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Abstract 

Machine learning is quickly becoming integral to drug discovery pipelines, particularly quantitative structure-activity 
relationship (QSAR) and absorption, distribution, metabolism, and excretion (ADME) tasks. Graph Convolutional 
Network (GCN) models have proven especially promising due to their inherent ability to model molecular structures 
using graph-based representations. However, maximizing the potential of such models in practice is challeng-
ing, as companies prioritize data privacy and security over collaboration initiatives to improve model performance 
and robustness. kMoL is an open-source machine learning library with integrated federated learning capabilities 
developed to address such challenges. Its key features include state-of-the-art model architectures, Bayesian opti-
mization, explainability, and federated learning mechanisms. It demonstrates extensive customization possibilities, 
advanced security features, straightforward implementation of user-specific models, and high adaptability to cus-
tom datasets without additional programming requirements. kMoL is evaluated through locally trained benchmark 
settings and distributed federated learning experiments using various datasets to assess the features and flexibility 
of the library, as well as the ability to facilitate fast and practical experimentation. Additionally, results of these experi-
ments provide further insights into the performance trade-offs associated with federated learning strategies, present-
ing valuable guidance for deploying machine learning models in a privacy-preserving manner within drug discovery 
pipelines. kMoL is available on GitHub at https://​github.​com/​elix-​tech/​kmol.

Scientific contribution The primary scientific contribution of this research project is the introduction and evaluation 
of kMoL, an open-source machine learning library with integrated federated learning capabilities. By demonstrating 
advanced customization and security capabilities without additional programming requirements, kMoL represents 
an accessible yet secure open-source platform for collaborative drug discovery projects. Additionally, the experiment 
results provide further insights into the performance trade-offs associated with federated learning strategies, present-
ing valuable guidance for deploying machine learning models in a privacy-preserving manner within drug discovery 
pipelines.

Keywords  Machine learning, Federated learning, Drug discovery, Deep learning, Graph convolutional networks, 
Distributed learning, Chemoinformatics

*Correspondence:
Romeo Cozac
romeo.cozac@elix-inc.com
Yasushi Okuno
okuno.yasushi.4c@kyoto-u.ac.jp

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-025-00967-9&domain=pdf
https://github.com/elix-tech/kmol


Page 2 of 15Cozac et al. Journal of Cheminformatics           (2025) 17:22 

Introduction
Machine learning is quickly becoming an integral part 
of drug discovery pipelines. [1] It is utilized for various 
purposes, but it is particularly effective for quantita-
tive structure-activity relationship (QSAR) [2, 3] and 
absorption, distribution, metabolism, and excretion 
(ADME) [4] tasks. Among different machine learn-
ing concepts utilized to address these tasks, Graph 
Convolutional Network (GCN) models have proven 
especially promising [5] due to their inherent ability 
to model molecular structures using graph-based rep-
resentations, capturing intricate relationships between 
the atoms and bonds of the molecule. However, maxi-
mizing the potential of such models in practice is chal-
lenging, primarily because of data privacy and security 
concerns [6], which are significantly heightened when 
sharing data during collaborative efforts.

Data is considered a critical asset for any company, 
especially in the pharmaceutical industry, and its pro-
tection is paramount. On the other hand, collaboration 
between pharmaceutical companies, academic institu-
tions, and research organizations has been, and contin-
ues to be, the driving force of innovation and progress. 
Therefore, data privacy and security concerns are con-
stantly at odds with collaboration initiatives that aim 
to aggregate data from multiple sources to obtain more 
performant and robust machine learning models. This 
fundamental conflict of interest represents a signifi-
cant barrier to possible scientific breakthroughs. Con-
sequently, the potential of promising machine learning 
models like the GCN is harnessed only to a limited 
extent.

Several initiatives [7, 8] and libraries [9–13] have 
attempted to address data privacy and security concerns 
in collaborative projects using federated learning. As a 
part of the MELLODDY [7, 14] project, ten pharmaceu-
tical companies realized aggregated improvements in 
machine learning model performance utilizing this strat-
egy. The experiments were conducted using a combined 
dataset of approximately 2.6 billion confidential experi-
mental activity data points, 21 million small molecules, 
and 40 thousand assays in on-target and secondary phar-
macodynamics and pharmacokinetics. Similar experi-
ments are also possible with NVIDIA Clara [8], a suite of 
computing platforms, software, and services for health-
care and life sciences. However, despite the impres-
sive scale, these solutions have significant limitations, 
including requirements for consortium memberships, 
specific hardware, and substantial setup and customi-
zation. Other initiatives explore federated learning in 
drug discovery, however, in many cases, no codebase is 
provided, and when available, they primarily function as 
proofs of concept with limited features, flexibility and 

customization options, making them unsuitable for prac-
tical applications.

kMoL is an open-source machine learning library 
with integrated federated learning capabilities devel-
oped primarily for drug discovery pipelines. It demon-
strates extensive customization options and advanced 
security features, allowing users to configure, optimize, 
and deploy custom machine learning models while 
securely sharing data, all without additional program-
ming requirements. Since kMoL is open-source, it can 
be utilized instantaneously and irrespective of individual 
execution environments. Consequently, it is accessible to 
users from various backgrounds and adaptable to a vari-
ety of different datasets and use cases, allowing for fast 
and practical experimentation.

The primary scientific contribution of this research 
project is the introduction and evaluation of kMoL, 
which includes: (1) an explanation of the fundamental 
concepts of the library, providing a clear understand-
ing of its simplified configuration interface, (2) a com-
prehensive evaluation using benchmarks and federated 
learning experiments across various datasets to assess its 
features and flexibility, and (3) insights into performance 
trade-offs associated with federated learning strategies, 
presenting valuable guidance on their effective use and 
limitations.

Implementation
kMoL consists of a machine learning package and a fed-
erated learning package built on top of it. The underlying 
fundamental concepts of the library are:

•	 pipelines,
•	 data pre-processing, and
•	 data analysis and execution.

Pipelines
Users interact with kMoL by running pipelines. The term 
pipeline is a comprehensive term that represents the life-
cycle of a process within the library, from the time a user 
initiates a process up until they receive the response.

Pipelines are configured using JavaScript Object Nota-
tion (JSON) files. These files define parameters like runt-
ime options, architecture details, and storage settings, 
among others. kMoL is developed to be easily extensible 
and customizable, allowing users to modify individual 
components without requiring a deep understanding of 
the entire library. Structuring configuration files using 
the JSON format significantly simplifies the customiza-
tion process and serves as a superior storage medium 
for experiments compared to relying on command-line 
interface (CLI) arguments.
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While pipelines can be customized to meet research 
requirements, most consist of two successive workflows: 
data pre-processing and data analysis and execution. The 
data pre-processing workflow consists of various data 
pre-processing actions and is automatically cached for 
performance reasons. (e.g., avoiding re-featurization of 
dataset samples in every epoch) The data analysis and 
execution workflow consists of training, inference, or 
validation actions performed on the pre-processed data.

Data pre‑processing
The primary objective of the data pre-processing work-
flow is to prepare raw dataset samples for the data analy-
sis and execution workflow. As illustrated in Fig.  1, this 
workflow consists of five distinct components: loaders, 
featurizers, transformers, splitters, and streamers. All 
of these components can be customized and combined 
to meet requirements and be utilized in a variety of use 
cases: 

1.	 Loaders load data from disk into memory:

•	CSV Loader loads data from a comma-separated 
values (CSV) file.

•	Excel Loader loads data from a Microsoft Excel 
spreadsheet (XLS) file.

•	SDF Loader loads data from a structured data file 
(SDF).

2.	 Featurizers convert data to input features. Multiple 
featurizers can be applied successively, where the 
output of one featurizer serves as input for the next 
one.

•	Graph Featurizer converts a molecular structure 
representation to a graph-based representation, 

where the atoms and bonds of the molecule corre-
spond to the nodes and edges of the graph, respec-
tively.

•	RDKit Descriptor Featurizer converts a molecular 
structure representation to a vector of property 
descriptors computed with the RDKit [15] library.

•	Mordred Descriptor Featurizer converts a molecu-
lar structure representation to a vector of prop-
erty descriptors computed with the Mordred [16] 
descriptor calculator.

•	Circular Fingerprint Featurizer [17] converts a 
molecular structure representation to a binary 
vector, where each component or bit of the output 
vector corresponds to the presence or absence of 
molecular substructures within a radius around 
each atom of the input molecule.

•	One-hot Encoder converts a categorical data repre-
sentation to a binary vector, where each category 
is represented by a vector of length equal to the 
number of unique categories with a single compo-
nent or bit set to high or one and all other compo-
nents or bits set to low or zero.

•	Tokenizer performs a conversion similar to the 
One-hot Encoder applied to a DNA or amino acid 
sequence representation.

•	Bag of Words Featurizer converts a DNA or amino 
acid sequence representation to a vector where 
each component represents the frequency of a 
token in the DNA or amino acid sequence.

•	Converter Featurizer converts between different 
molecular structure representation formats. (e.g., 
InChI to SMILES)

•	Fixed Featurizer divides an input representation 
by a constant value.

Fig. 1  The data pre-processing workflow prepares raw data for analysis and execution. Users can mix and match five different components. 
Streamers manage how other lower-level components are interconnected. Loaders provide various ways to load data into memory from different 
file formats. Once in memory, featurizers and transformers process input and output features, respectively. Multiple featurizers and transformers can 
be chained together, and the final samples are cached to enhance performance across multiple epochs and experiments. Finally, splitters divide 
the processed samples into distinct groups
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3.	 Transformers convert data to output features. Multi-
ple transformers can be applied successively.

•	Log Normalizer converts data points to their log 
values.

•	Min-max Normalizer applies min-max normali-
zation to the data points.

•	Fixed Normalizer divides the data points by a 
constant value.

•	Standardizer applies Z-score normalization to 
the data points.

•	Cut-off Transformer converts continuous data 
points to binary values based on a threshold 
value.

•	One-hot Transformer converts textual data 
points to numeric values.

4.	 Splitters divide data into distinct groups based on a 
criteria:

•	Index Splitter divides the data into distinct 
groups based on their original order in the data-
set without shuffling.

•	Random Splitter divides the data into distinct 
groups randomly.

•	Stratified Splitter divides the data into distinct 
groups randomly while maintaining the pro-
portion of a specific output data value for each 
group.

•	Descriptor Splitter performs the division similar 
to the Stratified Splitter utilizing descriptors com-
puted with the RDKit [15] library.

•	Scaffold Balancer Splitter utilizes the concept of 
molecular structure scaffolds to divide the data 
into distinct groups while maintaining an equal 
number of samples per molecular structure scaf-
fold for each group.

•	Scaffold Divider Splitter utilizes the concept of 
molecular structure scaffolds to divide the data 
into distinct groups that exclusively contain 
unique molecular structure scaffolds.

•	Butina Balancer Splitter is a similarity-based split-
ter that utilizes the Butina clustering [18] approach 
to divide the data into distinct groups that contain 
similar molecular structures.

•	Butina Divider Splitter is a similarity-based splitter 
that utilizes the Butina clustering [18] approach to 
divide the data into distinct groups that contain 
dissimilar molecular structures.

5.	 Streamers integrate loaders, featurizers, transform-
ers, and splitters into a cohesive data pre-processing 
workflow:

•	Standard Streamer is a general-purpose streamer 
that utilizes a data loader to iterate through indi-
vidual dataset samples, featurize and transform 
them, and ultimately cache the results before split-
ting. Users can specify which data split should be 
used, what batch size should be used for collation, 
and whether to shuffle the data split.

•	Cross-validation Streamer is a general-purpose 
streamer that performs similarly to the Standard 
Streamer, with the difference that it generates 
multiple cross-validation folds instead of a single 
one.

Data analysis and execution
After the data pre-processing workflow, the pre-pro-
cessed data is passed on to the data analysis and execu-
tion workflow. The operations of this workflow include 
training using fixed parameters, hyperparameter tun-
ing using Bayesian optimization, standard validation, 
cross-validation, inference, and explanation [19, 20] of 
inference results. Federated learning operations of this 
workflow include launching a server and connecting to a 
server as a client.

Model architectures
kMoL supports a variety of machine learning model 
architectures adapted to different representations. 
Namely, it supports standard shallow neural network 
architectures, standard graph-based architectures for 
handling graph-featurized molecular structure data, and 
hybrid graph-based architectures that combine graph-
featurized molecular structure data with vectorized data, 
such as molecular fingerprint [17] descriptors. Addition-
ally, kMoL supports multi-modal architectures for use 
cases involving multiple inputs, such as combined train-
ing on ligand and protein sequence data.

Graph‑based architectures  Most graph-based architec-
tures are rooted in common fundamental concepts. First, 
the input molecular structure is converted to a graph-
based representation. Next, the features of the resulting 
graph are processed through several graph convolutional 
layers, which aggregate information from neighboring 
graph nodes. Each graph layer applies changes to indi-
vidual graph nodes, with deeper layers aggregating infor-
mation from more distant nodes. Subsequently, a graph 
pooling layer is utilized to summarize and reduce the 
graph feature space. Graph features are ultimately flat-
tened and passed through a shallow neural network. The 
kMoL implementation of graph-based architectures lev-
erages PyTorch [21] and PyTorch Geometric [22], with 
the latter providing memory-efficient sparse implementa-
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tions of numerous graph convolutional kernels. The fol-
lowing architectures are considered within the scope of 
this research:

•	 Graph Convolutional Network [23]
•	 Message Passing Network [24]
•	 Chebyshev Spectral Network [25]
•	 GraphSAGE Network [26]
•	 Weisfeiler-Leman Graph Network [27]
•	 Graph Isomorphism Network [28]
•	 ARMA Graph Network [29]
•	 Local Extremum Graph Network [30]
•	 GENeralized Graph Network [31]
•	 Cluster Graph Network [32]
•	 Feature-steered Graph Network [33]
•	 Graph Attention Network [34]
•	 Topology Adaptive Graph Network [35]
•	 Simple Graph Network [36]
•	 Triplet Message Passing Network [37]

Hybrid graph‑based architectures  Standard graph con-
volutional architectures focus exclusively on atom fea-
tures and rely on the graph convolutional operator to 
derive global information about the molecule. In contrast, 
hybrid graph-based architectures pass molecular-level 
features directly as input in addition to the graph repre-
sentation, as illustrated in Fig. 2.

First, the input molecular structure is converted to a 
graph representation. The resulting graph is then pro-
cessed through several graph convolutional layers, which 
aggregate information from neighboring graph nodes. 
Edge features can be combined with atom features before 
passing through the graph operator in each layer. This is 
followed by a residual layer [38], a normalization layer 
with support for batch [39], layer [40], and graph [41] 
normalization, a configurable activation function, and a 
dropout [42] layer, where each layer serves as an input 
for the subsequent one. Ultimately, two feature sets are 

obtained. The first feature set is obtained by applying 
global maximum pooling, which takes the channel-wise 
maximum across the node dimension. The second fea-
ture set is obtained by applying global addition pooling, 
which sums node features across the node dimension.

In parallel, molecular-level features (e.g., RDKit [15], 
Mordred [16], or Circular Fingerprint [17] descriptors) 
are processed through a shallow neural network. The 
output of this network is then combined with the pooled 
graph features. Finally, the concatenated molecular and 
graph features are passed through a block consisting of 
two linear layers, a ReLU [43] activation function and a 
dropout [42] layer.

Multi‑modal architectures  Multi-modal architectures 
allow for multiple data types within a single model. For 
example, if training is performed using a ChEMBL [44] 
assay with combined ligand and protein sequence data, 
a multi-modal architecture can accept both of these data 
types simultaneously within a single model. A graph-
based or shallow neural network architecture can be con-
figured for the ligand data, and classic one-dimensional 
convolutions or a shallow neural network utilizing bag-of-
words features can be configured for the protein sequence 
data. The outputs are aggregated and ultimately passed 
through a shallow neural network.

Model training
Similar to machine learning model architectures, the 
training of models is easily customizable without addi-
tional programming requirements. The loss functions, 
learning rate schedulers, optimizers, and their respective 
parameters can be adjusted through JSON configuration 
files according to the relevant requirements. Moreover, 
the majority of the options that are available in PyTorch 
[21] and PyTorch Geometric [22] are also supported in 
kMoL, along with custom-developed components. (e.g., 
Evidential loss [45, 46] or AdaBelief optimizer [47]) 
Additionally, users can choose a subset from a list of 20 

Fig. 2  Overview of the hybrid graph-based architectures
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available metrics for model evaluation or logging pur-
poses during training.

The relevant configurable options in kMoL can be 
tuned using Bayesian optimization. This tuning process 
encompasses architecture options like the model type, 
layer type, dropout rate, and normalization type, as well 
as training options like the optimizer type, criterion, and 
learning rate values. A Tree-structured Parzen Estima-
tor (TPE) [48, 49] implemented using the Optuna [50] 
library is utilized for this purpose. During each optimi-
zation trial, the TPE fits one Gaussian Mixture Model 
(GMM) to the set of parameter values associated with the 
best objective values and another GMM to the remaining 
parameter values. Ultimately, the parameter value that 
maximizes the ratio between them is selected as optimal.

For inference, users have the option to enable visual 
explainability (XAI) tools implemented using Integrat-
edGradients [19] via Captum [20]. This feature cre-
ates images for input molecules where relevant atoms 
or bonds contributing to the predicted value are high-
lighted. Uncertainty estimation features like Monte Carlo 
Dropout [51] or Evidential Deep Learning [52, 53] are 
also supported.

Federated learning
During federated learning with kMoL, the communica-
tion between server and clients is facilitated using gRPC 
[54] and protocol buffers. Upon initialization, the server 
awaits the connection of multiple clients before com-
mencing the training process. When available, the server 
dispatches a baseline model to each participant. The par-
ticipating client then either fine-tunes the model received 
from the server or trains a new model using locally avail-
able data for a predetermined number of epochs. Upon 
completion of the training process, each participant 
sends the latest checkpoint back to the server for aggre-
gation. After receiving the checkpoints from all clients, 
the server aggregates the checkpoints into a single global 
model. This process constitutes one round of federated 
learning, and the global model obtained at the end of 
each round serves as the baseline checkpoint for subse-
quent rounds.

The clients are continually sending a keep-alive signal 
to the server every minute during the federated learn-
ing training process. If a client becomes unreachable and 
the server fails to receive the signal from the client, it will 
halt the process. When a client authenticates, it receives 
a token that will be used for all subsequent operations. 
Unauthenticated machines (i.e., machines without a valid 
token) or dead clients (i.e., clients with an expired keep-
alive signal) are not able to join the training process.

The communication is conducted utilizing the SSL/
TLS protocol with server and client certificate chains. 

Insecure connections are also allowed for development 
purposes. In addition to direct communication between 
sites where checkpoints are stored locally, kMoL also 
supports cloud-based storage solutions such as Box [55] 
for managing checkpoint storage. Additionally, the server 
has the option to whitelist a set of trusted IP addresses 
that can join the process or blacklist a set of suspicious 
IP addresses that are prohibited from joining the process.

Differential privacy [56, 57] is supported in kMoL 
through the Opacus [58] library. It works by adding con-
trolled random noise to model updates, reducing the like-
lihood that individual client data points can be inferred 
from the aggregated results. While this approach pro-
vides strong privacy guarantees, it may introduce trade-
offs in model performance depending on the magnitude 
of the noise. This, among others, is outlined in a more 
comprehensive survey on privacy attacks in machine 
learning. [59]

Results
The evaluation of kMoL is designed to showcase both the 
advantages and limitations of the library through practi-
cal application examples. Accordingly, the experiments 
are organized into two categories:

•	 local benchmarking experiments, and
•	 distributed federated learning experiments.

Experiment design
Experiments are designed with a couple of objectives 
in mind. The first objective is to highlight the ability of 
kMoL to facilitate fast and practical experimentation, 
and consistently deliver well-performing machine learn-
ing models using a variety of datasets. The second objec-
tive is to demonstrate the strength of federated learning 
through the practical application of the library, providing 
valuable insights into when and how federated learning 
strategies can be effectively utilized and at what cost. By 
comparing the performance of these strategies to more 
traditional, local training strategies, the possible trade-
offs are quantified and registered, and scenarios where 
federated learning is most advantageous are highlighted.

kMoL is evaluated using a variety of datasets. Archi-
tecture search and hyperparameter tuning are performed 
using Bayesian optimization, which employs a train-test 
split to evaluate candidate configurations and identify the 
optimal model setup. Subsequently, the optimal model is 
evaluated using five-fold cross-validation on the complete 
dataset to ensure robust performance. Within the scope 
of benchmarking experiments, kMoL is evaluated on 
MoleculeNet [5] datasets and compared to other state-
of-the-art approaches. Within the scope of the federated 
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learning experiments, kMoL is evaluated using Toxicity 
[60–63] and DruMAP [64] ADME datasets. Evaluation is 
performed by splitting the available data across multiple 
clients and training models following various federated 
learning strategies. The performance of these models is 
compared to the performance of baseline models trained 
locally and evaluated using cross-validation. Additional 
experiments utilizing the TDCommons [4] and ChEMBL 
[44] protein-ligand datasets are outlined in the supple-
mentary information, sections S3 and S4, respectively.

Benchmarking experiments
Benchmarking experiments were conducted using Mol-
eculeNet [5] datasets for quantum mechanics, physical 
chemistry, biophysics, and physiology. Bayesian optimi-
zation was performed for architecture search and hyper-
parameter tuning, with 25 trials run for each dataset 
and 100 epochs per trial. Five-fold cross-validation was 
used to evaluate the best-performing models and ensure 
robust performance. Architecture and hyperparameter 
details for each model are outlined in the supplementary 
information, section S1. Extending upon previous work 
reported in GEM [65] and Uni-Mol [66], a scaffold split 
where scaffolds are unique to each fold was employed 
to ensure a consistent comparison between kMoL and 
existing benchmarks. Performance results are presented 
in Tables  1 and  2 for the classification and regression 
tasks, respectively. The ROC-AUC metric is reported 
for classification tasks, and the R2 metric for regression 
tasks. According to experiment results, machine learn-
ing models trained using kMoL are at least on par with 

the state-of-the-art, a quality prerequisite for federated 
learning experiments.

Federated learning experiments
Datasets used for federated learning experiments can 
be grouped into two distinct categories: Toxicity and 
ADME. The Toxicity category encompasses the Tox21 
[60] and AMES [61–63] datasets, while the ADME cat-
egory includes the Intrinsic Clearance (Human), Fraction 
Excreted Unchanged (Human), Brain Homogenate Bind-
ing (Mammal), Plasma Protein Binding (Human and Rat), 
P-gp Net Efflux Ratio (Human), Permeability (Human), 
Blood/Plasma Ratio (Rat), and Solubility datasets, all of 
which are a part of the DruMAP [64] analysis platform. 
The details of these datasets are presented in Table 3.

Bayesian optimization and cross-validation were per-
formed similarly to the benchmarking experiments. 
However, in case of models trained on datasets with fewer 
samples (e.g., RbRat), cross-validation was repeated mul-
tiple times using different random seed values, and the 
average value is ultimately reported. Models trained on 
the Tox21, AMES, FupHuman, FuBrain, CLint, and Pap-
pCaco2 datasets were evaluated using one distinct five-
fold cross-validation split. In contrast, models trained on 
the FupRat, Papp-LLC, NER-LLC, and FeHuman datasets 
were evaluated on five distinct five-fold cross-validation 
splits, while the model trained on the RbRat dataset was 
evaluated on ten distinct five-fold cross-validation splits. 
Cross-validation results are presented in Table  4. The 
ROC-AUC metric is reported for classification tasks, 
and the R2 metric for regression tasks. The metric values 
are formatted as x ± y , where x denotes the mean value 

Table 1  Benchmark results on MoleculeNet [5] classification tasks

Bold values indicate the best-performing results for each dataset

SIDER ClinTox BACE BBBP Tox21 Toxcast HIV MUV PCBA

Number of Samples 1,427 1,478 1,513 2,039 7,831 8,575 41,127 93,087 437,929

Number of Tasks 27 2 1 1 12 617 1 17 128

ROC-AUC (%)

 D-MPNN [67] 57.0 90.6 80.9 71.0 75.9 65.5 77.1 78.6 86.2

 AttentiveFP [68] 60.6 84.7 78.4 64.3 76.1 63.7 75.7 76.6 80.1

 N-GramRF [69] 66.8 77.5 77.9 69.7 74.3 – 77.2 76.9 –

 N-GramXGB [69] 65.5 87.5 79.1 69.1 75.8 – 78.7 74.8 –

 PretrainGNN [70] 62.7 72.6 84.5 68.7 78.1 65.7 79.9 81.3 86.0

 GROVERbase [71] 64.8 81.2 82.6 70.0 74.3 65.4 62.5 67.3 76.5

 GROVERlarge [71] 65.4 76.2 81.0 69.5 73.5 65.3 68.2 67.3 83.0

 GraphMVP [72] 63.9 79.1 81.2 72.4 75.9 63.1 77.0 77.7 –

 MolCLR [73] 58.9 91.2 82.4 72.2 75.0 – 78.1 79.6 –

 GEM [65] 67.2 90.1 85.6 72.4 78.1 69.2 80.6 81.7 86.6

 Mole-BERT [74] 62.8 77.0 80.8 67.6 76.8 64.3 78.2 78.6 –

 Uni-Mol [66] 65.9 91.9 85.7 72.9 79.6 69.6 80.8 82.1 88.5
 kMoL 67.9 ± 3.3 90.0 ± 3.6 87.6 ± 2.2 90.5 ± 1.3 84.9 ± 2.67 77.13 ± 0.02 81.3 ± 1.5 83.2 ± 5.9 83.7 ± 1.6
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across all cross-validation folds, and y denotes the 95% 
confidence interval where z = 1.96 . These local training 
results serve as baseline metrics for distributed federated 
learning experiments.

The aggregation strategy is an essential part of feder-
ated learning. Within the scope of federated learning 
experiments, three distinct averaging strategies are uti-
lized: plain, weighted, and benchmarked averaging, as 
illustrated in Fig.  3. In the case of plain averaging, the 
checkpoints are averaged as they are, which can some-
times be a naive and non-optimal approach. For exam-
ple, if particular clients utilize datasets with considerably 
more samples than others, their contribution should also 
matter more. In the case of weighted averaging, the 
checkpoint weights of each client are typically scaled by 

the ratio of dataset samples they utilize, though users 
can also experiment with custom ratios. However, not all 
datasets are of the same quality, and a benchmark dataset 
for server-side evaluation can be beneficial. This intro-
duces an averaging strategy referred to as benchmarked 
averaging. In this approach, a benchmark dataset is uti-
lized to evaluate the performance of checkpoints received 
from clients in each round. Next, a user specified metric 
(e.g., ROC-AUC or R2 ) is computed, and weights are 
adjusted according to the performance of each client. 
While benchmarked averaging is expected to perform 
better than plain and weighted averaging, it must be 
evaluated carefully, as effectiveness heavily depends on 
the quality and breadth of the benchmark dataset. If the 
dataset has too few samples or is not representative of 

Table 2  Benchmark results on MoleculeNet [5] regression tasks

Bold values indicate the best-performing results for each dataset

FreeSolv ESOL Lipophilicity QM7 QM8

Number of Samples 642 1,128 4,200 6,830 21,786

Number of Tasks 1 1 1 1 12

RMSE MAE

D-MPNN [67] 2.082 1.050 0.683 103.5 0.019

AttentiveFP [68] 2.073 0.877 0.721 72.0 0.018

N-GramRF [69] 2.688 1.074 0.812 92.8 0.024

N-GramXGB [69] 5.061 1.083 2.072 81.9 0.022

PretrainGNN [70] 2.764 1.100 0.739 113.2 0.020

GROVERbase [71] 2.176 0.983 0.817 94.5 0.022

GROVERlarge [71] 2.272 0.895 0.823 92.0 0.022

GraphMVP [72] – 1.029 0.681 – –

MolCLR [73] 2.594 1.271 0.691 66.8 0.018

GEM [65] 1.877 0.798 0.660 58.9 0.017

Mole-BERT [74] – 1.015 0.676 – –

Uni-Mol [66] 1.480 0.788 0.603 41.8 0.016

kMoL 1.28 ± 0.09 0.70 ± 0.07 0.59 ± 0.04 44.9 ± 5.2 0.015 ± 0.002

Table 3  Datasets used in federated learning experiments

 Tasks for federated learning experiments are denoted with C for classification, R for regression, and C + R for classification and regression

Category Name Abbreviation Number of Samples Task

Toxicity Tox21 [60] Tox21 7,831 C

Toxicity AMES [61–63] AMES 7,441 C

ADME Intrinsic Clearance (Human) CLint 5,216 R

ADME Fraction Excreted Unchanged (Human) FeHuman 340 C

ADME Brain Homogenate Binding (Mammal) FuBrain 580 R

ADME Plasma Protein Binding (Human) FupHuman 2,559 R

ADME Plasma Protein Binding (Rat) FupRat 539 R

ADME P-gp Net Efflux Ratio (Human) NER-LLC 445 C

ADME Papp Caco-2 Permeability (Human) PappCaco2 4,294 C + R

ADME Papp LLC-PK1 Permeability (Human) Papp-LLC 461 R

ADME Blood/Plasma Ratio (Rat) RbRat 162 R

ADME Solubility (pH 7.4) Solubility 514 C
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the overall distribution, it can negatively impact the fed-
erated learning process. Some clients may have access to 
valuable but rare dataset samples that score low on the 
benchmark dataset and are incorrectly penalized. On 
the other hand, benchmarked aggregation can protect 
against security threats such as model poisoning or eva-
sion [59] attacks. While dataset collection and evaluation 
are outside kMoL’s area of focus, Tanimoto-based diver-
sity metrics can be used to evaluate the benchmark data-
set before the federated learning process. If the dataset 
lacks robust coverage of the chemical space, a different 
aggregation method may be more appropriate.

In addition to different averaging strategies, federated 
learning experiments are designed to analyze the effect of 
different setups by modifying dataset splitting and train-
ing duration conditions. Datasets are divided among a 
minimum of two and up to a maximum of twenty clients. 
This division encompasses balanced and imbalanced 
division strategies, where some clients receive more data 
than others. Additionally, the training process duration, 

Table 4  Cross-validation results for federated learning 
experiments

Dataset Metric Metric Value

Tox21 ROC-AUC 0.871 ± 0.013

AMES ROC-AUC 0.893 ± 0.011

FeHuman ROC-AUC 0.865 ± 0.039

NER-LLC ROC-AUC 0.792 ± 0.041

PappCaco2 ROC-AUC 0.865 ± 0.005

Solubility ROC-AUC 0.873 ± 0.022

CLint R
2 0.458 ± 0.028

FuBrain R
2 0.607 ± 0.077

FupHuman R
2 0.663 ± 0.033

FupRat R
2 0.602 ± 0.090

PappCaco2 R
2 0.505 ± 0.010

Papp-LLC R
2 0.604 ± 0.080

RbRat R
2 0.521 ± 0.149

Fig. 3  The federated learning process is initiated by the server, either by sending the latest global model to all clients, or by requesting a newly 
trained model in the case of the first round. Each client receives the global model and fine-tunes it using locally available data. The newly trained 
models are returned to the server, and once all client models are received, the server aggregates them into a new global model. This process 
is repeated for a predefined number of rounds. Users can choose from three aggregation strategies: plain aggregation (i.e., the checkpoints are 
averaged as is), weighted aggregation (i.e., the checkpoints are balanced by the proportion of data samples), and benchmarked aggregation (i.e., 
the weights are normalized based on the checkpoint performance on a benchmark dataset)



Page 10 of 15Cozac et al. Journal of Cheminformatics           (2025) 17:22 

measured in the number of epochs, is analyzed to investi-
gate its impact on the training outcome.

Federated learning experiment results are visualized 
in Figs.  4 and 5, and numerical values for each of the 
individual models are outlined in the supplementary 
information, section S2. In the C-X experiment settings, 
the data is split evenly across X clients, and models are 
trained for ten epochs per round. In the E-X experiment 
settings, the data is split between two clients, and models 
are trained for X epochs per round. In the I-X-Y experi-
ment settings, models are trained for ten epochs per 
round, but the data is intentionally split unevenly among 
clients based on the specified proportions. For example, 
in the I-40–30-30 experiment setting, the data is split 

among three clients in total, where one client receives 
40% of the samples and the other two clients each receive 
30% of the samples. A detailed analysis of the federated 
learning experiment results is outlined in the Discussion 
section.

Discussion
The benchmarking experiments conducted on Molecu-
leNet [5] datasets provide insights into the performance 
of the kMoL library. By utilizing Bayesian optimiza-
tion for architecture search and hyperparameter tuning, 
kMoL demonstrated competitive results when compared 
to state-of-the-art models. The performance of kMoL on 
both classification and regression tasks underscores its 

Fig. 4  Results of federated learning classification experiments: The X-axis represents the identifier of the experiment, and the Y-axis represents 
the ROC-AUC metric value. The client experiment settings vary in terms of the number of clients among which the data is distributed. The epoch 
experiment settings vary in terms of the number of epochs trained per round. The imbalance experiment settings vary in terms of the ratios 
of unevenly distributed data. (e.g., I-60–40 represents the setting where one client receives 60%, and the other client receives 40% of the data 
samples)
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ability to deliver robust machine learning models across 
a diverse range of tasks, from quantum mechanics and 
physical chemistry to biophysics and physiology. Results 
presented in Tables  1 and 2 show that kMoL often 
exceeds the performance of well-established models, 
making it a strong candidate for practical applications.

Results from federated learning experiments high-
light several critical observations regarding the perfor-
mance of the kMoL library across the different datasets 
and experimental conditions. One observation is that 
smaller datasets exhibit higher variability in metrics and 
are generally less reliable. For instance, splitting a dataset 
that contains two hundred samples among twenty clients 
results in just ten samples per client, leading to instabil-
ity. Thus, the smaller ADME datasets require careful 

analysis. Over 1,000 experiments totaling more than 
20,000 epochs were conducted, and while several trends 
were observed, there are exceptions to nearly every one 
of them.

A consistent trend is that the ROC-AUC metric 
requires more time to converge as the number of cli-
ents increases, as detailed in the raw federated training 
results provided in the supplementary information. This 
occurrence is particularly noticeable in the case of the 
Tox21 and AMES datasets. The performance impact on 
the regression tasks is more pronounced than the impact 
on the classification tasks. For larger datasets like CLint, 
R2 losses can exceed 50%, and convergence fails in some 
cases like PappCaco2. Although benchmarked aggrega-
tion shows improvement for larger datasets, it can fail in 

Fig. 5  Results of federated learning regression experiments: The X-axis represents the identifier of the experiment, and the Y-axis represents the R2 
metric value. The client experiment settings vary in terms of the number of clients among which the data is distributed. The epoch experiment 
settings vary in terms of the number of epochs trained per round. The imbalance experiment settings vary in terms of the ratios of unevenly 
distributed data. (e.g., I-60–40 represents the setting where one client receives 60%, and the other client receives 40% of the data samples)
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smaller or challenging datasets due to divergence in early 
phases. Classification tasks generally perform well across 
almost all tasks, with minor losses, even in cases with a 
large number of clients.

Occasionally, performance decreases as the number of 
clients increases, although not consistently. In particu-
lar scenarios, the federation process appears to act as a 
regularizer, similar to Stochastic Weight Averaging [75], 
which improves generalization. When no clear trend is 
observed, the differences may be due to random varia-
tions akin to local training with different random splits.

The number of epochs per round or the level of imbal-
ance among clients does not significantly affect metrics. 
However, training for too many epochs (e.g., 20 epochs 
per round) can sometimes have adverse effects. Plain 
aggregation generally benefits from more rounds, while 
benchmarked aggregation performs better with fewer 
rounds.

The choice of aggregation strategy generally has limited 
impact, particularly for classification tasks, though spe-
cific scenarios may exhibit exceptions. Weighted averag-
ing by sample number generally improves performance, 
but exceptions exist. The benchmarked aggregation, 
while expected to outperform naive methods, some-
times does not, especially when using more complex or 
small datasets. Nonetheless, it slightly outperforms other 
methods on classification tasks, albeit not significantly.

Comparing the federated learning results to baseline 
values from local training presented in Table 4, consist-
ent trends across most experiments can be observed. 
Performance losses tend to increase as the number of cli-
ents the data is spread across increase, but they remain 
small for classification tasks. For classification tasks, 
losses in 2 client settings are between 0–6%, and grow 
to 2–8% at 20 clients. For regression tasks, the impact 
is more pronounced. Some experiments show moderate 
performance losses from 2–3% (2 clients) to 8–10% (20 
clients), but there are significant losses as well, like CLint, 
which improves compared to the baseline by 1% in two 
client settings, but drops by 36% with 20 clients. Regres-
sion tasks pose greater challenges for federated learning 
due to their sensitivity to data variance and noise. Unlike 
classification tasks with simpler loss landscapes, regres-
sion requires modeling fine-grained relationships that are 
more impacted by fragmentation. Aggregation methods 
can play an important role here, with re-weighted strat-
egies demonstrating up to 25% performance differences, 
as shown in supplementary information, section S2.

This work provides a foundation and practical tool for 
exploring and experimenting with federated learning in 
drug discovery, but several promising areas for further 
research remain. Future efforts could focus on incorpo-
rating additional public datasets of high relevance to the 

drug discovery community. Baselines and hyperparam-
eters reported for ChEMBL [44], MoleculeNet [5], and 
TDCommons [4] datasets could serve as strong start-
ing points for further federated learning experimenta-
tion. Aggregation strategies are another broad area of 
research, where dynamic weighting, clustering-based 
methods to group clients with similar data distributions, 
or gradient clipping techniques to reduce the impact of 
extreme updates could enhance robustness and perfor-
mance in non-IID settings. [76] Regression tasks, in par-
ticular, show greater sensitivity to noise and variability 
across clients and may benefit from these approaches.

Conclusion
kMoL presents a powerful and flexible solution for 
machine and federated learning in drug discovery. As it 
is developed with fast and practical experimentation in 
mind, the library allows users to easily configure and cus-
tomize machine learning models without requiring con-
sortium memberships, specific hardware, complicated 
server setups, or additional programming obligations. 
This flexibility makes it accessible to users from various 
backgrounds, from beginner researchers to seasoned 
professionals.

kMoL provides several mechanisms to address differ-
ent types of bias during federated learning. These can 
be grouped into local training strategies, checkpoint 
aggregation strategies, and post-training strategies. Local 
training options include regularization techniques, drop-
out adjustments, and adjusting the number of training 
epochs per round to control how far clients deviate from 
the global checkpoint, whether to maintain closer align-
ment or allow greater divergence as needed. Checkpoint 
aggregation strategies are server-side approaches where 
users can adjust the contribution of each client based on 
dataset size or checkpoint quality to address imbalances. 
Post-training methods, such as fine-tuning the global 
checkpoint on a separate dataset, provide opportunities 
to further refine the model or correct residual bias. These 
tools and features are integrated into kMoL and can be 
applied without requiring custom code, making the 
framework practical for diverse scenarios.

The evaluation across various datasets demonstrates 
both the strengths and limitations of the kMoL library 
and the underlying technologies. Utilizing Bayesian Opti-
mization for architecture searching and hyperparameter 
tuning enables users to rapidly and automatically find 
the best-performing model for a particular task. While 
various federated learning strategies are already enabled 
within the library, users are ultimately encouraged to run 
varied experiments on their setups to determine what 
works best, as no single strategy consistently excels in all 
scenarios.
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