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Abstract 

We evaluate the impact of pretraining Graph Transformer architectures on atom-level quantum-mechanical features 
for the modeling of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of drug-like 
compounds. We compare this pretraining strategy with two others: one based on molecular quantum properties 
(specifically the HOMO-LUMO gap) and one using a self-supervised atom masking technique. After fine-tuning 
on Therapeutic Data Commons ADMET datasets, we evaluate the performance improvement in the different 
models observing that models pretrained with atomic quantum mechanical properties produce in general 
better results. We then analyze the latent representations and observe that the supervised strategies preserve 
the pretraining information after fine-tuning and that different pretrainings produce different trends in latent 
expressivity across layers. Furthermore, we find that models pretrained on atomic quantum mechanical properties 
capture more low-frequency Laplacian eigenmodes of the input graph via the attention weights and produce better 
representations of atomic environments within the molecule. Application of the analysis to a much larger non-public 
dataset for microsomal clearance illustrates generalizability of the studied indicators. In this case the performances 
of the models are in accordance with the representation analysis and highlight, especially for the case of masking 
pretraining and atom-level quantum property pretraining, how model types with similar performance on public 
benchmarks can have different performances on large scale pharmaceutical data.

Scientific contribution
We systematically compared three different data type/methodologies for pretraining molecular Graphormer 
with the purpose of modeling ADMET properties as downstream tasks. The learned representations from differently 
pretrained models were analyzed in addition to comparison of downstream task performances that have been 
typically reported in similar works. Such examination methodologies, including a newly introduced analysis 
of Graphormer’s Attention Rollout Matrix, can guide pretraining strategy selection, as corroborated by a performance 
evaluation on a larger internal dataset.
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Introduction
Effectively representing molecules for modeling 
applications is a fundamental challenge in 
cheminformatics and machine learning, which lead to 
the development of various representation methods. 
In the realm of precomputed representations, different 
approaches are utilized depending on the available input 
data. Fingerprints, which encode the presence or absence 
of substructures and certain chemical properties in 
binary vectors, are commonly used in cheminformatics, 
particularly when 3D data is not available. On the other 
hand, physics-inspired representations like the Coulomb 
Matrix [1], Bag of Bonds[2], SLATM [3] and many 
others are more frequently employed for representing 
3D geometries and physical properties. With the advent 
of deep learning, the potential to learn representations 
directly from data has become increasingly 
apparent[4–9]. These learned representations, shaped 
by the training of deep neural networks, enable the 
transformation of input data into a latent space where 
relevant features can be distilled in different ways for 
specific tasks[10–12]. For instance, contrastive learning 
techniques have been employed to learn representations 
including information from other modalities such 
as image information[13] and knowledge-graph 
information[14]. Similarly, other learning approaches 
have been developed to integrate multimodal data with 
chemical structures, such as medical records [15], natural 
language [16] or pooling together sequence graph and 
geometry information [17]. Moreover, this approach 
often allows for the incorporation of invariance or 
equivariance with respect to particular transformations, 
enhancing the robustness and accuracy of the models 
[18–20]. However, despite the remarkable successes 
achieved, these methodologies still present some 
limitations that need to be carefully evaluated [21]. 
In particular, challenges such as data scarcity[22] and 
generalizability remain pertinent concerns in the field 
[9, 23–27]. To address these challenges, the concept of 
pretraining models on related tasks or employing self-
supervised learning strategies has gained significant 
traction. The success of this methodology is evident, for 
example, in the realm of natural language processing, 
where overparametrized large language models (LLMs) 
are pretrained on a wide corpus of data, and then made 
available for fine-tuning with minimal resources and 
small datasets on specific tasks [28, 29]. Following 
a similar paradigm, in the context of molecular 
representation learning this technique has been explored 
as a mean to enhance model generalizability and 
performance across various downstream tasks [11, 30–
33]. The selection of pretraining data and tasks, though, is 
not trivial. The data should be such that: (i) it is available 

or can be generated at scale and (ii) provide fundamental 
information about molecular properties and behavior. 
A natural choice following these criteria is quantum 
mechanical (QM) reference data, as it is known to be 
related to fundamental aspects of molecular behavior 
[34–37] with profound implications in biochemical 
research and it only requires computational resources 
for production at scale, being in fact already present in 
an increasing number of public datasets [38–49]. Studies 
utilizing both atomic and molecular QM properties for 
pretraining have been already carried out in multiple 
excellent works [50–55] using different molecular 
representations and architectures. In these studies some 
degree of improvement on various downstream tasks is 
shown, but the conclusions are often based solely on the 
modeling benchmark data and explained by knowledge 
transfer between tasks, limiting the understanding of 
the real impact that different pretraining methods can 
have on the representations learned by the models. 
In this context, our study aims to bridge this gap and 
proposes a series of studies focused on investigating 
the impact that pretraining on atom-level quantum-
mechanical (QM) properties has on the representation 
learned by a Graphormer neural network [56] when 
compared to other commonly employed pretraining 
strategies. The evaluation is carried out on public 
benchmark data and multiple analysis are performed on 
fine-tuned models with the addition of a test on internal 
microsomal clearance data. The results show that models 
pretrained on atom-level QM properties result in better 
representations under multiple indicators, and that the 
ranking based on those indicators matches better with 
the results on the larger internal dataset rather than with 
the results on the benchmark.

Methods
We consider a custom implementation of Graphormer 
[56, 57] as an instance of network that belongs to the 
increasingly popular family of Graph Transformers 
(GTs) [58], models that generally utilize a transformer 
architecture on 2D graph input data. As a comparison for 
the models pretrained on atomic QM properties, besides 
training the model without pretraining, we consider 
masking pretraining (atom-level self-supervised method) 
using the same dataset employed for the atom-resolved 
QM properties [59], and pretraining on on a much 
bigger dataset of a molecular property, HOMO-LUMO 
gap (HLG) calculated by QM methods [60]. This choice 
is dictated by the approximate matching of the overall 
number of atomic properties (molecules times non-
hydrogen atoms) with the number of data points for the 
HLG (one per molecule). The pretrainings were followed 
by fine-tuning on individual target downstream tasks 
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from absorption, distribution, metabolism, excretion, 
and toxicity (ADMET) benchmark datasets of the 
Therapeutics Data Commons (TDC) [61]. They represent 
the key properties relevant to pharmacokinetics and 
pharmacodynamics of drugs. Other than comparing 
the results of these different pretraining strategies on 
the benchmark metrics, the studies carried out in this 
work investigate multiple aspects of learned latent 
representations. Namely, we evaluate the conservation 
of the pretraining information after fine-tuning, analyze 
expressivity of the latent representation across layers 
and sensitivity of the receptive field of the obtained 
atomic representations. We also propose and perform a 
novel spectral analysis of the Attention Rollout matrix 
[62], that studies its relation to the graph-Laplacian 
eigenmodes of the input molecule. Furthermore, the 
pretraining methodologies were utilized in the modeling 
of an internal company dataset of microsomal clearance 
(which contains much more data than its public TDC 
counterpart) that revealed the limitations of using only 
public benchmark metrics for methodology evaluation. 
In this section we will describe in detail the model, the 
datasets, the methods used for pretraining and fine-
tuning as well as each of the analyses done on the fine-
tuned models.

Model description
 Graphormer is a GT where the input molecule is seen 
as a graph with atoms as nodes and bonds as edges. 
This model in general works by encoding the atoms in 
the molecule as tokens based on their atom type with 
an additional token (the CLS token) to encode global 
information about the molecule as in BERT [63], and 
then repeatedly applying transformer encoder layers with 
modified self-attention blocks with an internal bias term 
before the softmax function. This term is based on the 
topological distance matrix of the molecular graph and 
allows the encoding of the structural information of the 
molecular graph. In particular, the network employed 
in this work is an implementation of Graphormer from 
[57], inspired by the work [56]. In this implementation 
the centrality encoder is adapted from using only explicit 
neighbors to including both explicit atoms and implicit 
hydrogens. As a result of the combination of this modified 
centrality encoding together with the usual atom type 
encoder, the hybridization of atoms is handled implicitly. 
For this reason this implementation does not present any 
edge encoder component. For what concerns the choice 
of hyperparameters, we did not run hyperparameter 
tuning experiments as absolute performance is not 
the focus of this work. We purposely chose 20 hidden 
layers, a higher number than usually found in similar 
architectures, while maintaining a number of parameters 

that is comparable with other Transformer-based 
implementations previously introduced[56, 64] ( ∼ 10M 
parameters). This choice is done in order to study the 
effects of the pretraining strategies on very deep models, 
considering quantities closely related to known depth-
related phenomenons in machine learning literature 
[58, 65, 66], while maintaining reasonable training 
times and a number of parameters comparable to other 
models. The rest of the hyperparameters were chosen 
based on our experience and maintaining the same 
conditions across all models in both pretraining and 
fine-tuning stages for fairness of comparison. Finally, 
differently from our preliminary results in [67, 68] we 
do not employ task specific virtual nodes but rather rely 
solely on the original implementation in [57]. This last 
choice is made to exclude any effect that this technique 
may have on the final results, especially considering 
that other GT architectures generally do not employ it. 
More information on the Graphormer implementation is 
reported in the SI.

Pretraining datasets and methodology
 For pretraining, we used a publicly available dataset 
[59] consisting of ∼ 136k organic molecules for a total of 
over 2M heavy atoms. Each molecule is represented by 
a single conformer initially generated using the Merck 
Molecular Force Field (MMFF94s) in RDKit library. 
The geometry for the lowest-lying conformer was then 
optimized at the GFN2-xtb level of theory followed by 
refinement of the electronic structure with DFT (B3LYP/
def2svp). The dataset reports several atomic properties: a 
charge, electrophilic and nucleophilic Fukui indexes, an 
NMR shielding constant. Another pretraining dataset, 
PCQM4Mv2, consists of a single molecular property 
per molecule, an HLG that was also calculated using 
quantum chemistry methods https://​ogb.​stanf​ord.​edu/​
docs/​lsc/​pcqm4​mv2/. The dataset contains over 2M 
of molecules and was curated under the PubChemQC 
project [60]. It is important to specify that albeit both 
datasets also contain the 3D molecular geometries, we 
only employ the 2D graph chemical structures.

The pretraining on atom-level QM properties is 
achieved via a regression task by applying a linear layer to 
the obtained node representations, each corresponding 
to a heavy (non-hydrogen) atom. The model is trained 
on each one of the available atomic properties separately, 
as well as on all of them at the same time in a multi-task 
setting. As a result, we obtain from these pretraining 
efforts 5 different models.

Pretraining on molecular quantum properties is 
achieved via a regression task on the values of HLG 
from the PCQM4Mv2 dataset and where the output 

https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
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is obtained by applying a linear layer to the class token 
representation at the last layer of the network.

Masking pretraining, instead, is carried out in a similar 
way to what is usually done in BERT-based models [63, 
69]. This procedure entails randomly masking 15% of the 
input graph node tokens by replacing them with the mask 
token, and then training the model to restore the correct 
node type from the masked embedding as a multi-class 
classification task. This last pretraining is carried out on 
the molecular structures present in the dataset used for 
atomic QM properties.

Downstream tasks
 For the benchmarking of the obtained pretrained 
models, we used the absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) group 
of the TDC dataset, consisting of 9 regression and 13 
binary classification tasks for modeling biochemical 
molecular properties https://​tdcom​mons.​ai/​bench​
mark/​admet_​group/​overv​iew/. The training and 
testing on this dataset is carried out in the same way 
as any molecular property modeling. For splittings 
and evaluation metrics we follow the guidelines of the 
benchmark group that we consider, hence we refer to 
[61]. All the downstream task trainings followed the 
same procedure with weights taken from the respective 
pretrained models (without freezing any layer) or 
randomly initialized for training the scratch model. No 
multitask training is adopted here and a different model 
is obtained for each split of each downstream task. For 
each combination of downstream task and pretraining, 
we obtained 5 models, corresponding to training/
validation splits as provided in the benchmark, and 
reported the final performance as mean and standard 
deviation over this set. In summary, the non-pretrained 
Graphormer version used as a baseline model was 
compared with 7 different pretrained models: one per 
each of the 4 atom-resolved QM properties (atomic 
charges, NMR shielding constants, electrophilic and 
nucleophilic Fukui function indexes), one pretrained 
on all atomic properties in a multi-task setting, one 
for the molecule-level property (HLG), and one for 
masking node pretraining. Each of the 8 models is 
then fine-tuned on the 22 tasks from the TDC ADMET 
benchmark totaling 880 final models with the default 5 
train/test splits per each task.

Finally, we consider a much larger set of proprietary 
JNJ data containing values of human liver microsome 
(HLM) intrinsic clearance of ∼ 130 k compounds 
measured in two different assays. Fine-tuning on this 
dataset was conducted in the same way as in the case 
of the regression tasks in TDC with the difference that 
two values of clearance were modeled using a multi-task 

approach. A test set accounts for 20% of a total dataset 
size and is obtained as a scaffold split that maximizes 
Tanimoto distance between the train and test splits. The 
results are reported both in terms of R2 coefficient and 
Spearman’s correlation coefficient as mean and standard 
deviation over 3 seeds.

The mutual distribution of chemical spaces covered by 
pretraining and downstream datasets was analyzed using 
Uniform Manifold Approximation and Projection (UMAP) 
plot[70] of the respective Morgan fingerprints (Fig. 1). This 
analysis demonstrated significant overlap between the 
chemical spaces of the HLG and QM136 datasets on one 
hand and the HLM and TDC datasets on the other hand. 
Also, there is a partial overlap between the TDC, HLG and 
QM136 datasets.

Conservation of pretraining information after fine‑tuning
 In order to understand if the fine-tuned models preserve 
some of the information learned during the supervised 
pretraining stages or if that amounts only to a different 
network initialization, we analyze the latent representation 
obtained in the last layer. In particular, for each fine-
tuning task and for each set of differently pretrained 
models, we freeze the model obtained from one of the 
seeds and encode a sample of 5000 molecules from each 
of the two pretraining datasets. The latent representations 
are split into equal size train/test sets and fit with the 
regularized linear regressor from [71] to reveal to which 
extent the representation still preserve linear correlation 
with the pretraining labels. The results are reported in 
terms of R2 coefficient over the test set averaged across 
the 22 fine-tuned models. We perform this analysis in 
an all-to-all fashion: namely for every model against 
every pretraining task and also considering the models 
trained from scratch as some correlation may arise from 
learning representations during the downstream tasks. 
Using similar methodology, we also analyzed correlation 
between the representations and pretraining labels prior 
to fine-tuning to obtain reference points for understanding 
possible degradation of pretraining information.

Latent expressivity across layers
For deep transformer models and deep graph neural 
networks, a tendency for the latent representations 
of each of the considered tokens or nodes to become 
increasingly similar as more and more layers are applied 
is quite common. While a more detailed analysis of this 
phenomenon, as testified by the multiple studies around 
this topic [72–76], would require a specialized work 
and goes beyond the scope of this paper, characterizing 
this effect is of particular interest for machine learning 
practitioners dealing with deep models. To this end, 
the internal representation at each layer of the models 

https://tdcommons.ai/benchmark/admet_group/overview/
https://tdcommons.ai/benchmark/admet_group/overview/
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is also studied by analyzing a quantity introduced 
in [65], which is related to representation rank, that 
measures how similar are latent token representations. 
If GTL(X) ∈ R

n×d is the latent representation of an 
encoded input X ∈ R

n×d at layer L of a GT network, this 
is defined as:

with ||(·)||1,∞ =
√
||(·)||1||(·)||∞ , where res(X) =

X − 1xT  , with x = argmin
x

||X − 1x
T || where x ∈ R

d and 

1 ∈ R
n . Namely, this metric measures how close is the 

representation to the closest representation in ||(·)|| norm 
where all n latent representations are equal to the same 
vector x . We report the value of this quantity across all 
layers for every model, computed using a random sample 
of 100 molecules from each test set of the ADMET tasks.

Spectral analysis of attention rollout
 To have a better understanding of the mechanism 
behind the pretrained models’ improvements, we shift 
our focus on the analysis of attention weights. We aim to 
understand directions along which an input molecular 
representation is decomposed when passed through a 
given model. In order to do so, we start by considering 
the Attention Rollout matrix [62] Ã as a proxy for the 
model’s action on the input (see SI for a more detailed 
motivation). While this is a strong approximation, it 

(1)ρL = ||res(GTL(X))||1,∞
||GTL(X)||1,∞

provides a number of non-trivial insights (vide infra). We 
operate an eigendecomposition of Ã (from here on we 
will make use of the bra-ket notation):

with ai ∈ C and |a0| ≥ |a1| ≥ ... ≥ |aN−1| and, based 
on an empirical observation on one of the pretrained 
Graphormers (see Fig.  2), we analyze the similarity 
of the eigenvectors |ai� ∈ C

n with the eigenvectors of 
the Laplacian matrix L of the input molecular graph 
decomposed as

with li ∈ R , |li� ∈ R
n and l0 ≤ l1 ≤ ... ≤ lN−1 . In 

particular, by considering the overlap matrix Cij = |�li|aj�| 
we study both how many Laplacian modes are used as 
models’ eigendirections as well as how relevant they are 
as fraction of the non-trivial spectrum of Ã (by non-
trivial we mean i  = 0 as by construction |�l0|a0�| = 1 for 
reasons reported in the SI). This fraction is quantified by 
η =

∑

i∈U\0 |ai|
∑i=N−1

i=1 |ai|
 where U =

{j|maxj Cij ≥ 0.9 for i ∈ (0, 1, 2, ..., N − 1)} with 0.9 being 
a chosen arbitrary threshold for similarity. Based on 
these quantities, we define a metric that factors 
everything together as:

(2)Ã =
N−1
∑

i=0

ai|ai��ai|

(3)L =
N−1
∑

i=0

li|li��li|

Fig. 1  UMAP plot of chemical spaces covered by the studied datasets
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where � is the Heaviside function. We then evaluate 
ζ averaged over the test set of each downstream task 
reporting per each group of models the distribution 
across tasks for fixed pretraining condition. This quantity, 
as noted in the SI, can be loosely interpreted as an indica-
tor of oversmoothing of the input graph information. A 
higher ζ , in fact, can be interpreted as a higher bandwidth 
in the Fourier space defined by the input graph.

Neighbor sensitivity analysis
 Following the hypothesis that atomic QM properties 
provide a good description of the atomic environment 
around each atom, we carry out a sensitivity analysis 
to understand in every model how much each atomic 
representation GT(X) ∈ R

n×d in the last layer is 
influenced by changes in the input encodings X ∈ R

n×d 
of the kth order neighbors within the same molecule. 
These changes are considered in the differential sense 
using the Jacobian matrix of the respective latent 
representation. We hence compute the following quantity 
for 50 randomly selected molecules from the TDC test 
sets:

where the µ and ν indices run over the feature dimension 
d, Ki is the set of kth order neighbors of the atom i and 

(4)ζ = η

N−1
∑

i=1

�

(

max
j

Ci,j − 0.9

)

(5)Sk =
〈〈

√

√

√

√

d
∑

ν=0

d
∑

µ=0

(

δGT(X)i,ν

δXj,µ

)2〉

j∈Ki

〉

i∈M
,

M is the set of the atoms in the molecule. As a result, 
for each molecule, Sk is the Frobenius norm of the 
considered Jacobian matrix averaged over all atoms 
with the chosen topological distance k from the atom i, 
and averaged over the set of all atoms. A closely related 
quantity has been studied as indicator of oversquashing 
in graph message-passing neural networks, a 
phenomenon where bottlenecks in the message passing 
mechanism prevent proper information propagation [66]. 
In our case, it is used as measure of receptive field for the 
representation of atomic environments obtained with the 
models, and compared across pretraining methodologies. 
For each molecule the vector of sensitivities [S0,S1, . . . ] 
is then standardized subtracting the minimum value 
and then dividing by the maximum value (which is 
usually S0 ). These vectors are collected for the sampled 
structures and the selected models, and the behavior is 
then analyzed from the first to fifth neighbor atom node.

Results
Benchmark results
 Model performances obtained for the downstream tasks 
are summarized in table  1 where the best model in the 
tested group is highlighted in bold. We evaluate the best 
results based on their mean values. Then, for every other 
model, we perform a t-test paired by seed to test the 
hypothesis that the best model is significantly better than 
the others. The models for which the null hypothesis can-
not be refuted were highlighted with the only exception 
being the exclusion of two cases where the standard devi-
ation is one order of magnitude higher than for all the 

Fig. 2  Visual representation for a molecule in the TDC dataset of the comparison between the most relevant eigenvectors of the Attention 
Rollout matrix from a model pretrained on atom-level QM properties and the low-frequency eigenvectors of the graph Laplacian associated 
to the molecular structure. Each eigenvector is a function defined on the graph nodes, and hence the color scale used here corresponds to |ai� 
for the eigenvectors of the Attention Rollout matrix Ã with eigenvalue ai and to |li� for the eigenvectors of the graph Laplacian L with eigenvalue li



Page 7 of 15Fallani et al. Journal of Cheminformatics           (2025) 17:25 	

other results. Overall, while in most cases all the pretrain-
ing strategies provide some improvement, pretraining on 
HLG stands out only for one property, albeit still being 
among the best models in the group for four more cases. 
While masking pretraining also significantly outperforms 
other models only in one case, we find it sharing top per-
formance with other models for ten more downstream 
tasks. When the models pretrained with atom-level QM 
properties are considered as a group, we find it to con-
tain the best model overall (at least one better than both 

masking and HLG) in ten cases, and tying for best model 
in twenty cases out of twenty-two. Within the group one 
can see that models pretrained on charges, NMR shifts 
and all atomic QM properties provide overall a greater 
number of best results than models pretrained on Fukui 
functions. Finally, we notice that for the case of solubility, 
lipophilicity and acute toxicity (LD50) we obtain supe-
rior results than the respective best models in the TDC 
leaderboard.

Table 1  Global results obtained from the ADMET group of TDC

 Each row corresponds to a specific task, along with the metric used for evaluation. Columns represent different pretrainings considered. Highlighted values denote 
the best performance achieved among our models, based on the average value and t-tests paired across seeds. Additionally, cases where our results surpass in mean 
value the top-performing model in the TDC leaderboard are marked with an asterisk ( ∗ ). For an explanation of model tags we refer to the SI

Task Metric Scratch All Charges Nmr Fukui_n Fukui_e Masking Homo-lumo

caco2_wang MAE↓ 0.442 ± 0.041 0.354 ± 0.015 0.404 ± 0.069 0.364 ± 0.046 0.346 ± 0.034 0.483 ± 0.036 0.471 ± 0.080 0.381 ± 0.040

hia_hou ROC-AUC ↑ 0.972 ± 0.015 0.982 ± 0.003 0.973 ± 0.027 0.977 ± 0.011 0.967 ± 0.011 0.908 ± 0.019 0.981 ± 0.013 0.869 ± 0.037

pgp_broc-
catelli

ROC-AUC ↑ 0.892 ± 0.011 0.913 ± 0.015 0.902 ± 0.019 0.917 ± 0.009 0.896 ± 0.020 0.911 ± 0.008 0.921 ± 0.003 0.870 ± 0.016

bioavailabil-
ity_ma

ROC-AUC ↑ 0.606 ± 0.040 0.673 ± 0.028 0.662 ± 0.071 0.640 ± 0.040 0.663 ± 0.025 0.616 ± 0.082 0.698 ± 0.035 0.667 ± 0.031

lipophilicity_
astrazeneca

MAE ↓ 0.539 ± 0.036 0.393 ± 
0.005∗

0.425 ± 
0.023∗

0.424 ± 0.007∗ 0.457 ± 0.008∗ 0.463 ± 0.011∗ 0.462 ± 0.005∗ 0.451 ± 0.011∗

solubility_
aqsoldb

MAE ↓ 0.878 ± 0.031 0.720 ± 
0.010∗

0.726 ± 0.011∗ 0.728 ± 0.014∗ 0.756 ± 0.012 0.771 ± 0.015 0.769 ± 0.007 0.772 ± 0.019

bbb_martins ROC-AUC ↑ 0.860 ± 0.016 0.872 ± 0.021 0.874 ± 0.011 0.869 ± 0.014 0.848 ± 0.018 0.845 ± 0.014 0.861 ± 0.025 0.883 ± 0.007
ppbr_az MAE ↓ 8.477 ± 0.483 7.589 ± 0.203 7.668 ± 0.236 7.542 ± 0.215 7.530 ± 0.318 8.026 ± 0.222 8.056 ± 0.340 7.874 ± 0.287
vdss_lombardoSpearman ↑ 0.554 ± 0.049 0.624 ± 0.020 0.637 ± 0.022 0.616 ± 0.034 0.616 ± 0.015 0.652 ± 0.012 0.620 ± 0.023 0.580 ± 0.029

cyp2d6_veith PR-AUC ↑ 0.549 ± 0.043 0.621 ± 0.046 0.675 ± 0.014 0.643 ± 0.036 0.660 ± 0.009 0.638 ± 0.011 0.612 ± 0.021 0.612 ± 0.028

cyp3a4_veith PR-AUC ↑ 0.799 ± 0.012 0.797 ± 0.029 0.847 ± 0.022 0.824 ± 0.021 0.838 ± 0.016 0.828 ± 0.018 0.817 ± 0.014 0.794 ± 0.018

cyp2c9_veith PR-AUC ↑ 0.706 ± 0.014 0.703 ± 0.022 0.726 ± 0.024 0.739 ± 0.011 0.722 ± 0.021 0.734 ± 0.014 0.736 ± 0.014 0.708 ± 0.010

cyp2d6_sub-
strate_carbon-
mangels

PR-AUC ↑ 0.546 ± 0.042 0.648 ± 0.031 0.634 ± 0.050 0.653 ± 0.023 0.619 ± 0.057 0.578 ± 0.052 0.677 ± 0.022 0.582 ± 0.036

cyp3a4_sub-
strate_carbon-
mangels

ROC-AUC ↑ 0.637 ± 0.027 0.630 ± 0.015 0.646 ± 0.020 0.642 ± 0.009 0.645 ± 0.015 0.635 ± 0.031 0.641 ± 0.030 0.685 ± 0.015

cyp2c9_sub-
strate_carbon-
mangels

PR-AUC ↑ 0.360 ± 0.022 0.374 ± 0.028 0.404 ± 0.027 0.394 ± 0.024 0.405 ± 0.036 0.375 ± 0.030 0.396 ± 0.024 0.439 ± 0.043

half_life_obachSpearman ↑ 0.373 ± 0.076 0.462 ± 0.154 0.559 ± 0.034 0.487 ± 0.045 0.486 ± 0.030 0.476 ± 0.015 0.462 ± 0.052 0.426 ± 0.039

clearance_
microsome_az

Spearman ↑ 0.448 ± 0.038 0.548 ± 0.029 0.620 ± 0.007 0.613 ± 0.014 0.554 ± 0.019 0.513 ± 0.022 0.555 ± 0.022 0.565 ± 0.032

clearance_
hepatocyte_az

Spearman ↑ 0.336 ± 0.050 0.382 ± 0.032 0.456 ± 0.015 0.460 ± 0.019 0.374 ± 0.021 0.353 ± 0.028 0.478 ± 0.018 0.413 ± 0.030

herg ROC-AUC ↑ 0.709 ± 0.080 0.788 ± 0.029 0.824 ± 0.046 0.834 ± 0.030 0.752 ± 0.042 0.758 ± 0.053 0.880 ± 0.003 0.790 ± 0.031

ames ROC-AUC ↑ 0.772 ± 0.022 0.822 ± 0.005 0.821 ± 0.010 0.833 ± 0.014 0.820 ± 0.009 0.823 ± 0.012 0.801 ± 0.008 0.808 ± 0.008

dili ROC-AUC ↑ 0.856 ± 0.037 0.892 ± 0.033 0.859 ± 0.055 0.898 ± 0.022 0.847 ± 0.016 0.812 ± 0.122 0.906 ± 0.021 0.854 ± 0.017

ld50_zhu MAE ↓ 0.593 ± 0.038 0.559 ± 0.016 0.571 ± 0.012 0.538 ± 
0.014∗

0.592 ± 0.029 0.618 ± 0.014 0.577 ± 0.010 0.582 ± 0.031

Number 
of best models

1 12 17 13 7 5 11 5
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Performance on internal microsomal clearance data
 Although the TDC dataset provides a well established 
benchmark in modeling ADMET properties, the different 
models reported here demonstrated close performance 
on multiple tasks. Expecting divergence of model metrics, 
we tested our methodology on a much larger dataset of 
proprietary JNJ HLM clearance data and summarized the 
results in table  2. The models pretrained on all atomic 
QM properties obtain the best results in both metrics ( R2 
and Spearman’s coefficient), followed closely by models 
pretrained on NMR shifts which are found to not have 
significantly worse results, and atomic charges. Models 
pretrained on Fukui indices give the worst results among 
models pretrained on atomic QM properties, obtaining 
similar performances to models pretrained on HLG. 
Notably, and contrary to what seen in the benchmark 
results, models pretrained using masking obtain the 
worst results over all pretrained models, albeit still giving 
improvements over models trained from scratch.

Conservation of pretraining information after fine‑tuning
 The results obtained on the regularized linear regres-
sion of pretraining labels from the representations of the 
pretraining structures obtained with fine-tuned mod-
els are reported in Fig.  3. We report each value of R2 
coefficient with mean and standard deviation over the 
results obtained from the twenty-two fine-tuned mod-
els obtained from each pretraining (masking is excluded 
from this analysis as it is self-supervised) and also com-
pare them with similar values for non-fine-tuned mod-
els. Prior to fine-tuning, the representations exhibit high 
degree of correlation with other QM properties (Fig. S1), 
especially those obtained from the model trained on all 
four atomic QM properties. Despite some degradation, 
the representations maintain a high degree of linear 
correlation with their correspondent pretraining prop-
erty after being fine-tuned on downstream tasks both 
in absolute terms and with respect to the model trained 
from scratch. Interestingly, models pretrained on NMR 
shifts provide highly correlated with the atomic charges 
representations and also exhibit least degradation of its 
pretraining information during fine-tuning. On the other 
hand, models pretrained on Fukui function values and 

HLG have slightly less linear correlation with the pre-
training task, although still being in a quite high range 
when considering standard deviation and the compari-
son with the models trained from scratch. Models pre-
trained on all four atomic properties maintain a high 
degree of linear correlation with individual properties, 
but especially with charges and NMR shifts. Finally, we 
notice the models pretrained on NMR shifts, Fukui elec-
trophilic indices and all atomic properties, exhibit some 
degree of correlation with HLGs. In contrast, some cor-
relation between the HLG-pretrained representations 
and atomic properties are observed (Fig. S1) but, after 
fine-tuning phase, such correlation fully degrade down to 
levels achieved for a scratch model. We hypothesize that 
the way the network is trained might be responsible for 
this asymmetric behavior. Training on atomic properties 
followed by fine-tuning on downstream molecular prop-
erties impacts, in the final layer, both the latent represen-
tations relative to the atoms and the one relative to the 
CLS token used to model molecular properties. This is 
not the case for HLGs pretrained models, as, in the final 
layer, only the representation associated with CLS tokens 
are directly used to compute the output value.

Latent expressivity as across layers
 The results of the analysis of ρL across layers are sum-
marized for the models using the three main pretrain-
ing strategies (all atom-level quantum properties, HLG 
and masking) and for the models trained from scratch 
in Fig. 4, while a similar plot comparing the models pre-
trained on each atom-level QM property separately is 
reported in the SI. It is evident from the plot that the 
trend of ρL is very different across pretraining methods. 
Overall, when comparing to the models trained from 
scratch, all pretraining strategies mitigate the collapse 
in latent expressivity. In particular, while models pre-
trained on HLG are characterized by a constant level of 
expressivity across layers, models pretrained using mask-
ing have more similar atomic latent representations in 
the first few layers and more dissimilar in the last ones. 
For models pretrained on all atomic quantum proper-
ties, a strong increase in expressivity is observed in the 
first part of the network, reaching a higher value of ρL 

Table 2  Results of the fine-tuning on internal microsomal clearance dataset

Results are reported for both values of clearance in the dataset and for all pretraining strategies both in terms of R2 coefficient and in terms of Spearman’s rank 
coefficient. Highlighted values denote the best performance achieved among our models, based on the average value and t-tests paired across seeds

Metric Scratch All Charges Nmr Fukui_n Fukui_e Masking Homo-lumo

Clearance_1 R
2 ↑ 0.505 ± 0.010 0.640 ± 0.004 0.629 ± 0.006 0.635 ± 0.006 0.599 ± 0.004 0.593 ± 0.004 0.580 ± 0.012 0.602 ± 0.006

Spearman ↑ 0.728 ± 0.008 0.807 ± 0.003 0.799 ± 0.004 0.801 ± 0.003 0.785 ± 0.003 0.785 ± 0.001 0.774 ± 0.007 0.786 ± 0.004

Clearance_2 R
2 ↑ 0.534 ± 0.006 0.653 ± 0.004 0.633 ± 0.003 0.643 ± 0.005 0.598 ± 0.007 0.610 ± 0.008 0.597 ± 0.002 0.607 ± 0.005

Spearman ↑ 0.750 ± 0.005 0.818 ± 0.003 0.807 ± 0.004 0.811 ± 0.002 0.789 ± 0.002 0.795 ± 0.006 0.786 ± 0.002 0.794 ± 0.002
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than the other cases, followed by a decrease in the last 
part, closer to the regression head. Regarding pretraining 
on individual atomic properties, we find that the NMR 
shifts and charges models have similar behavior. The ones 
pretrained on Fukui indices, while presenting a simi-
lar trend, achieve a lower maximum expressivity more 
similar to the models pretrained on HLG. The absence of 
complete expressivity collapse for all pretrained models 
likely comes from the much higher number of examples 

that the models were trained on comparably to the mod-
els trained from scratch. However, dissimilar behaviors 
of expressivity indicate that the pretraining strategies 
explored here produce very different models even when 
the overall performance improvements on the bench-
mark are comparable. It is notable that if we consider the 
highest value across layers for each model, models pre-
trained on atomic quantum properties achieve the high-
est maximum latent expressivity. While we do not have a 

Fig. 3  R2 for the regression tasks using the representations of a sample of the pretraining data obtained with fine-tuned models. We report 
the mean and standard deviation over all fine-tuning cases (mean and standard deviation over twenty-two cases)

Fig. 4  Expressivity of the latent representation measured with the quantity ρL as a function of layer number. This quantity is computed for a sample 
of 2200 structures extracted uniformly from all the fine-tuning test sets (100 structures for each of the 22 tasks) and results are reported as boxplots 
at each layer. This is done for models pretrained on HLG, models pretrained on all atom-level QM properties, models pretrained with masking 
and models trained from scratch. The whiskers go from the 15th percentile to the 85th for better visualization of trends and outliers are excluded 
for the same reason
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definitive explanation for the final sharp decrease in the 
last layers, we hypothesize that quantum atomic prop-
erty regression requires the model to capture correla-
tions between atoms within the same molecular structure 
when close to the last layer, as these properties depend 
on the surrounding atoms as do their respective proper-
ties. This would be sustained from the seemingly oppo-
site trend found in the models pretrained with masking, 
which is a classification task that requires to maximally 
distinguish atomic latent representations close to the last 
network layer using a cross entropy loss function that 
rewards higher certainties.

Spectral analysis of attention rollout
 We evaluate the metric ζ defined in Eq. 4 as described 
in the Methods section obtaining a distribution of 22 
values over the downstream tasks per each group of 
studied models. The results are reported in Fig.  5 as a 
set of swarm plots. Firstly, it is evident that the models 
trained from scratch present values of ζ that are close to 
0 indicating little to no presence of non-trivial Lapla-
cian eigenmodes in the spectrum of their Ã matrix. On 
the contrary, every pretrained model (including mask-
ing) presents nonzero values of ζ across the down-
stream tasks raging from ∼ 1 to ∼ 6 . Within this last 
group of models one can clearly notice how pretraining 
on the atom-level QM properties provides the strongest 
increase of perception of graph Laplacian eigenmodes. 
In particular, the model pretrained using all properties 
in a multi-task fashion presents the highest values of 
ζ , followed by the models pretrained on charges, NMR 
shifts, nucleophilic and electrophilic Fukui function 
indices. The models pretrained on HLGs also present 
some degree of spectral perception, albeit in a lower 
range than the previously mentioned models, followed 
by models pretrained using masking which present the 

lowest graph spectral perception among the set of pre-
trained models.

Neighbor sensitivity analysis
 The results of the neighbor sensitivity analysis are 
reported in Fig. 6. For each considered group of models 
we report the value of Sk for k ∈ [1, . . . , 5] in boxplots 
over 1100 structures sampled uniformly from the test 
sets of the fine-tuning tasks. It is found that the models 
trained from scratch exhibits a constant and low sen-
sitivity of representation with respect to neighboring 
atoms, whereas pretrained models present a reasonable 
descending trend with topological distance. In particu-
lar, the models pretrained on all the atomic QM proper-
ties have a stronger sensitivity than all other models for 
all the considered topological distances, especially, for 
first and second neighbors. The models pretrained on 
HLG present slightly higher sensitivities than the ones 
pretrained using masking which presents the lowest set 
of sensitivities among all pretraining strategies. Among 
the models trained on individual atomic QM proper-
ties, the sensitivity ranges tend to overlap, but they are 
positioned in between the models pretrained on HLGs 
and models pretrained on all atomic QM properties for 
all considered topological distances.

Discussion
Our in-depth analysis demonstrates that, among the 
tested strategies, pretraining the Graphormer on four 
atomic QM properties in the multitask fashion provides 
the best model for subsequent fine-tuning on ADMET 
properties. The final models exhibit high performance 
results in the TDC benchmark and, more importantly, 
outperform other models on a much larger dataset of 
JNJ HLM clearance data. The latent space analysis also 

Fig. 5  Spectral perception of the input graphs for the models fine-tuned on the TDC datasets grouped by pretraining strategy. This is reported 
in the form of swarm plots of the values of ζ averaged across each of the 22 fine-tuning test sets for fixed pretraining strategy
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positions the respective models at the top with highest 
values of latent expressivity, neighbor sensitivities, 
and graph-spectral perception. Besides, last layer 
representations of the respective models pretrained on 
four atomic properties retain high degree of correlation 
with all types of pretraining atomic data after fine-tuning.

Pretraining on NMR shielding constants and atomic 
charges yields the models that are sharing the second 
overall rank in studied metrics. Moreover, these 
pretrainings also provide the highest number of top-
performing models in the TDC dataset. Interestingly, 
while pretraining charge labels can be modeled with 
good results using NMR-pretrained models after 
downstream tasks fine-tuning, the opposite doesn’t hold, 
which indicates that NMR shifts may contain richer 
information than atomic charges. NMR chemical shifts 
are indeed known for their extreme sensitivity to the 
atomic environment of the respective nuclei, covering 
both electronic and to some extent steric effects.

The Fukui indices pretraining posses the third 
cumulative rank among the studied approaches. 
Unexpectedly, the respective models were not among 
the top performing models for clearance modeling, 
despite strong relevance of electrophilic Fukui indices to 
site of metabolism predictions[34] which in turn drives 
the hepatic clearance of drugs. Fukui indices are often 
calculated with the aim to build affinity QSAR models, 
particularly to CYP enzymes [77]. This observation 
suggests that there is more to pretraining such complex 
models than only transfer learning between tasks.

Models pretrained on HLG resulted being close 
to models pretrained on Fukui indices under the 
performance indicators on both TDC and JNJ HLM 
data, and just slightly worse under representation 

indicators. While the relevance of HLG to ADMET 
properties is arguable, it was used as a feature for 
QSAR modeling of CYP enzyme inhibition[78, 79] and 
generally characterizes the propensity of a molecule 
to donate or accept electrons, sometimes referred as a 
global hardness [80]. In particular, Fukui indices and 
frontier orbital levels are tightly related properties 
and often calculated to characterize biologically active 
molecules. When comparing HLG pretraining to Fukui 
indices pretraining, though, it is important to notice that 
the atomic QM properties dataset contains ∼ 20 times 
less molecular structures than the HLG pretraining 
dataset, making atomic properties much more efficient 
in terms of training time and resources. At the same 
time, because each molecule in the atomic properties 
pretraining dataset contains on average 17 non-hydrogen 
atoms per molecule, the overall number of data for each 
atomic property is on the same scale as the HLG dataset. 
Furthermore, because calculation of atomic properties 
typically requires only a fraction of overall computational 
resources spent on geometry optimization and electronic 
structure refinement during QM modeling, such 
properties provide a finer grade physical description of 
molecular structures with a non-dramatic overhead in 
the data generation phase. Little or no overlap (as shown 
in Fig. 1) between the chemical spaces of pretraining and 
downstream task datasets, does not block performance 
improvements obtained from pretraining. We speculate 
that pretraining on atom-resolved QM properties 
incorporates fine-grade knowledge about the electronic 
structure of molecules that better generalizes to 
molecules outside of pretraining domains and results in 
apparent higher efficiency in downstream tasks.

Fig. 6  Boxplots of the kth neighbor normalized sensitivities Sk for k ∈ [1, . . . , 5] . Each boxplot summarizes a sample of 1100 structures extracted 
uniformly from all the fine-tuning test sets (50 structures for each of the 22 tasks). We report this quantity for all studied pretraining strategies, 
and also for the models trained from scratch. The whiskers cover the values from the 15th percentile to the 85th for better visualization of trends. 
Outliers are excluded for the same reason
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Masking pretraining, considered as example of label-
free atom-level pretraining, provided inconsistent results. 
If the performance on the TDC benchmark is comparable 
with other models pretrained on atomic QM properties, 
the analysis of the latent representations together with 
the results on the much wider JNJ HLM dataset place 
this pretraining strategy at the bottom among the tested 
ones, confirming that the improvement seen with atom-
level QM pretraining does not come solely from being 
atom-resolved. It is worth noting that for consistency we 
utilized the same set of molecules for the masking pre-
training as for the pretraining on atomic QM properties. 
Considering simplicity of data preparation, masking pre-
training can be used with much larger datasets contain-
ing tens of millions of molecules and potentially improve 
the performance of the respective models, however such 
experiments were beyond the scope of the present study.

These last findings furthermore highlight the limitation 
of picking the best pretraining method solely using the 
results obtained on public benchmark datasets and the 
importance of utilizing other metrics. In this regard, 
we would like to emphasize that novel analysis of the 
spectrum of the Attention Rollout matrix documented 
a non-trivial effect arising in pretrained GTs where the 
model, albeit under the strong approximation of the 
explainability method, shows hints of filtered spectral 
graph convolution. Such findings connect the GT 
architecture to the family of Spectral Graph Neural 
Networks (SGNNs) [81–84], and should stimulate 
further research potentially leading to the development 
of more robust models that can better leverage both on 
the graph-spectral features typical of SGNNs and the 
flexibility of transformer-based architectures for graph-
based applications.

Conclusions
In this work we explored the effects of pretraining deep 
Graph Transformer models on quantum chemical data 
for improving the performance of modeling ADMET 
properties of drug-like molecules as downstream tasks. 
Atomic properties such as charges and a molecular 
property, HOMO-LUMO gap, were evaluated along with 
atom masking pretraining, an analogue of a well know 
self-supervised method for language models. Pretrained 
models almost always showed much better accuracy 
than the scratch models. The results on the public 
ADMET benchmark show that, in general, an atom-
resolved pretraining, both on QM properties and via 
masking, obtains better performances than pretraining 
on a HOMO-LUMO gap. Comparable performance of 
the atom masking pretraining is not confirmed when 
moving to a larger proprietary human liver microsome 
intrinsic clearance dataset, revealing pretraining on 

atomic charges and NMR shifts as the most superior 
techniques and highlighting that relative performances 
on relatively small public benchmarks may not hold 
when scaled up. Multiple analyses were then performed 
on the models’ weights, revealing several insights into 
the inner workings of the differently pretrained models. 
Firstly, it is found that pretraining information is, in 
general, preserved after fine tuning albeit to different 
degrees depending on the pretraining. Secondly, the 
well-known phenomenon of rank collapse in the latent 
representation of deep models is hindered in different 
ways by different pretraining strategies, showing that 
even models with similar performances can have very 
different inner mechanisms of feature extraction. Thirdly, 
analyzing the spectral properties of the attention weights 
using a custom metric, we find that models pretrained 
on atom-level QM properties can capture more low-
frequency Laplacian eigenmodes of the input molecular 
graphs in what seems to be a low-pass filtering behavior. 
Finally, by studying the Jacobian of the model from the 
first to the last layer and devising a specific metric, we 
show how models pretrained with atom-resolved QM 
properties achieve better representations of the chemical 
environments around the atoms by showing that atomic 
representations have a higher sensitivity with respect 
to the neighboring atoms. As a global observation, 
when modeling public TDC ADMET data, the latent 
representation analyses rather than model performance 
metrics give results that are more aligned with the 
performances on the larger internal HLM intrinsic 
clearance dataset. While we were unable to provide 
explanations for all the collected observations, we hope 
that the present work provides a different perspective 
on evaluating molecular property modeling, as well 
as valuable insights for future research in molecular 
representation learning and for the development of 
useful in-silico datasets.
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