
Cozac et al. Journal of Cheminformatics (2025) 17:22
https://doi.org/10.1186/s13321-025-00967-9

SOFTWARE Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cheminformatics

kMoL: an open‑source machine
and federated learning library for drug
discovery
Romeo Cozac1*, Haris Hasic1, Jun Jin Choong1, Vincent Richard1, Loic Beheshti1, Cyrille Froehlich1,
Takuto Koyama2, Shigeyuki Matsumoto2, Ryosuke Kojima2, Hiroaki Iwata2, Aki Hasegawa2, Takao Otsuka2 and
Yasushi Okuno2* 

Abstract 

Machine learning is quickly becoming integral to drug discovery pipelines, particularly quantitative structure-activity
relationship (QSAR) and absorption, distribution, metabolism, and excretion (ADME) tasks. Graph Convolutional
Network (GCN) models have proven especially promising due to their inherent ability to model molecular structures
using graph-based representations. However, maximizing the potential of such models in practice is challeng-
ing, as companies prioritize data privacy and security over collaboration initiatives to improve model performance
and robustness. kMoL is an open-source machine learning library with integrated federated learning capabilities
developed to address such challenges. Its key features include state-of-the-art model architectures, Bayesian opti-
mization, explainability, and federated learning mechanisms. It demonstrates extensive customization possibilities,
advanced security features, straightforward implementation of user-specific models, and high adaptability to cus-
tom datasets without additional programming requirements. kMoL is evaluated through locally trained benchmark
settings and distributed federated learning experiments using various datasets to assess the features and flexibility
of the library, as well as the ability to facilitate fast and practical experimentation. Additionally, results of these experi-
ments provide further insights into the performance trade-offs associated with federated learning strategies, present-
ing valuable guidance for deploying machine learning models in a privacy-preserving manner within drug discovery
pipelines. kMoL is available on GitHub at https://​github.​com/​elix-​tech/​kmol.

Scientific contribution The primary scientific contribution of this research project is the introduction and evaluation
of kMoL, an open-source machine learning library with integrated federated learning capabilities. By demonstrating
advanced customization and security capabilities without additional programming requirements, kMoL represents
an accessible yet secure open-source platform for collaborative drug discovery projects. Additionally, the experiment
results provide further insights into the performance trade-offs associated with federated learning strategies, present-
ing valuable guidance for deploying machine learning models in a privacy-preserving manner within drug discovery
pipelines.

Keywords  Machine learning, Federated learning, Drug discovery, Deep learning, Graph convolutional networks,
Distributed learning, Chemoinformatics

*Correspondence:
Romeo Cozac
romeo.cozac@elix-inc.com
Yasushi Okuno
okuno.yasushi.4c@kyoto-u.ac.jp

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-025-00967-9&domain=pdf
https://github.com/elix-tech/kmol

Page 2 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22

Introduction
Machine learning is quickly becoming an integral part
of drug discovery pipelines. [1] It is utilized for various
purposes, but it is particularly effective for quantita-
tive structure-activity relationship (QSAR) [2, 3] and
absorption, distribution, metabolism, and excretion
(ADME) [4] tasks. Among different machine learn-
ing concepts utilized to address these tasks, Graph
Convolutional Network (GCN) models have proven
especially promising [5] due to their inherent ability
to model molecular structures using graph-based rep-
resentations, capturing intricate relationships between
the atoms and bonds of the molecule. However, maxi-
mizing the potential of such models in practice is chal-
lenging, primarily because of data privacy and security
concerns [6], which are significantly heightened when
sharing data during collaborative efforts.

Data is considered a critical asset for any company,
especially in the pharmaceutical industry, and its pro-
tection is paramount. On the other hand, collaboration
between pharmaceutical companies, academic institu-
tions, and research organizations has been, and contin-
ues to be, the driving force of innovation and progress.
Therefore, data privacy and security concerns are con-
stantly at odds with collaboration initiatives that aim
to aggregate data from multiple sources to obtain more
performant and robust machine learning models. This
fundamental conflict of interest represents a signifi-
cant barrier to possible scientific breakthroughs. Con-
sequently, the potential of promising machine learning
models like the GCN is harnessed only to a limited
extent.

Several initiatives [7, 8] and libraries [9–13] have
attempted to address data privacy and security concerns
in collaborative projects using federated learning. As a
part of the MELLODDY [7, 14] project, ten pharmaceu-
tical companies realized aggregated improvements in
machine learning model performance utilizing this strat-
egy. The experiments were conducted using a combined
dataset of approximately 2.6 billion confidential experi-
mental activity data points, 21 million small molecules,
and 40 thousand assays in on-target and secondary phar-
macodynamics and pharmacokinetics. Similar experi-
ments are also possible with NVIDIA Clara [8], a suite of
computing platforms, software, and services for health-
care and life sciences. However, despite the impres-
sive scale, these solutions have significant limitations,
including requirements for consortium memberships,
specific hardware, and substantial setup and customi-
zation. Other initiatives explore federated learning in
drug discovery, however, in many cases, no codebase is
provided, and when available, they primarily function as
proofs of concept with limited features, flexibility and

customization options, making them unsuitable for prac-
tical applications.

kMoL is an open-source machine learning library
with integrated federated learning capabilities devel-
oped primarily for drug discovery pipelines. It demon-
strates extensive customization options and advanced
security features, allowing users to configure, optimize,
and deploy custom machine learning models while
securely sharing data, all without additional program-
ming requirements. Since kMoL is open-source, it can
be utilized instantaneously and irrespective of individual
execution environments. Consequently, it is accessible to
users from various backgrounds and adaptable to a vari-
ety of different datasets and use cases, allowing for fast
and practical experimentation.

The primary scientific contribution of this research
project is the introduction and evaluation of kMoL,
which includes: (1) an explanation of the fundamental
concepts of the library, providing a clear understand-
ing of its simplified configuration interface, (2) a com-
prehensive evaluation using benchmarks and federated
learning experiments across various datasets to assess its
features and flexibility, and (3) insights into performance
trade-offs associated with federated learning strategies,
presenting valuable guidance on their effective use and
limitations.

Implementation
kMoL consists of a machine learning package and a fed-
erated learning package built on top of it. The underlying
fundamental concepts of the library are:

•	 pipelines,
•	 data pre-processing, and
•	 data analysis and execution.

Pipelines
Users interact with kMoL by running pipelines. The term
pipeline is a comprehensive term that represents the life-
cycle of a process within the library, from the time a user
initiates a process up until they receive the response.

Pipelines are configured using JavaScript Object Nota-
tion (JSON) files. These files define parameters like runt-
ime options, architecture details, and storage settings,
among others. kMoL is developed to be easily extensible
and customizable, allowing users to modify individual
components without requiring a deep understanding of
the entire library. Structuring configuration files using
the JSON format significantly simplifies the customiza-
tion process and serves as a superior storage medium
for experiments compared to relying on command-line
interface (CLI) arguments.

Page 3 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22 	

While pipelines can be customized to meet research
requirements, most consist of two successive workflows:
data pre-processing and data analysis and execution. The
data pre-processing workflow consists of various data
pre-processing actions and is automatically cached for
performance reasons. (e.g., avoiding re-featurization of
dataset samples in every epoch) The data analysis and
execution workflow consists of training, inference, or
validation actions performed on the pre-processed data.

Data pre‑processing
The primary objective of the data pre-processing work-
flow is to prepare raw dataset samples for the data analy-
sis and execution workflow. As illustrated in Fig. 1, this
workflow consists of five distinct components: loaders,
featurizers, transformers, splitters, and streamers. All
of these components can be customized and combined
to meet requirements and be utilized in a variety of use
cases:

1.	 Loaders load data from disk into memory:

•	CSV Loader loads data from a comma-separated
values (CSV) file.

•	Excel Loader loads data from a Microsoft Excel
spreadsheet (XLS) file.

•	SDF Loader loads data from a structured data file
(SDF).

2.	 Featurizers convert data to input features. Multiple
featurizers can be applied successively, where the
output of one featurizer serves as input for the next
one.

•	Graph Featurizer converts a molecular structure
representation to a graph-based representation,

where the atoms and bonds of the molecule corre-
spond to the nodes and edges of the graph, respec-
tively.

•	RDKit Descriptor Featurizer converts a molecular
structure representation to a vector of property
descriptors computed with the RDKit [15] library.

•	Mordred Descriptor Featurizer converts a molecu-
lar structure representation to a vector of prop-
erty descriptors computed with the Mordred [16]
descriptor calculator.

•	Circular Fingerprint Featurizer [17] converts a
molecular structure representation to a binary
vector, where each component or bit of the output
vector corresponds to the presence or absence of
molecular substructures within a radius around
each atom of the input molecule.

•	One-hot Encoder converts a categorical data repre-
sentation to a binary vector, where each category
is represented by a vector of length equal to the
number of unique categories with a single compo-
nent or bit set to high or one and all other compo-
nents or bits set to low or zero.

•	Tokenizer performs a conversion similar to the
One-hot Encoder applied to a DNA or amino acid
sequence representation.

•	Bag of Words Featurizer converts a DNA or amino
acid sequence representation to a vector where
each component represents the frequency of a
token in the DNA or amino acid sequence.

•	Converter Featurizer converts between different
molecular structure representation formats. (e.g.,
InChI to SMILES)

•	Fixed Featurizer divides an input representation
by a constant value.

Fig. 1  The data pre-processing workflow prepares raw data for analysis and execution. Users can mix and match five different components.
Streamers manage how other lower-level components are interconnected. Loaders provide various ways to load data into memory from different
file formats. Once in memory, featurizers and transformers process input and output features, respectively. Multiple featurizers and transformers can
be chained together, and the final samples are cached to enhance performance across multiple epochs and experiments. Finally, splitters divide
the processed samples into distinct groups

Page 4 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22

3.	 Transformers convert data to output features. Multi-
ple transformers can be applied successively.

•	Log Normalizer converts data points to their log
values.

•	Min-max Normalizer applies min-max normali-
zation to the data points.

•	Fixed Normalizer divides the data points by a
constant value.

•	Standardizer applies Z-score normalization to
the data points.

•	Cut-off Transformer converts continuous data
points to binary values based on a threshold
value.

•	One-hot Transformer converts textual data
points to numeric values.

4.	 Splitters divide data into distinct groups based on a
criteria:

•	Index Splitter divides the data into distinct
groups based on their original order in the data-
set without shuffling.

•	Random Splitter divides the data into distinct
groups randomly.

•	Stratified Splitter divides the data into distinct
groups randomly while maintaining the pro-
portion of a specific output data value for each
group.

•	Descriptor Splitter performs the division similar
to the Stratified Splitter utilizing descriptors com-
puted with the RDKit [15] library.

•	Scaffold Balancer Splitter utilizes the concept of
molecular structure scaffolds to divide the data
into distinct groups while maintaining an equal
number of samples per molecular structure scaf-
fold for each group.

•	Scaffold Divider Splitter utilizes the concept of
molecular structure scaffolds to divide the data
into distinct groups that exclusively contain
unique molecular structure scaffolds.

•	Butina Balancer Splitter is a similarity-based split-
ter that utilizes the Butina clustering [18] approach
to divide the data into distinct groups that contain
similar molecular structures.

•	Butina Divider Splitter is a similarity-based splitter
that utilizes the Butina clustering [18] approach to
divide the data into distinct groups that contain
dissimilar molecular structures.

5.	 Streamers integrate loaders, featurizers, transform-
ers, and splitters into a cohesive data pre-processing
workflow:

•	Standard Streamer is a general-purpose streamer
that utilizes a data loader to iterate through indi-
vidual dataset samples, featurize and transform
them, and ultimately cache the results before split-
ting. Users can specify which data split should be
used, what batch size should be used for collation,
and whether to shuffle the data split.

•	Cross-validation Streamer is a general-purpose
streamer that performs similarly to the Standard
Streamer, with the difference that it generates
multiple cross-validation folds instead of a single
one.

Data analysis and execution
After the data pre-processing workflow, the pre-pro-
cessed data is passed on to the data analysis and execu-
tion workflow. The operations of this workflow include
training using fixed parameters, hyperparameter tun-
ing using Bayesian optimization, standard validation,
cross-validation, inference, and explanation [19, 20] of
inference results. Federated learning operations of this
workflow include launching a server and connecting to a
server as a client.

Model architectures
kMoL supports a variety of machine learning model
architectures adapted to different representations.
Namely, it supports standard shallow neural network
architectures, standard graph-based architectures for
handling graph-featurized molecular structure data, and
hybrid graph-based architectures that combine graph-
featurized molecular structure data with vectorized data,
such as molecular fingerprint [17] descriptors. Addition-
ally, kMoL supports multi-modal architectures for use
cases involving multiple inputs, such as combined train-
ing on ligand and protein sequence data.

Graph‑based architectures  Most graph-based architec-
tures are rooted in common fundamental concepts. First,
the input molecular structure is converted to a graph-
based representation. Next, the features of the resulting
graph are processed through several graph convolutional
layers, which aggregate information from neighboring
graph nodes. Each graph layer applies changes to indi-
vidual graph nodes, with deeper layers aggregating infor-
mation from more distant nodes. Subsequently, a graph
pooling layer is utilized to summarize and reduce the
graph feature space. Graph features are ultimately flat-
tened and passed through a shallow neural network. The
kMoL implementation of graph-based architectures lev-
erages PyTorch [21] and PyTorch Geometric [22], with
the latter providing memory-efficient sparse implementa-

Page 5 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22 	

tions of numerous graph convolutional kernels. The fol-
lowing architectures are considered within the scope of
this research:

•	 Graph Convolutional Network [23]
•	 Message Passing Network [24]
•	 Chebyshev Spectral Network [25]
•	 GraphSAGE Network [26]
•	 Weisfeiler-Leman Graph Network [27]
•	 Graph Isomorphism Network [28]
•	 ARMA Graph Network [29]
•	 Local Extremum Graph Network [30]
•	 GENeralized Graph Network [31]
•	 Cluster Graph Network [32]
•	 Feature-steered Graph Network [33]
•	 Graph Attention Network [34]
•	 Topology Adaptive Graph Network [35]
•	 Simple Graph Network [36]
•	 Triplet Message Passing Network [37]

Hybrid graph‑based architectures  Standard graph con-
volutional architectures focus exclusively on atom fea-
tures and rely on the graph convolutional operator to
derive global information about the molecule. In contrast,
hybrid graph-based architectures pass molecular-level
features directly as input in addition to the graph repre-
sentation, as illustrated in Fig. 2.

First, the input molecular structure is converted to a
graph representation. The resulting graph is then pro-
cessed through several graph convolutional layers, which
aggregate information from neighboring graph nodes.
Edge features can be combined with atom features before
passing through the graph operator in each layer. This is
followed by a residual layer [38], a normalization layer
with support for batch [39], layer [40], and graph [41]
normalization, a configurable activation function, and a
dropout [42] layer, where each layer serves as an input
for the subsequent one. Ultimately, two feature sets are

obtained. The first feature set is obtained by applying
global maximum pooling, which takes the channel-wise
maximum across the node dimension. The second fea-
ture set is obtained by applying global addition pooling,
which sums node features across the node dimension.

In parallel, molecular-level features (e.g., RDKit [15],
Mordred [16], or Circular Fingerprint [17] descriptors)
are processed through a shallow neural network. The
output of this network is then combined with the pooled
graph features. Finally, the concatenated molecular and
graph features are passed through a block consisting of
two linear layers, a ReLU [43] activation function and a
dropout [42] layer.

Multi‑modal architectures  Multi-modal architectures
allow for multiple data types within a single model. For
example, if training is performed using a ChEMBL [44]
assay with combined ligand and protein sequence data,
a multi-modal architecture can accept both of these data
types simultaneously within a single model. A graph-
based or shallow neural network architecture can be con-
figured for the ligand data, and classic one-dimensional
convolutions or a shallow neural network utilizing bag-of-
words features can be configured for the protein sequence
data. The outputs are aggregated and ultimately passed
through a shallow neural network.

Model training
Similar to machine learning model architectures, the
training of models is easily customizable without addi-
tional programming requirements. The loss functions,
learning rate schedulers, optimizers, and their respective
parameters can be adjusted through JSON configuration
files according to the relevant requirements. Moreover,
the majority of the options that are available in PyTorch
[21] and PyTorch Geometric [22] are also supported in
kMoL, along with custom-developed components. (e.g.,
Evidential loss [45, 46] or AdaBelief optimizer [47])
Additionally, users can choose a subset from a list of 20

Fig. 2  Overview of the hybrid graph-based architectures

Page 6 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22

available metrics for model evaluation or logging pur-
poses during training.

The relevant configurable options in kMoL can be
tuned using Bayesian optimization. This tuning process
encompasses architecture options like the model type,
layer type, dropout rate, and normalization type, as well
as training options like the optimizer type, criterion, and
learning rate values. A Tree-structured Parzen Estima-
tor (TPE) [48, 49] implemented using the Optuna [50]
library is utilized for this purpose. During each optimi-
zation trial, the TPE fits one Gaussian Mixture Model
(GMM) to the set of parameter values associated with the
best objective values and another GMM to the remaining
parameter values. Ultimately, the parameter value that
maximizes the ratio between them is selected as optimal.

For inference, users have the option to enable visual
explainability (XAI) tools implemented using Integrat-
edGradients [19] via Captum [20]. This feature cre-
ates images for input molecules where relevant atoms
or bonds contributing to the predicted value are high-
lighted. Uncertainty estimation features like Monte Carlo
Dropout [51] or Evidential Deep Learning [52, 53] are
also supported.

Federated learning
During federated learning with kMoL, the communica-
tion between server and clients is facilitated using gRPC
[54] and protocol buffers. Upon initialization, the server
awaits the connection of multiple clients before com-
mencing the training process. When available, the server
dispatches a baseline model to each participant. The par-
ticipating client then either fine-tunes the model received
from the server or trains a new model using locally avail-
able data for a predetermined number of epochs. Upon
completion of the training process, each participant
sends the latest checkpoint back to the server for aggre-
gation. After receiving the checkpoints from all clients,
the server aggregates the checkpoints into a single global
model. This process constitutes one round of federated
learning, and the global model obtained at the end of
each round serves as the baseline checkpoint for subse-
quent rounds.

The clients are continually sending a keep-alive signal
to the server every minute during the federated learn-
ing training process. If a client becomes unreachable and
the server fails to receive the signal from the client, it will
halt the process. When a client authenticates, it receives
a token that will be used for all subsequent operations.
Unauthenticated machines (i.e., machines without a valid
token) or dead clients (i.e., clients with an expired keep-
alive signal) are not able to join the training process.

The communication is conducted utilizing the SSL/
TLS protocol with server and client certificate chains.

Insecure connections are also allowed for development
purposes. In addition to direct communication between
sites where checkpoints are stored locally, kMoL also
supports cloud-based storage solutions such as Box [55]
for managing checkpoint storage. Additionally, the server
has the option to whitelist a set of trusted IP addresses
that can join the process or blacklist a set of suspicious
IP addresses that are prohibited from joining the process.

Differential privacy [56, 57] is supported in kMoL
through the Opacus [58] library. It works by adding con-
trolled random noise to model updates, reducing the like-
lihood that individual client data points can be inferred
from the aggregated results. While this approach pro-
vides strong privacy guarantees, it may introduce trade-
offs in model performance depending on the magnitude
of the noise. This, among others, is outlined in a more
comprehensive survey on privacy attacks in machine
learning. [59]

Results
The evaluation of kMoL is designed to showcase both the
advantages and limitations of the library through practi-
cal application examples. Accordingly, the experiments
are organized into two categories:

•	 local benchmarking experiments, and
•	 distributed federated learning experiments.

Experiment design
Experiments are designed with a couple of objectives
in mind. The first objective is to highlight the ability of
kMoL to facilitate fast and practical experimentation,
and consistently deliver well-performing machine learn-
ing models using a variety of datasets. The second objec-
tive is to demonstrate the strength of federated learning
through the practical application of the library, providing
valuable insights into when and how federated learning
strategies can be effectively utilized and at what cost. By
comparing the performance of these strategies to more
traditional, local training strategies, the possible trade-
offs are quantified and registered, and scenarios where
federated learning is most advantageous are highlighted.

kMoL is evaluated using a variety of datasets. Archi-
tecture search and hyperparameter tuning are performed
using Bayesian optimization, which employs a train-test
split to evaluate candidate configurations and identify the
optimal model setup. Subsequently, the optimal model is
evaluated using five-fold cross-validation on the complete
dataset to ensure robust performance. Within the scope
of benchmarking experiments, kMoL is evaluated on
MoleculeNet [5] datasets and compared to other state-
of-the-art approaches. Within the scope of the federated

Page 7 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22 	

learning experiments, kMoL is evaluated using Toxicity
[60–63] and DruMAP [64] ADME datasets. Evaluation is
performed by splitting the available data across multiple
clients and training models following various federated
learning strategies. The performance of these models is
compared to the performance of baseline models trained
locally and evaluated using cross-validation. Additional
experiments utilizing the TDCommons [4] and ChEMBL
[44] protein-ligand datasets are outlined in the supple-
mentary information, sections S3 and S4, respectively.

Benchmarking experiments
Benchmarking experiments were conducted using Mol-
eculeNet [5] datasets for quantum mechanics, physical
chemistry, biophysics, and physiology. Bayesian optimi-
zation was performed for architecture search and hyper-
parameter tuning, with 25 trials run for each dataset
and 100 epochs per trial. Five-fold cross-validation was
used to evaluate the best-performing models and ensure
robust performance. Architecture and hyperparameter
details for each model are outlined in the supplementary
information, section S1. Extending upon previous work
reported in GEM [65] and Uni-Mol [66], a scaffold split
where scaffolds are unique to each fold was employed
to ensure a consistent comparison between kMoL and
existing benchmarks. Performance results are presented
in Tables 1 and 2 for the classification and regression
tasks, respectively. The ROC-AUC metric is reported
for classification tasks, and the R2 metric for regression
tasks. According to experiment results, machine learn-
ing models trained using kMoL are at least on par with

the state-of-the-art, a quality prerequisite for federated
learning experiments.

Federated learning experiments
Datasets used for federated learning experiments can
be grouped into two distinct categories: Toxicity and
ADME. The Toxicity category encompasses the Tox21
[60] and AMES [61–63] datasets, while the ADME cat-
egory includes the Intrinsic Clearance (Human), Fraction
Excreted Unchanged (Human), Brain Homogenate Bind-
ing (Mammal), Plasma Protein Binding (Human and Rat),
P-gp Net Efflux Ratio (Human), Permeability (Human),
Blood/Plasma Ratio (Rat), and Solubility datasets, all of
which are a part of the DruMAP [64] analysis platform.
The details of these datasets are presented in Table 3.

Bayesian optimization and cross-validation were per-
formed similarly to the benchmarking experiments.
However, in case of models trained on datasets with fewer
samples (e.g., RbRat), cross-validation was repeated mul-
tiple times using different random seed values, and the
average value is ultimately reported. Models trained on
the Tox21, AMES, FupHuman, FuBrain, CLint, and Pap-
pCaco2 datasets were evaluated using one distinct five-
fold cross-validation split. In contrast, models trained on
the FupRat, Papp-LLC, NER-LLC, and FeHuman datasets
were evaluated on five distinct five-fold cross-validation
splits, while the model trained on the RbRat dataset was
evaluated on ten distinct five-fold cross-validation splits.
Cross-validation results are presented in Table 4. The
ROC-AUC metric is reported for classification tasks,
and the R2 metric for regression tasks. The metric values
are formatted as x ± y , where x denotes the mean value

Table 1  Benchmark results on MoleculeNet [5] classification tasks

Bold values indicate the best-performing results for each dataset

SIDER ClinTox BACE BBBP Tox21 Toxcast HIV MUV PCBA

Number of Samples 1,427 1,478 1,513 2,039 7,831 8,575 41,127 93,087 437,929

Number of Tasks 27 2 1 1 12 617 1 17 128

ROC-AUC (%)

 D-MPNN [67] 57.0 90.6 80.9 71.0 75.9 65.5 77.1 78.6 86.2

 AttentiveFP [68] 60.6 84.7 78.4 64.3 76.1 63.7 75.7 76.6 80.1

 N-GramRF [69] 66.8 77.5 77.9 69.7 74.3 – 77.2 76.9 –

 N-GramXGB [69] 65.5 87.5 79.1 69.1 75.8 – 78.7 74.8 –

 PretrainGNN [70] 62.7 72.6 84.5 68.7 78.1 65.7 79.9 81.3 86.0

 GROVERbase [71] 64.8 81.2 82.6 70.0 74.3 65.4 62.5 67.3 76.5

 GROVERlarge [71] 65.4 76.2 81.0 69.5 73.5 65.3 68.2 67.3 83.0

 GraphMVP [72] 63.9 79.1 81.2 72.4 75.9 63.1 77.0 77.7 –

 MolCLR [73] 58.9 91.2 82.4 72.2 75.0 – 78.1 79.6 –

 GEM [65] 67.2 90.1 85.6 72.4 78.1 69.2 80.6 81.7 86.6

 Mole-BERT [74] 62.8 77.0 80.8 67.6 76.8 64.3 78.2 78.6 –

 Uni-Mol [66] 65.9 91.9 85.7 72.9 79.6 69.6 80.8 82.1 88.5
 kMoL 67.9 ± 3.3 90.0 ± 3.6 87.6 ± 2.2 90.5 ± 1.3 84.9 ± 2.67 77.13 ± 0.02 81.3 ± 1.5 83.2 ± 5.9 83.7 ± 1.6

Page 8 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22

across all cross-validation folds, and y denotes the 95%
confidence interval where z = 1.96 . These local training
results serve as baseline metrics for distributed federated
learning experiments.

The aggregation strategy is an essential part of feder-
ated learning. Within the scope of federated learning
experiments, three distinct averaging strategies are uti-
lized: plain, weighted, and benchmarked averaging, as
illustrated in Fig. 3. In the case of plain averaging, the
checkpoints are averaged as they are, which can some-
times be a naive and non-optimal approach. For exam-
ple, if particular clients utilize datasets with considerably
more samples than others, their contribution should also
matter more. In the case of weighted averaging, the
checkpoint weights of each client are typically scaled by

the ratio of dataset samples they utilize, though users
can also experiment with custom ratios. However, not all
datasets are of the same quality, and a benchmark dataset
for server-side evaluation can be beneficial. This intro-
duces an averaging strategy referred to as benchmarked
averaging. In this approach, a benchmark dataset is uti-
lized to evaluate the performance of checkpoints received
from clients in each round. Next, a user specified metric
(e.g., ROC-AUC or R2 ) is computed, and weights are
adjusted according to the performance of each client.
While benchmarked averaging is expected to perform
better than plain and weighted averaging, it must be
evaluated carefully, as effectiveness heavily depends on
the quality and breadth of the benchmark dataset. If the
dataset has too few samples or is not representative of

Table 2  Benchmark results on MoleculeNet [5] regression tasks

Bold values indicate the best-performing results for each dataset

FreeSolv ESOL Lipophilicity QM7 QM8

Number of Samples 642 1,128 4,200 6,830 21,786

Number of Tasks 1 1 1 1 12

RMSE MAE

D-MPNN [67] 2.082 1.050 0.683 103.5 0.019

AttentiveFP [68] 2.073 0.877 0.721 72.0 0.018

N-GramRF [69] 2.688 1.074 0.812 92.8 0.024

N-GramXGB [69] 5.061 1.083 2.072 81.9 0.022

PretrainGNN [70] 2.764 1.100 0.739 113.2 0.020

GROVERbase [71] 2.176 0.983 0.817 94.5 0.022

GROVERlarge [71] 2.272 0.895 0.823 92.0 0.022

GraphMVP [72] – 1.029 0.681 – –

MolCLR [73] 2.594 1.271 0.691 66.8 0.018

GEM [65] 1.877 0.798 0.660 58.9 0.017

Mole-BERT [74] – 1.015 0.676 – –

Uni-Mol [66] 1.480 0.788 0.603 41.8 0.016

kMoL 1.28 ± 0.09 0.70 ± 0.07 0.59 ± 0.04 44.9 ± 5.2 0.015 ± 0.002

Table 3  Datasets used in federated learning experiments

 Tasks for federated learning experiments are denoted with C for classification, R for regression, and C + R for classification and regression

Category Name Abbreviation Number of Samples Task

Toxicity Tox21 [60] Tox21 7,831 C

Toxicity AMES [61–63] AMES 7,441 C

ADME Intrinsic Clearance (Human) CLint 5,216 R

ADME Fraction Excreted Unchanged (Human) FeHuman 340 C

ADME Brain Homogenate Binding (Mammal) FuBrain 580 R

ADME Plasma Protein Binding (Human) FupHuman 2,559 R

ADME Plasma Protein Binding (Rat) FupRat 539 R

ADME P-gp Net Efflux Ratio (Human) NER-LLC 445 C

ADME Papp Caco-2 Permeability (Human) PappCaco2 4,294 C + R

ADME Papp LLC-PK1 Permeability (Human) Papp-LLC 461 R

ADME Blood/Plasma Ratio (Rat) RbRat 162 R

ADME Solubility (pH 7.4) Solubility 514 C

Page 9 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22 	

the overall distribution, it can negatively impact the fed-
erated learning process. Some clients may have access to
valuable but rare dataset samples that score low on the
benchmark dataset and are incorrectly penalized. On
the other hand, benchmarked aggregation can protect
against security threats such as model poisoning or eva-
sion [59] attacks. While dataset collection and evaluation
are outside kMoL’s area of focus, Tanimoto-based diver-
sity metrics can be used to evaluate the benchmark data-
set before the federated learning process. If the dataset
lacks robust coverage of the chemical space, a different
aggregation method may be more appropriate.

In addition to different averaging strategies, federated
learning experiments are designed to analyze the effect of
different setups by modifying dataset splitting and train-
ing duration conditions. Datasets are divided among a
minimum of two and up to a maximum of twenty clients.
This division encompasses balanced and imbalanced
division strategies, where some clients receive more data
than others. Additionally, the training process duration,

Table 4  Cross-validation results for federated learning
experiments

Dataset Metric Metric Value

Tox21 ROC-AUC 0.871 ± 0.013

AMES ROC-AUC 0.893 ± 0.011

FeHuman ROC-AUC 0.865 ± 0.039

NER-LLC ROC-AUC 0.792 ± 0.041

PappCaco2 ROC-AUC 0.865 ± 0.005

Solubility ROC-AUC 0.873 ± 0.022

CLint R
2 0.458 ± 0.028

FuBrain R
2 0.607 ± 0.077

FupHuman R
2 0.663 ± 0.033

FupRat R
2 0.602 ± 0.090

PappCaco2 R
2 0.505 ± 0.010

Papp-LLC R
2 0.604 ± 0.080

RbRat R
2 0.521 ± 0.149

Fig. 3  The federated learning process is initiated by the server, either by sending the latest global model to all clients, or by requesting a newly
trained model in the case of the first round. Each client receives the global model and fine-tunes it using locally available data. The newly trained
models are returned to the server, and once all client models are received, the server aggregates them into a new global model. This process
is repeated for a predefined number of rounds. Users can choose from three aggregation strategies: plain aggregation (i.e., the checkpoints are
averaged as is), weighted aggregation (i.e., the checkpoints are balanced by the proportion of data samples), and benchmarked aggregation (i.e.,
the weights are normalized based on the checkpoint performance on a benchmark dataset)

Page 10 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22

measured in the number of epochs, is analyzed to investi-
gate its impact on the training outcome.

Federated learning experiment results are visualized
in Figs. 4 and 5, and numerical values for each of the
individual models are outlined in the supplementary
information, section S2. In the C-X experiment settings,
the data is split evenly across X clients, and models are
trained for ten epochs per round. In the E-X experiment
settings, the data is split between two clients, and models
are trained for X epochs per round. In the I-X-Y experi-
ment settings, models are trained for ten epochs per
round, but the data is intentionally split unevenly among
clients based on the specified proportions. For example,
in the I-40–30-30 experiment setting, the data is split

among three clients in total, where one client receives
40% of the samples and the other two clients each receive
30% of the samples. A detailed analysis of the federated
learning experiment results is outlined in the Discussion
section.

Discussion
The benchmarking experiments conducted on Molecu-
leNet [5] datasets provide insights into the performance
of the kMoL library. By utilizing Bayesian optimiza-
tion for architecture search and hyperparameter tuning,
kMoL demonstrated competitive results when compared
to state-of-the-art models. The performance of kMoL on
both classification and regression tasks underscores its

Fig. 4  Results of federated learning classification experiments: The X-axis represents the identifier of the experiment, and the Y-axis represents
the ROC-AUC metric value. The client experiment settings vary in terms of the number of clients among which the data is distributed. The epoch
experiment settings vary in terms of the number of epochs trained per round. The imbalance experiment settings vary in terms of the ratios
of unevenly distributed data. (e.g., I-60–40 represents the setting where one client receives 60%, and the other client receives 40% of the data
samples)

Page 11 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22 	

ability to deliver robust machine learning models across
a diverse range of tasks, from quantum mechanics and
physical chemistry to biophysics and physiology. Results
presented in Tables 1 and 2 show that kMoL often
exceeds the performance of well-established models,
making it a strong candidate for practical applications.

Results from federated learning experiments high-
light several critical observations regarding the perfor-
mance of the kMoL library across the different datasets
and experimental conditions. One observation is that
smaller datasets exhibit higher variability in metrics and
are generally less reliable. For instance, splitting a dataset
that contains two hundred samples among twenty clients
results in just ten samples per client, leading to instabil-
ity. Thus, the smaller ADME datasets require careful

analysis. Over 1,000 experiments totaling more than
20,000 epochs were conducted, and while several trends
were observed, there are exceptions to nearly every one
of them.

A consistent trend is that the ROC-AUC metric
requires more time to converge as the number of cli-
ents increases, as detailed in the raw federated training
results provided in the supplementary information. This
occurrence is particularly noticeable in the case of the
Tox21 and AMES datasets. The performance impact on
the regression tasks is more pronounced than the impact
on the classification tasks. For larger datasets like CLint,
R2 losses can exceed 50%, and convergence fails in some
cases like PappCaco2. Although benchmarked aggrega-
tion shows improvement for larger datasets, it can fail in

Fig. 5  Results of federated learning regression experiments: The X-axis represents the identifier of the experiment, and the Y-axis represents the R2
metric value. The client experiment settings vary in terms of the number of clients among which the data is distributed. The epoch experiment
settings vary in terms of the number of epochs trained per round. The imbalance experiment settings vary in terms of the ratios of unevenly
distributed data. (e.g., I-60–40 represents the setting where one client receives 60%, and the other client receives 40% of the data samples)

Page 12 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22

smaller or challenging datasets due to divergence in early
phases. Classification tasks generally perform well across
almost all tasks, with minor losses, even in cases with a
large number of clients.

Occasionally, performance decreases as the number of
clients increases, although not consistently. In particu-
lar scenarios, the federation process appears to act as a
regularizer, similar to Stochastic Weight Averaging [75],
which improves generalization. When no clear trend is
observed, the differences may be due to random varia-
tions akin to local training with different random splits.

The number of epochs per round or the level of imbal-
ance among clients does not significantly affect metrics.
However, training for too many epochs (e.g., 20 epochs
per round) can sometimes have adverse effects. Plain
aggregation generally benefits from more rounds, while
benchmarked aggregation performs better with fewer
rounds.

The choice of aggregation strategy generally has limited
impact, particularly for classification tasks, though spe-
cific scenarios may exhibit exceptions. Weighted averag-
ing by sample number generally improves performance,
but exceptions exist. The benchmarked aggregation,
while expected to outperform naive methods, some-
times does not, especially when using more complex or
small datasets. Nonetheless, it slightly outperforms other
methods on classification tasks, albeit not significantly.

Comparing the federated learning results to baseline
values from local training presented in Table 4, consist-
ent trends across most experiments can be observed.
Performance losses tend to increase as the number of cli-
ents the data is spread across increase, but they remain
small for classification tasks. For classification tasks,
losses in 2 client settings are between 0–6%, and grow
to 2–8% at 20 clients. For regression tasks, the impact
is more pronounced. Some experiments show moderate
performance losses from 2–3% (2 clients) to 8–10% (20
clients), but there are significant losses as well, like CLint,
which improves compared to the baseline by 1% in two
client settings, but drops by 36% with 20 clients. Regres-
sion tasks pose greater challenges for federated learning
due to their sensitivity to data variance and noise. Unlike
classification tasks with simpler loss landscapes, regres-
sion requires modeling fine-grained relationships that are
more impacted by fragmentation. Aggregation methods
can play an important role here, with re-weighted strat-
egies demonstrating up to 25% performance differences,
as shown in supplementary information, section S2.

This work provides a foundation and practical tool for
exploring and experimenting with federated learning in
drug discovery, but several promising areas for further
research remain. Future efforts could focus on incorpo-
rating additional public datasets of high relevance to the

drug discovery community. Baselines and hyperparam-
eters reported for ChEMBL [44], MoleculeNet [5], and
TDCommons [4] datasets could serve as strong start-
ing points for further federated learning experimenta-
tion. Aggregation strategies are another broad area of
research, where dynamic weighting, clustering-based
methods to group clients with similar data distributions,
or gradient clipping techniques to reduce the impact of
extreme updates could enhance robustness and perfor-
mance in non-IID settings. [76] Regression tasks, in par-
ticular, show greater sensitivity to noise and variability
across clients and may benefit from these approaches.

Conclusion
kMoL presents a powerful and flexible solution for
machine and federated learning in drug discovery. As it
is developed with fast and practical experimentation in
mind, the library allows users to easily configure and cus-
tomize machine learning models without requiring con-
sortium memberships, specific hardware, complicated
server setups, or additional programming obligations.
This flexibility makes it accessible to users from various
backgrounds, from beginner researchers to seasoned
professionals.

kMoL provides several mechanisms to address differ-
ent types of bias during federated learning. These can
be grouped into local training strategies, checkpoint
aggregation strategies, and post-training strategies. Local
training options include regularization techniques, drop-
out adjustments, and adjusting the number of training
epochs per round to control how far clients deviate from
the global checkpoint, whether to maintain closer align-
ment or allow greater divergence as needed. Checkpoint
aggregation strategies are server-side approaches where
users can adjust the contribution of each client based on
dataset size or checkpoint quality to address imbalances.
Post-training methods, such as fine-tuning the global
checkpoint on a separate dataset, provide opportunities
to further refine the model or correct residual bias. These
tools and features are integrated into kMoL and can be
applied without requiring custom code, making the
framework practical for diverse scenarios.

The evaluation across various datasets demonstrates
both the strengths and limitations of the kMoL library
and the underlying technologies. Utilizing Bayesian Opti-
mization for architecture searching and hyperparameter
tuning enables users to rapidly and automatically find
the best-performing model for a particular task. While
various federated learning strategies are already enabled
within the library, users are ultimately encouraged to run
varied experiments on their setups to determine what
works best, as no single strategy consistently excels in all
scenarios.

Page 13 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22 	

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​025-​00967-9.

Supplementary material 1. The supplementary information for this
research project consists of two additional files, which contain the fol-
lowing information: The optimal values of the benchmarking experiment
model hyperparameters. The results of the federated learning regression
and classification experiments using the plain, weighted, and bench-
marked averaging strategy. The results of the additional experiments
using the TDCommons [4] dataset. The results of the additional experi-
ments using the ChEMBL [44] dataset. Round-by-round federated training
results presented in tabular format across multiple metrics.

Supplementary material 2.

Acknowledgements
The authors would like to thank everyone at Elix, Inc. and Kyoto University
who contributed their valuable time and effort to develop and improve the
kMoL library. This research project was conducted as a part of the “Develop-
ment of a Next-generation Drug Discovery AI through Industry-academia Col-
laboration (DAIIA)” initiative and supported by the Japan Agency for Medical
Research and Development (AMED) under grant number JP22nk0101111.

Author contributions
R.C., J.J.C., V.R., L.B., C.F., and H.H. contributed to the analysis, design, implemen-
tation, and improvement of the kMoL library. R.C., T.K., S.M., R.K., H.I., A.H., T.O.,
and Y.O. contributed to the design, execution, and analysis of the experiments.
R.C., S.M., R.K., and Y.O. contributed to the management and supervision of the
research project. R.C. and H.H. contributed to the conceptualization, writing,
and editing of the manuscript. All authors have read and agreed to publish
the manuscript.

Funding
This research project was conducted as a part of the "Development of a
Next-generation Drug Discovery AI through Industry-academia Collaboration
(DAIIA)" initiative and supported by the Japan Agency for Medical Research
and Development (AMED) under grant number JP22nk0101111.

Availability of data and materials
The kMoL library and all relevant datasets, configuration files, scripts, Docker
files, and documentation are available on GitHub under the MIT open-source
license at https://​github.​com/​elix-​tech/​kmol.

Declarations

 Competing interests
The authors declare no Conflict of interest.

Author details
1 Elix, Inc., 8–34 Yonbancho, Chiyoda‑ku, Tokyo 102–0081, Japan. 2 Gradu-
ate School of Medicine, Kyoto University, Shogoin‑kawaharacho, Sakyo‑ku,
Kyoto 606–8507, Japan.

Received: 6 November 2024 Accepted: 2 February 2025

References
	1.	 Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ (2022) Machine

learning in drug discovery: A review. Artif Intell Rev 55(3):1947–1999.
https://​doi.​org/​10.​1007/​s10462-​021-​10058-4

	2.	 Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a
method for quantitative structure-activity relationships. J Chem Inf Model
55(2):263–274. https://​doi.​org/​10.​1021/​ci500​747n

	3.	 Xu Y, Ma J, Liaw A, Sheridan RP, Svetnik V (2017) Demystifying multitask
deep neural networks for quantitative structure-activity relationships.

J Chem Inf Model 57(10):2490–2504. https://​doi.​org/​10.​1021/​acs.​jcim.​
7b000​87

	4.	 Huang K, Fu T, Gao W, Zhao Y, Roohani Y, Leskovec J, Coley CW, Xiao C,
Sun J, Zitnik M (2021) Therapeutics data commons: Machine learning
datasets and tasks for drug discovery and development. Proceed-
ings of Neural Information Processing Systems, NeurIPS Datasets and
Benchmarks

	5.	 Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS,
Leswing K, Pande V (2018) MoleculeNet: A Benchmark for Molecular
Machine Learning

	6.	 Paracha A, Arshad J, Farah MB, Ismail K (2024) Machine learning security
and privacy: a review of threats and countermeasures. EURASIP J Inf
Secur 2024(1):10. https://​doi.​org/​10.​1186/​s13635-​024-​00158-3

	7.	 Heyndrickx W, Mervin L, Morawietz T, Sturm N, Friedrich L, Zalewski A,
Pentina A, Humbeck L, Oldenhof M, Niwayama R, Schmidtke P, Fechner
N, Simm J, Arany A, Drizard N, Jabal R, Afanasyeva A, Loeb R, Verma S,
Harnqvist S, Holmes M, Pejo B, Telenczuk M, Holway N, Dieckmann A,
Rieke N, Zumsande F, Clevert D-A, Krug M, Luscombe C, Green D, Ertl P,
Antal P, Marcus D, Do Huu N, Fuji H, Pickett S, Acs G, Boniface E, Beck B,
Sun Y, Gohier A, Rippmann F, Engkvist O, Göller AH, Moreau Y, Galtier MN,
Schuffenhauer A, Ceulemans H (2024) Melloddy: Cross-pharma federated
learning at unprecedented scale unlocks benefits in qsar without com-
promising proprietary information. J Chem Inf Model 64(7):2331–2344.
https://​doi.​org/​10.​1021/​acs.​jcim.​3c007​99

	8.	 NVIDIA: NVIDIA Clara. Accessed: 2024-08-26. https://​docs.​nvidia.​com/​
clara/​index.​html

	9.	 Beutel DJ, Topal T, Mathur A, Qiu X, Fernandez-Marques J, Gao Y, Sani L,
Kwing HL, Parcollet T, Gusmão PPd, Lane ND (2020) Flower: A friendly
federated learning research framework. arXiv preprint arXiv:​2007.​14390

	10.	 Liu Y, Fan T, Chen T, Xu Q, Yang Q (2021) Fate: an industrial grade platform
for collaborative learning with data protection. J Mach Learn Res 22:1

	11.	 Ziller A, Trask A, Lopardo A, Szymkow B, Wagner B, Bluemke E, Nounahon
J-M, Passerat-Palmbach J, Prakash K, Rose N, Ryffel T, Reza ZN, Kaissis G
(2021) PySyft A Library for Easy Federated Learning. Springer, Cham

	12.	 Chen S, Xue D, Chuai G, Yang Q, Liu Q (2020) Fl-qsar: a federated learning-
based qsar prototype for collaborative drug discovery. Bioinformatics
36(22–23):5492–5498

	13.	 Guo Y, Gao Y, Song J (2024) Molcfl: A personalized and privacy-preserving
drug discovery framework based on generative clustered federated
learning. J Biomed Inf 157:104712. https://​doi.​org/​10.​1016/j.​jbi.​2024.​
104712

	14.	 ...Oldenhof M, Ács G, Pejó B, Schuffenhauer A, Holway N, Sturm N, Dieck-
mann A, Fortmeier O, Boniface E, Mayer C, Gohier A, Schmidtke P, Niway-
ama R, Kopecky D, Mervin L, Rathi PC, Friedrich L, Formanek A, Antal
P, Rahaman J, Zalewski A, Heyndrickx W, Oluoch E, Stößel M, Vančo M,
Endico D, Gelus F, Boisfossé T, Darbier A, Nicollet A, Blottière M, Telenczuk
M, Nguyen VT, Martinez T, Boillet C, Moutet K, Picosson A, Gasser A, Djafar
I, Simon A, Arany Á, Simm J, Moreau Y, Engkvist O, Ceulemans H, Marini C,
Galtier M (2024) Industry-scale orchestrated federated learning for drug
discovery. Proc AAAI Conf Artif Intell 37(13):15576–15584. https://​doi.​org/​
10.​1609/​aaai.​v37i13.​26847

	15.	 Landrum G RDKit: Open-source cheminformatics. http://​www.​rdkit.​org
	16.	 Todeschini, R., VC, Wang, R, YF, Ghose, AK, GC, Sharma, V, RG, Stanton,

DT, PJ, Yap C, Cao, D-S, Q-SX, Cao, D-S, Y-ZL, Cao, D-S, NX, O’Boyle, NM,
GH al (1970) Mordred: a molecular descriptor calculator. Journal of
Cheminformatics

	17.	 Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf
Model 50(5):742–754. https://​doi.​org/​10.​1021/​ci100​050t.

	18.	 Butina D (1999) Unsupervised data base clustering based on daylight’s
fingerprint and tanimoto similarity: A fast and automated way to cluster
small and large data sets. J Chem Inf Comput Sci 39(4):747–750. https://​
doi.​org/​10.​1021/​ci980​3381

	19.	 Sundararajan M, Taly A, Yan Q (2017) Axiomatic Attribution for Deep
Networks

	20.	 Kokhlikyan N, Miglani V, Martin M, Wang E, Alsallakh B, Reynolds J, Mel-
nikov A, Kliushkina N, Araya C, Yan S, Reblitz-Richardson O (2020) Captum:
A unified and generic model interpretability library for PyTorch

	21.	 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M,
Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch:
An imperative style, high-performance deep learning library. In: Wallach,

https://doi.org/10.1186/s13321-025-00967-9
https://doi.org/10.1186/s13321-025-00967-9
https://github.com/elix-tech/kmol
https://doi.org/10.1007/s10462-021-10058-4
https://doi.org/10.1021/ci500747n
https://doi.org/10.1021/acs.jcim.7b00087
https://doi.org/10.1021/acs.jcim.7b00087
https://doi.org/10.1186/s13635-024-00158-3
https://doi.org/10.1021/acs.jcim.3c00799
https://docs.nvidia.com/clara/index.html
https://docs.nvidia.com/clara/index.html
http://arxiv.org/abs/2007.14390
https://doi.org/10.1016/j.jbi.2024.104712
https://doi.org/10.1016/j.jbi.2024.104712
https://doi.org/10.1609/aaai.v37i13.26847
https://doi.org/10.1609/aaai.v37i13.26847
http://www.rdkit.org
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci9803381
https://doi.org/10.1021/ci9803381

Page 14 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22

H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., Red Hook, NY. http://​papers.​neuri​ps.​cc/​paper/​
9015-​pytor​ch-​an-​imper​ative-​style-​high-​perfo​rmance-​deep-​learn​ing-​libra​
ry.​pdf

	22.	 Fey M, Lenssen JE (2019) Fast Graph Representation Learning with
PyTorch Geometric

	23.	 Thomas N Kipf, MW (2017) Semi-supervised classification with graph
convolutional networks. Arxiv

	24.	 Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural Mes-
sage Passing for Quantum Chemistry

	25.	 Defferrard M, Bresson X, Vandergheynst P (2017) Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering

	26.	 Hamilton WL, Ying R, Leskovec J (2018) Inductive Representation Learn-
ing on Large Graphs

	27.	 Morris C, Ritzert M, Fey M, Hamilton WL, Lenssen JE, Rattan G, Grohe
M (2020) Weisfeiler and Leman Go Neural: Higher-order Graph Neural
Networks

	28.	 Xu K, Hu W, Leskovec J, Jegelka S (2019) How Powerful are Graph Neural
Networks?

	29.	 Bianchi FM, Grattarola D, Livi L, Alippi C (2021) Graph Neural Networks
with convolutional ARMA filters

	30.	 Ranjan E, Sanyal S, Talukdar PP (2020) ASAP: Adaptive Structure Aware
Pooling for Learning Hierarchical Graph Representations

	31.	 Li G, Xiong C, Thabet A, Ghanem B (2020) DeeperGCN: All You Need to
Train Deeper GCNs

	32.	 Chiang W-L, Liu X, Si S, Li Y, Bengio S, Hsieh C-J (2019) Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional
networks. Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mininghttps://​doi.​org/​10.​1145/​32925​00.​
33309​25

	33.	 Verma N, Boyer E, Verbeek J (2018) FeaStNet: Feature-Steered Graph
Convolutions for 3D Shape Analysis

	34.	 Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018)
Graph Attention Networks

	35.	 Du J, Zhang S, Wu G, Moura JMF, Kar S (2018) Topology Adaptive Graph
Convolutional Networks

	36.	 Wu F, Zhang T, Souza Jr. au2 AH, Fifty C, Yu T, Weinberger KQ (2019) Sim-
plifying Graph Convolutional Networks

	37.	 Li P, Li Y, Hsieh C-Y, Zhang S, Liu X, Liu H, Song S, Yao X (2020) TrimNet:
learning molecular representation from triplet messages for biomedicine.
Brief Bioinform. https://​doi.​org/​10.​1093/​bib/​bbaa2​66/​34130​210/​bbaa2​
66.​pdf

	38.	 He K, Zhang X, Ren S, Sun J (2015) Deep Residual Learning for Image
Recognition

	39.	 Ioffe S, Szegedy C (2015) Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift

	40.	 Ulyanov D, Vedaldi A, Lempitsky V (2017) Instance Normalization: The
Missing Ingredient for Fast Stylization

	41.	 Cai T, Luo S, Xu K, He D, Liu T-Y, Wang L (2021) GraphNorm: A Principled
Approach to Accelerating Graph Neural Network Training

	42.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014)
Dropout: A simple way to prevent neural networks from overfitting. J
Mach Learn Res 15(56):1929–1958

	43.	 Agarap AF (2019) Deep Learning using Rectified Linear Units (ReLU)
	44.	 Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D,

Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E, Davies M, Dedman N,
Karlsson A, Magariños MP, Overington JP, Papadatos G, Smit I, Leach AR
(2016) The chembl database in 2017. Nucleic Acids Res 45(D1):945–954

	45.	 Amini A, Schwarting W, Soleimany A, Rus D (2020) Deep Evidential
Regression. https://​arxiv.​org/​abs/​1910.​02600

	46.	 Sensoy M, Kaplan L, Kandemir M (2018) Evidential Deep Learning to
Quantify Classification Uncertainty. https://​arxiv.​org/​abs/​1806.​01768

	47.	 Zhuang J, Tang T, Ding Y, Tatikonda S, Dvornek N, Papademetris X,
Duncan JS (2020) AdaBelief Optimizer: Adapting Stepsizes by the Belief in
Observed Gradients

	48.	 Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-
parameter optimization. In: Proceedings of the 24th International Confer-
ence on Neural Information Processing Systems. NIPS’11, pp. 2546–2554.
Curran Associates Inc., Red Hook, NY, USA

	49.	 Bergstra J, Yamins D, Cox D (2013) Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision archi-
tectures. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th
International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 28, pp. 115–123. PMLR, Atlanta, Georgia, USA.
http://​proce​edings.​mlr.​press/​v28/​bergs​tra13.​html

	50.	 Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna: A Next-gener-
ation Hyperparameter Optimization Framework

	51.	 Gal Y, Ghahramani Z (2016) Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In: Balcan, M.F., Wein-
berger, K.Q. (eds.) Proceedings of The 33rd International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 48,
pp. 1050–1059. PMLR, New York, New York, USA. https://​proce​edings.​mlr.​
press/​v48/​gal16.​html

	52.	 Sensoy M, Kaplan L, Kandemir M (2018) Evidential Deep Learning to
Quantify Classification Uncertainty. https://​arxiv.​org/​abs/​1806.​01768

	53.	 Amini A, Schwarting W, Soleimany A, Rus D (2020) Deep Evidential
Regression. https://​arxiv.​org/​abs/​1910.​02600

	54.	 gRPC: gRPC - An RPC library and framework. Accessed: 2024-08-26.
https://​grpc.​io

	55.	 Box I Box: The Intelligent Content Cloud. https://​www.​box.​com
	56.	 Dwork C, Roth A (2014) The algorithmic foundations of differential

privacy. Found Trends Theor Comput Sci 9(3–4):211–407. https://​doi.​org/​
10.​1561/​04000​00042

	57.	 Dwork C, Roth A (2014) The Algorithmic Foundations of Differential
Privacy. now Publishers Inc, Boston

	58.	 Opacus PyTorch library. Available from https://​opacus.​ai
	59.	 Rigaki M, Garcia S (2020) A Survey of Privacy Attacks in Machine Learning
	60.	 Huang R, Xia M, Nguyen D-T, Zhao T, Sakamuru S, Zhao J, Shahane S, Ros-

soshek A, Simeonov A (2016) Tox21challenge to build predictive models
of nuclear receptor and stress response pathways as mediated by expo-
sure to environmental chemicals and drugs. Front Environ Sci. https://​doi.​
org/​10.​3389/​fenvs.​2015.​00085

	61.	 Hansen K, Mika S, Schroeter T, Sutter A, Laak A, Steger-Hartmann T, Hein-
rich N, Müller K-R (2009) Benchmark data set for in silico prediction of
ames mutagenicity. J Chem Inf Model 49(9):2077–2081. https://​doi.​org/​
10.​1021/​ci900​161g

	62.	 Ames Conclusions Data Collection. Accessed: 2020-12-02 (2020). ftp://​
anonf​tp.​niehs.​nih.​gov/​ntp-​cebs/​datat​ype/​NTP_​Data_​Colle​ctions/​Ames_​
Concl​usions_​DataC​ollec​tion_​2020-​02-​19.​xlsx

	63.	 PubChem Bioassay Record for AID 1259408, GENE-TOX mutagenicity
studies. Accessed: 2024-9-25. https://​pubch​em.​ncbi.​nlm.​nih.​gov/​bioas​
say/​12594​08

	64.	 Kawashima H, Watanabe R, Esaki T, Kuroda M, Nagao C, Natsume-
Kitatani Y, Ohashi R, Komura H, Mizuguchi K (2023) Drumap: A novel
drug metabolism and pharmacokinetics analysis platform. J Med Chem
66(14):9697–9709. https://​doi.​org/​10.​1021/​acs.​jmedc​hem.​3c004​81

	65.	 Fang X, Liu L, Lei J, He D, Zhang S, Zhou J, Wang F, Wu H, Wang H (2022)
Geometry-enhanced molecular representation learning for property
prediction. Nat Mach Intell 4(2):127–134. https://​doi.​org/​10.​1038/​
s42256-​021-​00438-4

	66.	 Zhou G, Gao Z, Ding Q, Zheng H, Xu H, Wei Z, Zhang L, Ke G (2023) Uni-
mol: A universal 3d molecular representation learning framework. In: The
Eleventh International Conference on Learning Representations. https://​
openr​eview.​net/​forum?​id=​6K2RM​6wVqKu

	67.	 Han X, Jia M, Chang Y, Li Y, Wu S (2022) Directed message passing neural
network (d-mpnn) with graph edge attention (gea) for property predic-
tion of biofuel-relevant species. Energy AI 10:100201. https://​doi.​org/​10.​
1016/j.​egyai.​2022.​100201

	68.	 Xiong Z, Wang D, Liu X, Zhong F, Wan X, Li X, Li Z, Luo X, Chen K, Jiang
H, Zheng M (2020) Pushing the boundaries of molecular representation
for drug discovery with the graph attention mechanism. J Med Chem
63(16):8749–8760. https://​doi.​org/​10.​1021/​acs.​jmedc​hem.​9b009​59

	69.	 Liu S, Demirel MF, Liang Y (2019) N-Gram Graph: Simple Unsupervised
Representation for Graphs, with Applications to Molecules. https://​arxiv.​
org/​abs/​1806.​09206

	70.	 Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, Leskovec J (2020) Strate-
gies for Pre-training Graph Neural Networks. https://​arxiv.​org/​abs/​1905.​
12265

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1093/bib/bbaa266/34130210/bbaa266.pdf
https://doi.org/10.1093/bib/bbaa266/34130210/bbaa266.pdf
https://arxiv.org/abs/1910.02600
https://arxiv.org/abs/1806.01768
http://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://arxiv.org/abs/1806.01768
https://arxiv.org/abs/1910.02600
https://grpc.io
https://www.box.com
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://opacus.ai
https://doi.org/10.3389/fenvs.2015.00085
https://doi.org/10.3389/fenvs.2015.00085
https://doi.org/10.1021/ci900161g
https://doi.org/10.1021/ci900161g
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/NTP_Data_Collections/Ames_Conclusions_DataCollection_2020-02-19.xlsx
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/NTP_Data_Collections/Ames_Conclusions_DataCollection_2020-02-19.xlsx
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/NTP_Data_Collections/Ames_Conclusions_DataCollection_2020-02-19.xlsx
https://pubchem.ncbi.nlm.nih.gov/bioassay/1259408
https://pubchem.ncbi.nlm.nih.gov/bioassay/1259408
https://doi.org/10.1021/acs.jmedchem.3c00481
https://doi.org/10.1038/s42256-021-00438-4
https://doi.org/10.1038/s42256-021-00438-4
https://openreview.net/forum?id=6K2RM6wVqKu
https://openreview.net/forum?id=6K2RM6wVqKu
https://doi.org/10.1016/j.egyai.2022.100201
https://doi.org/10.1016/j.egyai.2022.100201
https://doi.org/10.1021/acs.jmedchem.9b00959
https://arxiv.org/abs/1806.09206
https://arxiv.org/abs/1806.09206
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/1905.12265

Page 15 of 15Cozac et al. Journal of Cheminformatics (2025) 17:22 	

	71.	 Rong Y, Bian Y, Xu T, Xie W, Wei Y, Huang W, Huang J (2020) Self-Super-
vised Graph Transformer on Large-Scale Molecular Data. https://​arxiv.​org/​
abs/​2007.​02835

	72.	 Liu S, Wang H, Liu W, Lasenby J, Guo H, Tang J (2022) Pre-training Molecu-
lar Graph Representation with 3D Geometry. https://​arxiv.​org/​abs/​2110.​
07728

	73.	 Wang Y, Wang J, Cao Z, Barati Farimani A (2022) Molecular contrastive
learning of representations via graph neural networks. Nat Mach Intell
4(3):279–287. https://​doi.​org/​10.​1038/​s42256-​022-​00447-x

	74.	 Xia J, Zhao C, Hu B, Gao Z, Tan C, Liu Y, Li S, Li SZ (2023) Mole-BERT:
Rethinking pre-training graph neural networks for molecules. In: The
Eleventh International Conference on Learning Representations. https://​
openr​eview.​net/​forum?​id=​jevY-​DtiZTR

	75.	 Izmailov P, Podoprikhin D, Garipov T, Vetrov D, Wilson AG (2019) Averag-
ing Weights Leads to Wider Optima and Better Generalization

	76.	 Xiong Z, Cheng Z, Lin X, Xu C, Liu X, Wang D, Luo X, Zhang Y, Jiang H,
Qiao N, Zheng M (2022) Facing small and biased data dilemma in drug
discovery with enhanced federated learning approaches. Sci China Life
Sci 65(3):529–539. https://​doi.​org/​10.​1007/​s11427-​021-​1946-0

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://arxiv.org/abs/2007.02835
https://arxiv.org/abs/2007.02835
https://arxiv.org/abs/2110.07728
https://arxiv.org/abs/2110.07728
https://doi.org/10.1038/s42256-022-00447-x
https://openreview.net/forum?id=jevY-DtiZTR
https://openreview.net/forum?id=jevY-DtiZTR
https://doi.org/10.1007/s11427-021-1946-0

	kMoL: an open-source machine and federated learning library for drug discovery
	Abstract
	Introduction
	Implementation
	Pipelines
	Data pre-processing
	Data analysis and execution
	Model architectures
	Graph-based architectures
	Hybrid graph-based architectures
	Multi-modal architectures

	Model training
	Federated learning

	Results
	Experiment design
	Benchmarking experiments
	Federated learning experiments

	Discussion
	Conclusion
	Acknowledgements
	References

