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Abstract The quest to predict and understand protein evolution has been hindered by limitations on both the 
theoretical and the experimental fronts. Most existing theoretical models of evolution are descriptive, rather than pre-
dictive, leaving the final modifications in the hands of researchers. Existing experimental techniques to help probe 
the evolutionary sequence space of proteins, such as directed evolution, are resource-intensive and require spe-
cialised skills. We present the successor sequence predictor (SSP) as an innovative solution. Successor sequence 
predictor is an in silico protein design method that mimics laboratory-based protein evolution by reconstructing 
a protein’s evolutionary history and suggesting future amino acid substitutions based on trends observed in that his-
tory through carefully selected physicochemical descriptors. This approach enhances specialised proteins by predict-
ing mutations that improve desired properties, such as thermostability, activity, and solubility. Successor Sequence 
Predictor can thus be used as a general protein engineering tool to develop practically useful proteins. The code 
of the Successor Sequence Predictor is provided at https://github.com/loschmidt/successor-sequence-predictor, 
and the design of mutations will be also possible via an easy-to-use web server https:// losch midt. chemi. muni. cz/ firep 
rotasr/.

Scientific Contribution  The Successor Sequence Predictor advances protein evolution prediction at the amino acid 
level by integrating ancestral sequence reconstruction with a novel in silico approach that models evolutionary trends 
through selected physicochemical descriptors. Unlike prior work, SSP can forecast future amino acid substitutions 
that enhance protein properties such as thermostability, activity, and solubility. This method reduces reliance on resource-
intensive directed evolution techniques while providing a generalizable, predictive tool for protein engineering.
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Graphical abstract

Introduction
Evolution is a general term that describes the changes 
in inherited traits of biological entities through succes-
sive generations, generally in response to environmental 
changes [1]. While it can be modelled or described at 
many levels of biological organisation and varying lev-
els of accuracy, for this study, we will focus on protein 
evolution.

Protein evolution can be reduced to two key steps: 
amino acid mutation and the fixation of the mutated 
protein in a population [2, 3]. An individual mutation 
may result from errors in DNA replication during cell 
division, exposure to mutagens, or a viral infection. The 
probability of fixation of this new mutation in the popu-
lation depends on the fitness effect of the mutation itself. 
The new variant can be neutral, deleterious, or beneficial. 
While this two-step model is useful, it is only descrip-
tive and not predictive [4]. For this reason, it cannot be 
used to predict upcoming mutations in the future and 
their fixation probability [5]. Thus, generally the field of 
evolutionary predictions has been limited to forecasting 
adaptive processes, as opposed to amino acid level muta-
tions. Efforts to improve these kinds of predictions are 
typically focused on the aspect of selection. This neglects 
the fact that adaptive processes are reliant on new muta-
tions, which in turn do have predictable biases [6]. Yet 
most evolutionary predictions are focused on evolution 
of infectious diseases, cancer and or other somatic evolu-
tions at the phenotypic level [7]. An in silico methodol-
ogy that can predict evolution at the amino acid level can 
ease our reliance on cost prohibitive methodologies such 
as those in the realm of directed evolution [8].

Directed evolution refers to experimental techniques 
used to engineer a protein and possibly understand the 

effect of various mutations on a protein and their fixa-
tion probabilities. These techniques allow a user to probe 
a protein’s evolutionary space. They are used to improve 
protein characteristics and, sometimes, even to con-
fer new characteristics onto a protein [9] by selecting 
or screening many variants. The markers for improve-
ment in protein characteristics due to induced mutations 
can be taken as a proxy for fixation probabilities of the 
induced mutation in a natural environment if it occurs 
without human intervention. While this model has not 
been framed in such a way previously, it closely models 
the concepts of classic Darwinian/positive selection [10].

However, directed evolution experimental techniques 
require specialised skills and are both time and resource-
intensive. Thus, any in silico technique for predicting and 
mimicking laboratory-based protein evolution would be 
of great use for the design of proteins with novel prop-
erties. As of this writing, we have only come across one 
technique, Proseeker, which uses physicochemical char-
acteristics and structure to pick sequences that have 
higher probabilities of evolving a desired function [11]. 
However, the technique was designed specifically for 
binding proteins. It uses smaller peptide sequences (13 
amino acids), and it does not filter AAindices, i.e., physi-
ochemical descriptors [12], rather it uses all available 
AAindices. This leaves room for refinement by selection 
of more useful indices.

On the other hand, ancestral sequence reconstruc-
tion (ASR) complements these approaches by lever-
aging phylogenetic trees and sequence alignments to 
trace evolutionary changes and infer ancestral protein 
sequences [13–15]. By reconstructing evolutionary 
histories, ASR reveals positions in protein sequences 
where selective pressures have driven adaptations. 
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Building on this foundation, Combinatorial Libraries of 
Ancestors for Directed Evolution (CLADE) was devel-
oped to target specific positions identified through ASR 
[16, 17]. CLADE leverages the uncertainty inherent in 
ancestral reconstructions by creating combinatorial 
libraries, focusing on positions with the highest uncer-
tainty for mutagenesis. This strategy enables the explo-
ration of sequence space at evolutionarily significant 
sites, yielding superior results compared to consensus 
mutagenesis, which targets conserved residues from 
sequence alignments [18]. However ASR only lets us 
explore the evolutionary past of a sequence. Combining 
evolutionary insights with physicochemical properties 
through AAindices holds great potential for predicting 
evolutionary successors that align with physical evolu-
tionary pressures.

To this end, we propose a novel method called Suc-
cessor Sequence Predictor (SSP), which can mimic 
laboratory-based protein evolution. It reconstructs the 
evolutionary history of a protein sequence and then 
suggests amino acid substitutions based on trends 
observed in the evolutionary history of the protein 
when projected through the lens of various, carefully 
selected, physicochemical descriptors. Introducing the 
predicted mutations would enhance specific protein 
properties. For example, if SSP is used on a protein that 
in the history of its evolution was experiencing a selec-
tion pressure towards becoming more thermostable, 
the predicted substitutions will most likely make the 
mutant protein even more thermostable, and likewise 
for other physicochemical properties of the protein. 
We describe the method in detail and then conduct its 
critical validation against five different experimental 
data sets targeting properties such as thermostability, 
activity, and solubility. A dataset of amino acid sites 
that were determined to be positively selected by vari-
ous evolutionary sequence analysis methodologies was 
also incorporated in the validation [19].

Materials and methods
Selection of AAindices
Nine AAindices were manually selected after considera-
tion, to reflect a variety of possibly relevant physiochemi-
cal descriptors (Table 1). While the AAindex stores many 
more indices, they were considered inappropriate due 
to factors such as redundancy or context-specific physi-
ochemical descriptions. Correlation analysis ensured 
that the nine selected indices had significant differences 
(Fig. 1), and while molecular weight and residue volume 
indices were similar, they were retained due to the slight 
nuances of how they evaluated different amino acids. 
Thus no indices were discarded.

Successor sequence predictor workflow
Successor Sequence Predictor follows the workflow 
outlined in Fig.  2. Firstly, the FASTA sequence of a tar-
get protein is used to identify a dataset of homologous 
sequences using BLAST [27]. Only sequences with 
30–90% sequence identity to the target are retained. 
A length filter is then applied to keep sequences within 
80–120% of the target protein’s length. The remain-
ing sequences are clustered using USEARCH at 90% 
sequence identity, and one sequence from each cluster is 
randomly selected (Fig. 2A).

The dataset obtained from these steps is divided to con-
struct multiple phylogenetic trees, each containing 150 
sequences (Fig. 2B) with the final number of phylogenetic 
trees dependent on the dataset size. Before processing, 
the dataset is amended to ensure sequence headers do 
not contain problematic special characters (e.g., paren-
theses, colons, semicolons, or numbers at the start of 
headers) that could disrupt the function of the utilised 
tools. Next, sequences are clustered based on similarity 
using SigClust [28] with the parameter c = 150, producing 
up to 150 clusters. Sequence files are then generated with 
the following rules:

1. Each target sequence must appear in at least one 
sequence file.

2. One sequence is randomly selected from each cluster 
for each file.

3. To maximize diversity, the algorithm avoids reus-
ing sequences from clusters unless all options are 
exhausted.

4. Every sequence file must contain the target sequence.

Once the sequence files are prepared, ClustalOmega 
[29] creates a multiple sequence alignment (MSA) for 
each file.

The MSAs are then processed using the standard 
 FireProtASR workflow [14]. RAxML [30] is employed to 

Table 1 The AAindices used to analyse amino acid evolution

The correlations among the individual indices are presented in Fig. 1

Index Property Reference

FASG760101 Molecular weight [20]

FASG760102 Melting point [20]

GOLD730102 Residue volume [21]

WOLR790101 Hydrophobicity index [22]

BHAR880101 Average flexibility indices [23]

BULH740101 Transfer free energy to the surface [24]

FAUJ880108 Localised electrical effect [25]

ZIMJ680103 Polarity [26]

ZIMJ680104 Isoelectric point [26]
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construct a phylogenetic tree for each MSA using the 
maximum-likelihood algorithm. RAxML runs in its SSE3 
version, using 50 bootstraps and the best-fit evolution 
matrix suggested by IQ-TREE. Once the calculation is 
completed, the minimum ancestral deviation algorithm 
is used to root the generated trees (Fig.  2C) [31]. This 
approach generally leads to highly similar trees across 
multiple runs, yet a level of stochasticity can still be 
expected as most of the employed tools rely on heuristic 
algorithms.

Rooted phylogenetic trees and corresponding MSAs 
are loaded into LAZARUS [32] to calculate posterior 
probabilities for each sequence file. LAZARUS uses 
the “codeml” module, the appropriate evolutionary 
matrix, and a fixed branch lengths, with gap reconstruc-
tion disabled (this step is handled by the gap correc-
tion algorithm implemented in  FireProtASR). Based on 
the posterior probabilities and predicted ancestral gaps, 
ancestral sequences are reconstructed for each node in 
the phylogenetic tree. The main path from the root to the 
target sequence is identified for each phylogenetic tree 
(Fig. 2D).

The sequences from the target and all ancestral nodes 
to the root are extracted into a separate file and aligned 
using ClustalOmega. Finally, a Python script employing 

the “numpy” and “sklearn.linear_model” libraries [33] 
predicts the successor sequence as the next step along a 
regression curve, following these steps (Fig. 2E):

1. For each column in the MSA (referred to as a "Tra-
jectory"), a matrix of amino acid physicochemical 
features is generated, with each column representing 
one of nine selected AAindices.

2. For each column, a vector of changes in physico-
chemical features is calculated, weighted by the evo-
lutionary distance from the root node.

3. This vector is used to train a linear regression model 
to predict the next amino acid in the trajectory, mim-
icking laboratory-based protein evolution.

4. The distance between consecutive amino acids in the 
trajectory (based on AAindex values) is calculated as 
the average distance between nodes along the main 
path in the phylogenetic tree.

5. Separate regressions for each physicochemical fea-
ture are aggregated to assign categories and bundle 
predictions (Table 2).

6. This process is repeated for every column in the MSA 
and each sequence file.

Fig. 1 Pearson correlation matrix of selected AAindices. The correlation coefficients are colour-coded from dark purple at − 0.7 to off-white at 1.0. 
The indices are summarised in Table 1



Page 5 of 12Khan et al. Journal of Cheminformatics           (2025) 17:34  

Fig. 2 A generalised overview of the Successor Sequence Predictor (SSP). A Initial curation and filtering of the target protein’s dataset. B Further 
division of data using a clustering methodology. C Phylogenetic tree reconstruction and ancestral sequence reconstruction for the nodes 
on the trees. D Trend construction and amino acid prediction. E Prediction bundling
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Several precautions are taken to minimize over-inter-
pretation of the linear regression approach. The regres-
sion plot is normalized by the number of transitions 
(amino acid substitutions) in the trajectory. If an amino 
acid remains unchanged across successive ancestors at 
a given position, it is treated as part of a group and not 
penalized in scoring. Transitions between groups are 
counted only when they occur.

Key metrics include the penultimate transition, which 
flags any changes inconsistent with the overall trend as 
a "break trend." Trajectory sequentiality is scored out 
of 100, with a perfect score achieved when each transi-
tion in a positive trend increases the feature’s value com-
pared to the previous one. Fluctuations in a trajectory 
are measured by dividing the number of different amino 
acids by the number of amino acid groups, reflecting the 
trajectory’s stability or variability. Sites with fewer than 
three transitions are excluded from predictions.

These scores are used to rank successor amino acid pre-
dictions for each site, index, and phylogenetic tree. The 
highest-ranking predictions are those with high sequenti-
ality, high fluctuation, and no break trend at the penulti-
mate amino acid position. Each amino acid prediction is 
averaged across sites and trees.

When multiple predictions agree at a specific site but 
differ in the mutation type, they are referred to as Site 
Agreeing Predictions (SAPs). Conversely, when pre-
dictions from different AAindices align on the same 
mutation, they are consolidated into a single predic-
tion, known as a Mutation Agreeing Prediction (MAP) 
(Table 2).

Validation datasets
Mutational datasets investigating a physicochemical 
property of any specific protein were searched through 
the literature. The ones with large enough datasets, 
which also had enough overlap with predicted mutations 
(thus allowing us to validate them,) were selected. This 
includes homolog sets for levoglucosan kinase—UniProt 
ID B3VI55 [34], cold shock protein CspB—UniProt ID 

P32081 [35], ADP-ribosylarginine hydrolase—Uniprot 
ID P54922 [19], and aminoglycoside 3’-phosphotrans-
ferase—UniProt IS P00552 [36].

Individual datasets were compiled in different ways. 
The levoglucosan kinase set was found via the in-house 
 SoluProtMutDB database [37] by searching for a protein 
with a large number of experimentally validated single-
point mutations and their effects on the solubility of the 
protein. Similarly, the cold shock protein CspB dataset 
was found in the in-house  FireProtDB database [38], by 
searching for a protein with a large number of experimen-
tally validated single-point mutations and their effects on 
the thermostability of the protein. In cases where multi-
ple values were available for a single mutation, the mean 
was taken. ADP-ribosylarginine hydrolase dataset was 
picked as it was one of the example cases for Slodkowicz 
and Goldman’s online tool [19] for Structure Integrated 
with Positive Selection. ADP-ribosylarginine hydrolase 
was picked after a literature review, due to the sheer num-
ber of single-point mutations tested (fully site saturated) 
on the target protein by Melnikov et  al. [36]. This natu-
rally presented a perfect test case for SSP. Individual and 
detailed dataset handling steps are noted in SI 2.

Results
Dataset statistics
We tested the performance of SSP on the homolog sets 
for levoglucosan kinase (solubility), cold shock protein 
CspB (thermostability), ADP-ribosylarginine hydrolase 
(selectivity), and aminoglycoside 3ʹ-phosphotransferase 
(activity). It is important to note that with the excep-
tion of Aminoglycoside 3ʹ-phosphotransferase dataset, 
none of the other datasets used in the study have the val-
ues for the relevant effect for every possible point muta-
tion that SSP predicts. Thus it is not possible to validate 
all predictions made by SSP. The results section only 
shows validation based on all mutational data points that 
SSP predicted and for which experimental labels were 
available. Figure  3 summarises the total single-point 

Table 2 An example of the generalised prediction bundling scheme for three different levels of prediction: prediction, site agreeing 
prediction (SAP), and mutation agreeing prediction (MAP)

Type Amino acid Position Prediction Index

Prediction A 12 L Size

Site agreeing prediction (SAP) A 12 L Size

R Hydrophobicity

Mutation agreeing prediction (MAP) A 12 L Size

Polarity

Flexibility
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mutational space, the available experimental values, the 
number of predictions, and the overlaps between the two.

Engineering thermostability
SSP predictions for Cold shock protein CspB were com-
pared to experimental data points with known effects of 
the mutation on protein thermostability from a collated 
dataset stored in the database  FireProtDB [38]. In cases 
where values from multiple datasets were available, the 
mean values were noted. E3Q was the only MAP that 
was supported by more than three indices. E3K was sup-
ported by 2 indices, and all others were SAPs. The results 
are provided in Table 3.

There were 365 total mutations in the  FireProtDB data-
set [38], of which 18% were enhancing mutations in 
terms of thermostability (ΔΔG lower than − 1 kcal/mol), 
55% were neutral (ΔΔG from − 1 kcal/mol to 1 kcal/mol), 
the remaining 27% were destabilising (ΔΔG greater than 
1  kcal/mol). The thresholds for stabilising, neutral and 
destabilising categories were taken from the  FireProtDB.

From the 14 mutations predicted by SSP, six were sta-
bilising. The other eight mutations had ΔΔG values 

Fig. 3 The visualisation of overlaps between the available experimental data and the predicted data. A Overlap metrics for Cold shock protein CspB 
set  (FireProtDB dataset—[38], B Overlap metrics for levoglucosan kinase set [34] C Overlap metrics for Aminoglycoside 3’-phosphotransferase set 
[36], and D Overlap metrics for ADP-ribosylarginine hydrolase set [19]. The experimental data are represented by a light green circle, while a dark 
green circle represents predicted data

Table 3 Effects of mutations generated by SSP on the 
thermostability of cold shock protein validated against the 
collated  FireProtDB dataset [38]

a N/A data not available

Mutation by SSP Mean ΔΔG 
(kcal/mol)

△Tm (°C)a Prediction agreement 
type

L2R + 0.4 N/A Site agreeing

E3K − 2.48 + 16.6 Mutation agreeing

E3Q − 1.09 + 7.3 Mutation agreeing

E3R − 1.65 + 16.0 Site agreeing

E3V − 1.8 N/A Site agreeing

D24N + 0.66 − 6.9 Site agreeing

A46E + 0.07 − 5.0 Site agreeing

A46K − 1.41 + 8.4 Site agreeing

A46L − 0.8 N/A Site agreeing

E50K + 0.33 − 5.6 Site agreeing

N55D − 0.46 + 3.9 Site agreeing

N55K 0 + 0.8 Mutation agreeing

N55S + 0.2 N/A Site agreeing

E66K − 2.17 + 12.9 Site agreeing
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between −  1  kcal/mol and 1  kcal/mol and can thus be 
classified as neutral. Seven out of ten mutations also 
increased the melting temperature (Tm) of the protein, 
and three were destabilising (Table 3).

Engineering solubility
SSP predictions for levoglucosan kinase were compared 
to experimental data from Klesmith et  al. [34] available 
in the SoluProtMutDB [37]. This comparison assessed 
how well the SSP predictions matched the known effects 
of mutations on protein solubility.The mutations I3L 
and I3F (supported by two different indices) had a neu-
tral effect on solubility. Both mutations predicted by SSP, 

D9G and K38Q, are known to have a slightly enhancing 
effect on solubility. Only V200A showed a slightly nega-
tive effect on solubility in E. coli (Table 4). This suggests 
that the expressed mutants produced via SSP do not 
compromise their solubility.

Engineering activity
Aminoglycoside 3ʹ-phosphotransferase is a protein that 
confers resistance to aminoglycosides, such as kanamy-
cin, neomycin, paromomycin, ribostamycin, butirosin, 
and gentamicin B. Melnokov et  al. [36] conducted site 
saturation mutagenesis on this protein, transformed vari-
ants into cells and exposed them to six different antibiot-
ics at up to four different concentrations. The amino acid 
enrichment (the number of identified variants with the 
particular mutation) was then noted in each case. A value 
of ~ 1 applies to wild types, while a higher value means 
more resistance and hence more significant enrichment 
of that mutant, and vice versa for a value below 1 (Fig. 4).

The average of all enrichment values across antibiotics 
and their concentrations in the complete dataset (AAC 
value) was 0.82. This means that a random, single-amino-
acid variant is less likely to be resistant than the wild type, 
and, therefore, will have lower activity. The AAC value 
of 0.82 may be assumed as a proxy value for random 

Table 4 Effects of mutations generated by SSP on the solubility 
of levoglucosan kinase [34]

Mutation by SSP Effect on solubility Prediction agreement type

I3L Neutral Mutation agreeing

I3F Neutral Mutation agreeing

D9G Positive Site agreeing

K38Q Positive Site agreeing

V200A Negative Site agreeing

Fig. 4 Heatmap visualisations comparing the enrichment values for mutations of aminoglycoside 3’-phosphotransferase. A A heatmap 
representing the entire mutational space of aminoglycoside 3’-phosphotransferase. B A heatmap representing only the mutations 
of aminoglycoside 3’-phosphotransferase that were predicted by the SSP. The X-axis represents the antibiotics and their tested concentrations, 
while the Y-axis represents the relevant mutations of aminoglycoside 3’-phosphotransferase. Details of antibiotic concentrations and individual 
enrichment values can be found in SI 1. Each rectangle on the plot indicates the enrichment value for a mutation when exposed to the effects 
of the specific antibiotic concentration. The Viridis colour map is used to maintain perceptual uniformity. A value of 1 (dark blue) represents 
no change in enrichment from the wild type, anything below 1 (purple) represents a negative effect on enrichment, while anything above 1 
(light blue to yellow) represents a positive enriching effect of the mutation. This figure contrasts the effects of random mutations on the activity 
of aminoglycoside 3’-phosphotransferase, against the effect of SSP suggested mutations for the same protein. The perceptual increase 
in ‘brightness’ of B over A illustrates an increase in the positive impact of mutations on the activity of aminoglycoside 3’-phosphotransferase
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mutations, while 1 is the default value for the wild type. 
Thus, random single-point mutations are likely to reduce 
the protein’s fitness. SSP generated 221 predictions, all 
with experimental validation points available from this 
large-scale site saturation mutagenesis study (Fig. 4). For 
mutants generated by SSP, the AAC value is 1.36, show-
ing a preferable selection of enriched (more active) vari-
ants, thus an increase in fitness if a mutation is selected 
from SSP’s output. Moreover, 61 of the 221 mutations 
were predicted at the MAP level, and their AAC value 
is 1.4. The remaining 160 predictions were made at the 
SAP level, and their AAC value is 1.34. As the AAC value 
for MAP level predictions is slightly higher than that for 
SAP level (1.4 versus 1.34), it hints at the possibility that 
MAPs may be slightly more reliable. This is summarised 
in Fig. 3C. The comparison of experimentally determined 
and predicted values are available in the supplementary 
table SI 1.

Evolutionary selection
Structure Integrated with Positive Selection (SIPS) is an 
online resource with positively selected sites mapped 
onto protein structures from an evolutionary perspective 
[19]. ADP-ribosylarginine hydrolase, which is one of the 
example cases of SIPS, has eight positively selected sites 
with an adjusted p-value threshold of 0.2 or higher. SSP 
predictions were made for ADP-ribosylarginine hydro-
lase to see how many of the predictions could be made 
for positively selected sites. Here, the emphasis was on 
sites and not the mutation itself, as SIPS only lists sites 
of evolutionary interest and not what they would mutate 
into. Out of the eight sites, seven were predicted by SSP, 
and six were MAPs, implying that SSP can selectively 
make predictions for sites with evolutionary significance 
(Table 5).

Discussion and conclusions
SSP is a protein design method that employs the predic-
tion of the evolution of amino acids in a protein sequence. 
It builds a statistical, ancestral sequence reconstruction-
guided evolutionary history of a protein sequence [39], 
which is utilised to extrapolate the possible future sub-
stitution at a given position. SSP makes these predic-
tions in the context of AAindex scoring [12] applied to 
the reconstructed evolutionary history for each position 
in a protein sequence. The AAindices used for SSP have 
been manually selected to reflect a variety of possibly 
relevant physiochemical descriptors. The selected set of 
AAindices can be easily adjusted based on the physico-
chemical properties expected to be involved in shaping 
the evolution of a particular protein.

It should be noted that while SSP utilises ASR, they 
are both fundamentally different techniques with dis-
tinct goals. ASR aims to ‘look back’ into the evolution-
ary history of a protein sequence, while SSP is designed 
to extrapolate into the potential future of a protein 
sequence. ASR is generally used for evolutionary analysis 
[40] and protein engineering [39]. While ancestral pro-
teins are more robust and with unique substrate specifici-
ties [32, 41, 42], the engineering scope of ASR is generally 
along the lines of improving the thermostability of a 
protein and its expression yield. This is because ances-
tral proteins, when resurrected, tend to be more robust 
[43]. SSP can map out potential future evolutionary tra-
jectories of a protein, and it can also be used to engineer 
proteins.

Proseeker is another tool that simulates natural selec-
tion and thus mimics evolution in silico. It uses physico-
chemical characteristics and structural information to 
pick sequences that have higher probabilities of evolv-
ing a desired function [11]. However, the technique was 
designed specifically for binding proteins and lacks gen-
eral applicability. Instead of complete protein sequences, 
it uses small peptide sequences (13 amino acids), and it 
also does not filter or select specific AAindices, rather 
it uses all available AAindices [12]. The selection of rel-
evant indices and then estimating their utility for any tool 
in this domain is crucial as many indices are redundant, 
e.g., nine indices for the hydrophobicity: ARGP820101, 
GOLD730101, JOND750101, PRAM900101, 
ZIMJ680101, PONP930101, WOLR790101, 
ENGD860101, and FASG890101 [12]. This can lead to 
index weighting issues, where a certain physiochemi-
cal descriptor may have an exaggerated effect on the 
outcome. Furthermore, many indices are context-spe-
cific, such as hydrophobicity coefficients in specific 
solutions—from WILM950101 to WILM950104, and 
weights for alpha-helix at specific window positions—
from QIAN880101 to QIAN880139 [12]. Thus a careful 

Table 5 Cross-matching positively selected site data of ADP-
ribosylarginine hydrolase from SIPS with SSP predictions [19]

Sites selected 
by SSP

Adjusted p-value Prediction agreement type

K72 0.0848 Mutation agreeing

P74 0.0473 Mutation agreeing

T77 0.1731 Mutation agreeing

Q78 0.1101 Mutation agreeing

Q109 0.0796 Mutation agreeing

H145 0.05 Non agreeing

L189 0.0002 Mutation agreeing

I355 0.0128 Not predicted
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selection of indices is a necessary step, SSP used manu-
ally curated non-correlated indices (Table  1 and Fig.  1). 
While the direct comparison between SSP and Proseeker 
could have been useful, it is hard to achieve as Proseeker 
works with shortened peptides (13 AA long) instead 
of the whole protein sequence. Moreover, it specifically 
requires binding affinity data to score every iteration of 
in silico evolution, thus making the technique specific to 
nucleic acid binding peptides. SSP is not limited in terms 
of the nature or the length of the target protein sequence.

SSP was validated using the datasets from different 
sources to test for the performance of various properties. 
In the case of thermostability, SSP made 14 predictions 
for the cold shock protein CspB, eight of which had a sta-
bilising effect on the protein (ΔΔG < 0), while the remain-
ing six were neutral with ΔΔG values between 0  kcal/
mol and 1  kcal/mol. Seven of the predicted mutations 
also had positive experimentally determined changes in 
melting temperatures △Tm (°C), including the highest 
increase in melting temperature of + 16.6  °C, and only 
three mutation had a negative △Tm (°C) value with the 
lowest being − 6.9 °C.

SSP was also used to make predictions for amino-
glycoside 3’-phosphotransferase [36]. Aminoglycoside 
3’-phosphotransferase is an enzyme that confers resist-
ance to aminoglycosides with antibiotic properties. 
Thus an enhancement of enzyme’s activity can increase 
the antibiotic resistance of a bacteria that codes for it. 
SSP made 221 predictions for Aminoglycoside 3’-phos-
photransferase with an AAC value of 1.4 at the MAP 
level, and 1.36 at the SAP level (1 being the value for the 
wild type, and 0.82 being the average value for random 
mutagenesis), thus demonstrating predictive prowess in 
the context of enhancing enzymatic activity, being signifi-
cantly better than random mutation, while conferring an 
improvement over the wild type itself.

Validation of mutations predicted from the solubility 
dataset showed a higher likelihood of a positive or neutral 
effect on the solubility of the protein, despite the sparse-
ness of the dataset. Furthermore, evolutionary selectivity 
data for ADP-ribosylarginine hydrolase [19] taken from 
SIPS and SSP made predictions for 7 of 8 evolutionary 
selected sites with an adjusted p-value upper threshold 
of 0.2. This result suggests that SSP is selective in mak-
ing predictions for sites that tend to evolve under positive 
selection, thus making a strong case for SSP’s selectivity. 
However, it should be noted that the size of the dataset 
is quite small, and more work is required to validate this 
aspect of the predictor.

Analyzing and validating methods like SSP presents 
significant challenges. Extracting meaningful insights 
from diverse datasets with varying experimental stand-
ards can be complex due to limited overlap between 

experimentally observed mutations and the mutations 
predicted by SSP (Fig.  3). Finding datasets that are not 
only extensive but also contain experimental data for 
mutations that coincide with SSP predictions—enabling 
their validation—proved to be a substantial hurdle. This 
scarcity necessitated the use of all available validation 
sets, despite their inherent differences in physicochemi-
cal properties. Substantially more mutational data would 
be needed to have evenly distributed dataset for each 
protein property.

This study shows that the SSP approach enhances spe-
cialised proteins by predicting mutations that improve 
desired properties, such as thermostability, activity, 
and solubility. Crucially, it also shows that SSP does not 
make predictions for sites randomly, but picks sites that 
are known to evolve under positive selection. In general, 
SSP method will work better with the proteins under 
stronger selection evolutionary pressure. Further valida-
tion of the predictor with diverse protein structures is 
desirable to define applicability for protein engineering 
applications. It should also be noted that the technique 
has a limitation; it is dependent on the size and quality of 
the homolog set. The technique will not work if the pro-
tein has no or very few homologs. For our pipeline, we 
suggest having at least 10 trees of 150 protein sequences 
each, per analysis. However the exact numbers need fur-
ther exploration.

As the service to the community, we are now integrat-
ing SSP as a new module into the easy-to-use web server 
FireProtASR (https:// losch midt. chemi. muni. cz/ firep 
rotasr/), which will make predictions accessible to non-
experts, jointly with related strategies Ancestral Sequence 
Reconstruction (ASR) and generation of sequences using 
Variational Autoencoder (VAE) [44].
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