wide  [24], 
Wassvik, Duffy, Dearden, Huuskonen  [9], D5, Jain, 
Goodman, Wang  [8], Boobier, Aqsol, ESOL  [14], Berg-
strom  [25], Grigorev  [4], Lovric  [6], David  [3], Dan-
iel  [26], Tang  [12], Phys, Ochem, Aqua   [27], Training 
set [15], Cui [13], Charles N. Lowe [5], and Ademola [28].

Preprocessing: As a preprocessing, some chemical 
compounds that do not satisfy one of the following con-
ditions are removed: the graph is connected, the number 
of carbon atoms is at least four, and the number of non-
hydrogen neighbors of each atom is at most 4. The com-
pounds that are not available in PubChem database [29] 
are also removed. A summary of the datasets is given in 
Table 3. These datasets have size in the range [21, 10343], 
AS values in the range [−13.17, 2.14] , and the number of 
graph-theoretic descriptors in the range [83, 965].

Results on prediction phase
Prediction functions are constructed for the 29 datasets 
based on the prediction strategies by using Python 3.11.3 
and Scikit-learn version 1.2.2.

Fig. 4 a An illustration of seed graph GC for chemical graph given in Fig. 2a with a typical edge depicted by a dashed line; b A set 
F = {ψ1,ψ2, . . . ,ψ9} of chemical rooted trees, where hydrogen atoms with non-root vertex are omitted

Table 3 Summary of datasets

C : the dataset; |C| : the size of C after the preprocessing; *the preprocessing is 
performed on 10000 randomly selected chemical compounds; y, y : the lower 
and upper bounds of AS in each dataset; and |D|: the total number of descriptors

C |C| y, y |D|

Protac 21 −6.64, −3.18 83

Wassvik 26 −8.49, −2.48 94

Alex Manfred 72 −0.833, 0.65 163

Goodman 87 −6.74, −1.06 130

D5 91 −5.88, 0.58 118

Duffy 98 −10.32, −2.48 139

Boobier 99 −8.8, 1.7 133

Dearden 118 −6.24, −0.57 142

Ran 129 −10.8, 2.06 157

Llinas 132 −8.75, −1.18 167

Bergstrom 163 −7.59, 0.55 154

Grigorev 362 −7.85, 0.38 173

Jain 456 −12.95, 1.58 223

Lovric 805 −8.75, 1.149 323

Huuskonen 827 −11.62, 1.58 310

David 826 −10.41, 1.58 263

Water set wide 845 −12.79, 1.58 320

Daniel 915 −10.43, 6.4 372

Esol 1054 −11.6, 1.58 338

Aqua 1238 −11.62, 1.58 364

Tang 1221 −1162, 1.58 364

Wang 1414 −9.33, 1.58 405

Phys 1812 −12.06, 1.58 469

Training set 5315 −13.17, 2.89 675

Ochem 6006 −12.1, 1.58 668

Cui 6678 −18.21, 1.7 766

Aqsol 8230 −13.17, 2.13 965

Charles N. Lowe *9150 −13.17, 2.41 835

Ademola 10343 −13.17, 2.14 949
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Based on preliminary experiments, the strategies with 
LOOV are used for relatively small datasets, with a size 
of at most 150. For such 11 datasets, the R2 scores due 
to MLR-LOO, LLR-ANN-LOO, FSP-MLR-LOO, and 
FSP-LOO-MLR strageties are listed in Table  4. For the 
remaining 18 datasets, the results of the prediction strat-
egies MLR, LLR-ANN, LLR-LLR, and FSP-MLR are 
listed in Table 5.

From Tables  4 and  5, the performance of MLR alone 
is poor. However our FSP-MLR-based strategies in 
which descriptors are selected by FSP and then MLR is 
applied greatly improved the results. Specifically, the 
best R 2 score among the FSP-MLR-based strategies 
for each of the 29 datasets is at least 0.7198, which falls 
within the acceptable range, confirming the effective-
ness of the proposed strategies. Similarly, our strategies 
significantly outperform (resp., yield comparable results 
to) the strategies based on LLR and ANN in [20, 23] for 
relatively small (resp., large) datasets. Notably, FSP-MLR-
based strategies achieved the best scores on 16 datasets. 
Additionally, our strategies outperform existing results 
for nine datasets, particularly improving scores for the 
datasets such as Protac, D5, Alex Manfred, Goodman, 
and Llinas from −0.18 , 0.625, 0.36, 0.527, and 0.46 to 

0.8769, 0.8455, 0.7593, 0.7830, and 0.7853, respectively. 
For the remaining 13 datasets with available scores, the 
results are comparable. These good evaluation scores 
are achieved by selecting a small number of descriptors. 
For the small (resp., large) datasets, our model selected 
descriptors in the range [6, 39](%) (resp., [10, 16](%) ) 
with an average 21% (resp., 16%), which are significantly 
smaller than those selected by LLR  [23] in the range 
[10, 70](%) with an average 40%. In our experiments, we 
trained the MLR and ANN models on the same datasets 
for a fair comparison. The computational time of ANN is 
much bigger than MLR, therefore we restricted the size 
of the dataset to 10,343. The running time for FSP to 
reduce the descriptors is in the range of [65, 70464] sec-
onds. From Table 5, we observe that the running time for 
FSP increases with the number of chemical compounds 
and selected descriptors.

These experimental results demonstrate that the small 
numbers of selected graph-theoretic descriptors enabled 
the simplest regression model MLR to achieve good eval-
uation scores across the diverse datasets. This indicates 
a strong correlation between graph-theoretic descrip-
tors and the AS of chemical compounds, paving the way 
to understanding AS without relying on widely used 3D 

Table 4 R2 scores for small datasets due to MLR-LOO, LLR-ANN-LOO, FSP-MLR-LOO and FSP-LOO-MLR

|D∗
L | : the number of descriptors selected in LLR-ANN-LOO; |D∗

F | : the number of descriptors selected in FSP-MLR-LOO; |D∗
FL| : the number of descriptors selected in FSP-

LOO-MLR; R2MLR-LOO : the R2 score of test data due to MLR-LOO; R2LLR-ANN-LOO : the R2 score of test data due to LLR-ANN-LOO; R2FSP-MLR-LOO : the R2 score of test data due to 
FSP-MLR-LOO; R2FSP-LOO-MLR : the R2 score of test data due to FSP-LOO-MLR; R2 : the R2 score of the existing model; N/A: results not available; bold score indicates the best 
score among our prediction strategies; and ∗ indicates that our best score is better than the scores achieved by the existing models

C |D∗
L
| |D∗

F
| |D∗

FL
| R2

MLR-LOO
R2
LLR-ANN-LOO

[23]
R2
FSP-MLR-LOO

R2
FSP-LOO-MLR

 R2
model

Protac 10 6 10 −235.96 0.7709 0.6728 0.7709 −0.18 [24]
DeepNN

Wassvik 10 2 10 −0.0125 0.6780 0.6788 0.8624  0.95 [9]
MLR

D5 10 20 25 −4E10 0.7389 0.2043 ∗
0.8455  0.627 [8]

MLR

Alex Manfred 13 10 30 0.044 0.6573 0.647 ∗
0.7593 0.36 [24]

RF

Goodman 18 40 20 −8E10 0.5147 ∗
0.7886 0.6363 0.527 [8]

MLR

Duffy 47 12 45 −2E10 0.7863 −0.2177 0.9266 0.94 [9]
MLR

Boobier 29 9 50 −8.3E10 0.6620 −0.1734 ∗
0.8201  0.773 [14]

STN

Dearden 43 10 55 −6.6E9 0.6987 −0.0601 0.7191  0.87 [9]
MLR

Ran 39 22 50 −8E10 0.6719 ∗
0.8931 0.8041 0.82 [24]

XGBoost

Llinas 25 10 35 −2.3E10 0.5175 ∗
0.7853 0.6690 0.46 [24]

XGBoost

Bergstrom 42 14 40 −7.6E10 0.7251 −0.0267 ∗
0.8138 0.736 [4]

RF
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and chemical descriptors and complex machine learning 
models, which can be computationally expensive.

Results on inference phase
We selected the datasets Jain and Duffy (resp., Wang 
and Phys) for which FSP-MLR (resp., LLR-ANN) con-
structed prediction functions with relatively higher 
evaluation scores. For an in-depth analysis, we prepare 
seven different instances namely Ia , I ib, i ∈ {1, 2, 3, 4} , 
Ic and Id with carefully crafted different seed graphs 
developed by Zhu et al. [20]. The seed graph of instance 
Ia is designed to infer any prescribed structures, 
whereas the seed graphs of instances I i

b
, i ∈ {1, 2, 3, 4} 

are designed to infer chemical graphs of rank 1 or 2. The 
seed graphs of instances Ic and Id are designed by merg-
ing the structural information of two chemical com-
pounds obtained from PubChem database [29] to infer 
a chemical graph that somehow preserves the structure 
of the two chemical compounds. These instances also 

heavily depend on other specifications such as the set 
F  of chemical rooted trees, lower and upper limits for 
the frequency of chemical symbols, edge configurations 
and adjacency configurations. We fixed these specifi-
cations according to each of the four selected datasets 
Duffy, Jain, Wang, and Phys. MILP formulations are 
solved by using CPLEX version 22.1.1. Tables  6 and  7 
(resp., Tables  8 and  9) show the experimental results 
of the inference phase for the datasets Jain and Duffy 
(resp., Wang and Phys).

To validate the inferred chemical graph C† , the AS 
η(f (C†)) is also predicted using the corresponding pre-
diction function. The experimental results show that even 
with narrow desired ranges of the AS of the target graphs, 
the MILP formulations successfully inferred chemical 
graphs C† with AS η(f (C†)) within the desired ranges 
while preserving the prescribed structures, confirming 
the effectiveness of the MILP formulation. Additionally, 
the MILP formulations inferred graphs with relatively 

Table 5 R2 scores for larger datasets due to MLR, LLR-ANN, LLR-LLR, and FSP-MLR

|D∗| : the number of descriptors selected in the strategies LLR-ANN and LLR-LLR; |D∗
FSP-MLR

| : the number of descriptors selected in FSP-MLR; R2MLR : the median of R2 score 
of test data due to MLR; R2LLR-ANN : the median of R2 score of test data due to LLR-ANN; R2LLR-LLR : the median of R2 score of test data due to LLR-LLR; R2FSP-MLR : the median 
of R2 score of test data due to FSP-MLR; R2 : R2 score of the existing model; N/A: results not available; Time FSP : running time, in seconds, to obtain reduced descriptors 
by using FSP; aEb represents a×10b ; bold score indicates the best score among our prediction strategies; and ∗ indicates that our best score is better than the scores 
achieved by the existing models

C |D∗| |D∗
FSP-MLR

| R2
MLR

R2
LLR-ANN

 [23]
R2
LLR-LLR

 [20]
R2
FSP-MLR

R2 model Time FSP

Grigorev 81 42 −2.34E23 0.6685 0.6721 0.7612 N/A 75

Jain 97 45 −1.76E22 0.9086 0.9312 0.9377 0.943 [8] MLR 65

Lovric 66 35 −6.815E22 0.7079 0.7144 0.7294 N/A 85

Huuskonen 141 50 −1.64E22 0.8167 0.8259 0.8371 0.84 [9]
MLR

105

David 105 43 −7.21E21 0.8410 0.8521 0.8482 0.896 [3]
RF

74

Water set wide 81 51 −2.10E23 ∗
0.8195 0.7941 0.7975 0.77 [24]

XGBoost
124

Daniel 149 40 −7.899E24 0.8348 0.8114 0.8264 0.935 [26]
SVM

105

Esol 222 60 −7.14E21 0.8659 0.8147 0.8171 0.911 [14]
STN

163

Aqua 138 45 −4.75E23 0.8465 0.8270 0.8399 N/A 136

Tang 154 60 −2.47E23 0.8487 0.8211 0.8307 N/A 142

Wang 145 47 −5.76E23 0.8441 0.7485 0.7578 0.881 [8]
MLR

159

Phys 130 60 −3.64E23 0.8867 0.8287 0.8382 N/A 276

Training set 372 120 −1.24E23 0.8369 0.7752 0.7776 0.86 [15]
GCNN

3322

Ochem 469 110 −4.98E22 0.9313 0.8405 0.8608 N/A 7067

Cui 114 80 −9.05E23 0.7803 0.7619 0.7806 0.8813 [13]
BCSA

1681

Aqsol 285 113 −5.44E24 0.8184 0.7198 0.7185 N/A 6300

Charles N. Lowe 565 250 −1.54E21 0.8849 0.7476 0.7957 0.97 [5]
RF

70464

Ademola 97 180 −1.07E24 0.8675 0.7498 0.7830 N/A 29308
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Table 6 Results of the inference phase for the dataset Jain

nLB : lower bound for the number of non-hydrogen atoms of target graph C ; y∗ , y∗  : lower and upper limits y∗ , y∗ ∈ R on the AS of a target graph C ; # v and # c are 
the number of variables and constraints in the MILP, respectively; I-time: the MILP solution time (sec.); n: the number of non-hydrogen atoms; and η : the predicted 
property value η(f (C†)) of the inferred chemical graph C†

Inst. nLB y∗, y∗ #v  #c   I-time n η(f (C†))

Ia 30 −18.75,−18.7 10535 9034 30.787 49 −18.702

I
1
b

35 −12.5,−12.45 10402 6680 11.333 35 −12.47

I
2
b

45 −9.95,−9.9 13123 9802 58.809 48 −9.903

I
3
b

45 −13.95,−13.9 12913 9804 177.04 50 −13.907

I
4
b

45 −3.9,−3.85 12707 9810 110.082 50 −3.854

Ic 50 −9.2,−9.15 6651 6980 6.583 50 −9.158

Id 40 −9.7,−9.65 5271 6479 67.799 44 −9.699

Table 7 Results of the inference phase for the dataset Duffy

Inst. nLB y∗, y∗ #v  #c   I-time n η(f (C†))

Ia 30 −11.5,−11.45 10535 9035 16.646 42 −11.498

I
1
b

35 −10.9,−10.85 10717 6647 12.458 35 −10.869

I
2
b

45 −8.4,−8.35 13536 9767 65.218 50 −8.39

I
3
b

45 −3.95,−3.9 13337 9773 31.167 50 −3.936

I
4
b

45 −14.45,−14.4 13138 9778 91.762 49 −14.432

Ic 50 −10.1,−10.05 6651 6981 6.328 50 −10.054

Id 40 −8.05,−8 5271 6482 18.634 44 −8.018

Table 8 Results of the inference phase for the dataset Wang

Inst. nLB y∗, y∗ #v #c I-time n η(f (C†))

Ia 30 −6,−5 11212 10504 25.871 35 −5.911

I
1
b

35 −2.5,−2.45 15015 8633 962.451 35 −2.471

I
2
b

45 −2.8,−2.3 18943 11747 338.681 50 −2.35

I
3
b

45 −2,−1.5 18784 11747 251.548 50 −1.583

I
4
b

45 −2.8,−2.351 18624 11746 751.557 50 −2.3

Ic 50 −4.5,−3.5 7319 8435 224.792 50 −3.836

Id 40 −5,−4 5942 7940 13.319 42 −4.475

Table 9 Results of the inference phase for the dataset Phys

Inst. nLB y∗, y∗ #v  #c   I-time n η(f (C†))

Ia 30 −7.8,−7.75 10880 9749 376.331 45 −7.755

I
1
b

35 0.15, 0.2 14467 7855 214.926 35 0.191

I
2
b

45 0.52, 0.57 18326 10970 1165.992 50 0.562

I
3
b

45 −3.6,−3.55 18166 10971 322.07 50 −3.57

I
4
b

45 0.01, 0.06 18000 10968 276.396 45 0.029

Ic 50 −5.47,−5.42 6987 7680 10.644 50 −5.436

Id 40 −2.25,−2.2 5610 7185 68.318 41 −2.235
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larger sizes, with the number of non-hydrogen atoms 
ranging from 35 to 50, within a reasonable time frame 
[6.328, 1165.992] seconds, demonstrating the efficiency 
of the inference phase. It is observed that the instances 
with a large number of variables and constraints may 
require more time compared to the instances with fewer 
variables and constraints. Furthermore, the MILP solu-
tion time also depends on the complexity of the instances. 
That is, a complex instance with fewer variables and con-
straints can take more time as compared to a relatively 
simpler instance with more variables and constraints. For 
example, the running time to solve instance Ic is smaller 
than that of instance Id , even though the number of vari-
ables and constraints in Ic is larger than in Id . It is also 
observed that the MILP solution time when using MLR 
is significantly shorter than when using ANN. For exam-
ple, the solution time for instance I2

b
 ranges from 11 to 

12  s with MLR, compared to 339 to 1166  s with ANN. 
This difference can be due to the lower complexity of the 
prediction function constructed by MLR as compared to 
that of ANN. All the inferred chemical graphs are illus-
trated in Fig. 5.

Conclusion
A unified approach is proposed to predict and infer 
chemical compounds with the desired AS. Prediction is 
performed by modeling a chemical compound as a chem-
ical graph with interior and exterior parts which are rep-
resented as graph-theoretic descriptors. FSP is used to 
extract significant descriptors followed by MLR to con-
struct prediction functions. Graph-theoretic descriptors 
and prediction functions are simulated by MILPs to infer 
mathematically exact and optimal chemical graphs with 
the desired AS and prescribed structure.

For an in-depth analysis, the proposed FSP-MLR-
based prediction strategy was tested on 29 diverse data-
sets and achieved acceptable evaluation scores for all of 
the datasets. Our strategies attained significantly higher 
evaluation scores compared to the recent existing scores, 
especially improving the scores for the datasets Protac, 
D5, Alex Manfred, Goodman, and Llinas from −0.18 , 
0.625, 0.36, 0.527, and 0.46 to 0.8769, 0.8455, 0.7593, 
0.7830, and 0.7853, respectively. Several chemical graphs 
with up to 50 non-hydrogen atoms were successfully 
inferred with the desired AS and prescribed structures 
for different datasets in a reasonable computation time 
ranging from 6 to 1166  s. Furthermore, the MILP for-
mulation with MLR-based prediction functions has sig-
nificantly lower computation time than with ANN-based 
functions. This confirms the effectiveness of our simple 

approach without relying on complex machine learning 
models which are quite computationally expensive.

Experimental results show that the small number of 
selected graph-theoretic descriptors enabled the simplest 
regression model, MLR, to achieve high evaluation scores 
across the diverse datasets, indicating a strong correla-
tion between these descriptors and the AS of chemical 
compounds. Future work will focus on exploring and 
investigating the relationships between graph-theoretic 
descriptors and the AS of compounds that result in a 
strong correlation, aiming for a better understanding of 
AS without relying on complicated non-deterministic 
chemical descriptors. In our experiments, we used data-
sets ranging in size from 21 to 10343, for which FSP 
efficiently extracted descriptors. However, due to the 
exhaustive search in FSP, descriptor extraction can be 
computationally expensive for large datasets. Further-
more, it was observed that the computation time of the 
MILP formulation depends on the complexity of the 
underlying data as well as the number of variables and 
constraints. Therefore, future work will focus on effi-
ciently handling large datasets and inferring larger and 
more complex chemical graphs.

Appendix
In the following sections, we denote by V(G) and E(G), 
the vertex set and edge set, respectively, of a graph G. A 
path with two end-vertices u and v is denoted by u,  v-
path. The rank of a graph is defined to be the minimum 
number of edges to be removed so that the graph has no 
cycles.

A rooted graph is defined to be a graph with a des-
ignated vertex, called a root. The height of a vertex 
in a rooted tree is defined to be the size of the longest 
path from that vertex to a leaf. The height of a rooted 
tree T is defined to be the maximum height of a vertex 
in T, and is denoted by ht(T ) . A chemical compound 
C = (H ,α,β) , is represented by a simple connected and 
undirected graph H and functions α : V (H) → � and 
β : E(H) → {1, 2, 3} , where � is a set of chemical ele-
ments such as C (carbon), O (oxygen), H (hydrogen) and 
N (nitrogen). Define the hydrogen-suppressed chemical 
graph 〈C〉 of a chemical graph C to be the graph obtained 
from H by removing all the vertices whose label is H. Fig-
ure  2b illustrates an example of a hydrogen-suppressed 
chemical graph 〈C〉 obtained from the chemical graph C 
of chemical compound 3-(3-Ethylcyclopentyl) propanoic 
acid given in Fig. 2a.
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Fig. 5 (i)-(vii), (viii)-(xiv), (xv)-(xxi), and (xxii)-(xxviii) inferred chemical graphs using the datasets Jain, Duffy, Wang and Phys, respectively
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Appendix A 
Two-layered model

Functional groups are characteristic groups of atoms 
that are attached to chemical compounds to attain 
desired chemical properties. In other words, functional 
groups play an important role in determining the chem-
ical properties of chemical compounds. Building on 
this observation, Shi et  al.  [19] proposed a novel two-
layered model where a hydrogen-suppressed chemi-
cal graph is partitioned into interior and exterior parts 
to capture key information of chemical compounds. 
Intuitively, the interior part primarily consists of rings 
and the paths connecting them, while the exterior part 
includes tree-like structures attached to the interior. 
In this model, the exterior part resembles functional 
groups without rings, and its size is controlled by an 
external parameter. This partition allows capturing 
important details of chemical compounds that can be 
crucial for a machine learning model to learn a given 
property. Formally, let C = (H ,α,β) be a chemical 
graph and ρ be a positive integer.

The purpose of the parameter ρ is to control the size 
of the exterior part in the two-layered model as follows.

A vertex v ∈ V (�C�) (resp., an edge e ∈ E(�C�)) of C 
is called an exterior-vertex (resp., exterior-edge) if v is 
a non-root vertex of a rooted tree with height at most 
ρ (resp., e is incident to an exterior-vertex). We denote 
the sets of exterior-vertices and exterior-edges by 
V ext(C) and Eext(C) , respectively.

Additionally, we define V in(C) = V (�C�) \ V ext(C) 
and Ein(C) = E(�C�) \ Eext(C) , to denote the sets of 
interior vertices and interior edges, respectively.

The set Eext(C) of exterior-edges forms a collection of 
connected graphs each of which is considered as a rooted 
tree T rooted at the vertex v ∈ V (T ) with maximum 
ht(v) ≤ ρ . Let T ext(〈C〉) denote the set of these chemi-
cal rooted trees in 〈C〉 . The interior Cin of C is defined to 
be the subgraph (V in(C),Ein(C)) of 〈C〉 . For ρ = 2, and the 
example 〈C〉 given in Fig. 2(b), the interior can be obtained 
by iteratively removing the set of vertices with degree 1 two 
times, where {w1,w2, . . . ,w5} and {u1,u2, . . . ,u7} . For each 
u ∈ V in(C) , let Tu ∈ T ext(�C�) denote the chemical tree 
rooted at u, and we define the ρ-fringe tree to be the chemi-
cal rooted tree obtained from Tu by putting back the hydro-
gens. These ρ-fringe trees resemble with functional groups. 
Figure 3 illustrates the set of 2-fringe trees of the chemical 
graph C in Fig. 2(a).

Appendix B 
Descriptor selection

Let C be a dataset of chemical graphs C , and a(C) ∈ R 
denote observed value of aqueous solubility of C . Let D 
be a set of descriptors and f represents a feature func-
tion that assigns a vector f (C) = x ∈ R

|D| to a graph C . 
The value of descriptor d ∈ D is denoted by x(d).

An algorithmic description of the descriptor selec-
tion method with FSP and MLR is given in Algorithm 1, 
where for a subset D∗ ⊆ D , R2

MLR(η,D
∗) denote the 

R2 score of a prediction function η obtained by MLR 
using descriptor set D∗ , and for an integer K ≥ 1 , 
hK : 2D → R is an evaluation function such that 
hK (D

∗) = R2
MLR(η,D

∗).

Algorithm 1 Forward stepwise procedure with MLR



Page 14 of 15Batool et al. Journal of Cheminformatics           (2025) 17:37 

Appendix C 
Machine learning models and evaluation

We use linear regression and ANN to construct a pre-
diction function which are briefly explained as follow.

Linear regression: It tries to identify the best linear 
relationship between the given data points and their 
observed values. More precisely, it finds a hyperplane 
that minimizes the error between the observed values 
and predicted values of the given dataset. LLR  [30] 
uses an extra regularization term with the error func-
tion to penalize coefficients of the hyperplane. Thus 
LLR selects a hyperplane that minimizes the following 
LASSO function:

where C is the dataset of chemical graphs with ai and xi to 
be the observed value and feature vector, resp., of Ci ∈ C ; 
w,  b are the coefficients of the constructed hyperplane, 
ηw,b is the prediction function due to the hyperplane w, b; 
� is the regularization term, and Err(η; C) is the error 
function such that

MLR can be considered as a special case of LASSO func-
tion when � = 0.

Artificial neural network: An ANN consists of three 
kinds of layers: an input layer, hidden layers, and an 
output layer, with each layer consisting of nodes. There 
are weighted edges between every two consecutive lay-
ers and a bias term for each node. In this work, we use 
fully connected feed-forward ANN with rectification 
linear unit (ReLU) and identity function as activation 
functions in the hidden layers and output layer, resp., 
where ReLU(x) � max(0, x). The input layer takes the 
input data, and the output layer provides the predicted 
value. At each node of the hidden and output layers, the 
computation of the weighted sum followed by the appli-
cation of an activation function is performed. The ANN 
algorithm tries to update the weights and biases to min-
imize the error between observed and predicted values.

Evaluation: Let K denote that number of descriptors 
used. To evaluate the performance of prediction func-
tions η : RK → R constructed by our model we define 
coefficient of determination R2(η; C) as

.

1

2|C|
Err(ηw,b; C)+ �(

|D|∑

j=1

|w(j)| + |b|),

Err(ηw,b; C) �
∑

Ci∈C

(ai − ηw,b(xi))
2
.

R
2(η; C) � 1−

Err(η; C)∑
Ci∈C

(ai − ã)2
for ã =

1

|C|

∑

Ci∈C

a(Ci).

We perform 5-fold CV and LOOV as follows: 

1.  5-fold CV: A random partition is made for a set 
of graphs C into five subsets C(k) , k ∈ {1, . . . , 5} . 
For each k ∈ {1, . . . , 5} , let Ctrain := C \ C(k) and 
Ctest := C(k) . We then construct the prediction func-
tion η(k) : RK → R using Ctrain and calculate the 
score R2(η(k), Ctest) . This process is repeated for p 
times, and evaluate the model based on the median 
of 5p R2(η(k), Ctest) scores.

2.  LOOV: For every i ∈ {1, . . . , |C|} , let 
Ctrain := C \ {Ci} , Ctest := {Ci} . Then, construct the 
prediction function η(i) : RK → R based on Ctrain , 
and calculate R2 score as 

 .
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