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Abstract 

Precision oncology plays a pivotal role in contemporary healthcare, aiming to optimize treatments for each patient 
based on their unique characteristics. This objective has spurred the emergence of various cancer cell line drug 
response datasets, driven by the need to facilitate pre-clinical studies by exploring the impact of multi-omics data 
on drug response. Despite the proliferation of machine learning models for Drug Response Prediction (DRP), their vali-
dation remains critical to reliably assess their usefulness for drug discovery, precision oncology and their actual ability 
to generalize over the immense space of cancer cells and chemical compounds. 

Scientific contribution In this paper we show that the commonly used evaluation strategies for DRP methods can 
be easily fooled by commonly occurring dataset biases, and they are therefore not able to truly measure the ability 
of DRP methods to generalize over drugs and cell lines (”specification gaming”). This problem hinders the develop-
ment of reliable DRP methods and their application to experimental pipelines. Here we propose a new validation pro-
tocol composed by three Aggregation Strategies (Global, Fixed-Drug, and Fixed-Cell Line) integrating them with three 
of the most commonly used train-test evaluation settings, to ensure a truly realistic assessment of the prediction 
performance. We also scrutinize the challenges associated with using IC50 as a prediction label, showing how its 
close correlation with the drug concentration ranges worsens the risk of misleading performance assessment, and we 
indicate an additional reason to replace it with the Area Under the Dose-Response Curve instead.
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Introduction
One of the main goals of precision oncology is to deliver 
the right drugs in the right doses, on the basis of the 
specific characteristics of each patient [1]. Biological 
challenges such as tumor heterogeneity, where diverse 
cellular subpopulations drive conflicting drug responses, 

and acquired resistance mechanisms present signifi-
cant barriers to achieving consistent precision oncology 
outcomes. These barriers persist even with comprehen-
sive molecular profiling, as tumors dynamically evolve 
through genetic and epigenetic adaptations or interac-
tions with the microenvironment. In order to improve 
this aspect of the clinical practice we are in need of 
reliable preclinical models [2]. Large datasets contain-
ing drug response measurements on cancer cell lines 
have been published, such as the National Cancer Insti-
tute 60 (NCI60) [3], the Cancer Cell Line Encyclopedia 
(CCLE) [4], the Genomics of Drug Sensitivity in Cancer 
(GDSC) [5], and the Cancer Therapeutics Response Por-
tal (CTRP) [6]. The cell lines in these datasets represent 
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different types of cancer and are usually characterized by 
various omics data, including sequencing, transcriptom-
ics, proteomics, and methylation data [7].

These data can be used to design computational models 
that serve as in silico alternatives to in vitro cell viability 
screenings [7, 8], providing tailored predictions of drug 
response across various cell lines. Such Drug Response 
Prediction (DRP) models would be particularly useful 
if they could generalize to unobserved drugs or cancer 
types [9], providing information about potential drug 
candidates for further analysis, thereby expediting the 
cancer drug discovery process [9].

Community challenges, such as DREAM, have con-
tributed to DRP modeling, as demonstrated by the 2014 
NCI-DREAM Drug Sensitivity Prediction Challenge 
which evaluated 44 models on unseen breast cancer cell 
lines and showed that non-linear approaches and multi-
omics integration improved predictive performance 
[10]. Among the various approaches for DRP on cancer 
cell lines that have been explored, there are traditional 
models like Bayesian Matrix Factorization [11], Random 
Forests [12], and Support Vector Machines [13] as well as 
more recent Neural Networks and Deep Learning tech-
niques [14–16]. These methods, including Convolutional 
NNs, Graph NNs and Multimodal DL architectures are 
capable of handling complex, high-dimensional data and 
have been used to model drugs, genetic features, and to 
integrate multiomics data [14, 17–23].

Aside from the sophistication of the models employed 
for this task, in this paper, we investigate two crucial 
but often overlooked aspects of DRP, which are (1) the 
validation approach used to evaluate the prediction per-
formance and (2) the prediction label used to train the 
models.

Regarding the first point, the validation approaches 
used to evaluate the performance of DRP methods, which 
involve the combination of how the train and test sets are 
created (Splitting Strategy) and the specific approach we 
proposed in this paper for aggregating the prediction 
results to compute the prediction scores (Aggregation 
Strategy). Our in silico experiments show how the sub-
tleties hidden in the validation of DRP methods can lead 
to completely misleading performance scores, depending 
on the characteristics of the datasets used, and how the 
proper combination of the right Splitting and Aggrega-
tion strategies can overcome these issues, by evaluating 
the model exactly on the kind of task it is designed to 
solve. Since on the most important DRP datasets, includ-
ing GDSC, CCLE, and CTRP, the type of drug tested is 
the main driver of the variability in IC50 values, simply 
learning which drugs are generally strong or weak allows 
any DRP predictor to fool any global evaluation metrics 
computed on the entire test dataset. Regrettably, this 

misleading evaluation setting remains prevalent across 
all current DRP methods. Our study highlights that 
despite the seemingly impressive global performance 
metrics, DRP models may still lack any real capability 
to accurately predict the outcomes for novel (previously 
unseen) cell lines or drugs. A recent study [24] has pro-
posed z-scored drug response values to address drug-
driven variability, but this approach cannot handle new 
compounds. Our differentiated Aggregation Strategies 
offer a more flexible solution for evaluating model gener-
alization across both drugs and cell lines. Another recent 
study has addressed a similar issue in the context of gene 
essentiality predictions, showing how biases in data can 
mislead model evaluation and emphasizing the need for 
bias-aware validation frameworks [25].

The second point concerns most DRP methods since 
they focus on the regression of IC50 values to meas-
ure drug response [8]. The IC50 value corresponds to 
the drug concentration necessary to inhibit the viability 
of 50% of the cells, which is obtained by dose-response 
curves from cell viability experiments. These experiments 
are performed within specific concentration ranges, 
which are chosen based on the existing knowledge on the 
target drug [26]. In the paper, we show that the final IC50 
values are highly dependent on these ranges, and in par-
ticular on the Maximum Concentration (MC) tested. This 
scenario leads to DRP models that struggle to generalize 
to new drugs, and they cannot even guess the expected 
concentration ranges. We therefore endorse the use of 
the Area Under the Dose-Response Curve (AUDRC) as 
an alternative target label, an approach explored in sev-
eral studies [27–30].

These puzzling results show that, unless stricter evalu-
ation criteria are put in place, specifically targeted for 
the type of generalization ability that we want to test (on 
unseen drugs or cell lines), the model is able to bypass the 
conventional evaluation metrics, similarly to what has 
been shown in other contexts, such as image recognition, 
cancer driver prediction and Reinforcement Learning 
[31–33]. This leads to a situation of specification gam-
ing[33] (also known as reward hacking [34]), in which the 
model satisfies the evaluation criteria without achieving 
the desired outcome.

The high performance scores are reached instead by 
exploiting an unfortunate combination of a peculiar data 
structure and evaluation metrics that are too generic to 
be robust to data loopholes [32, 33].

To prevent the model from obtaining high performance 
scores by just gaming the validation specifications of 
DRP, in this paper, we propose different ways to aggre-
gate the predictions (Aggregation Strategies) in order 
to compute more meaningful evaluation metrics. Each 
of them is specifically meant to measure a particular 
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generalization ability (towards drugs or cell lines). We 
also show how the choice of Aggregation Strategy criti-
cally depends on how the data are split into training and 
test subsets (Split Strategy). The novel validation proto-
cols for DRP can be specifically targeted to the type of 
generalization expected from the model under scrutiny 
(prediction of novel drugs or novel cell lines).

Background: splitting strategies in DRP
In cheminformatics literature has been highlighted that 
the choice of splitting in a dataset of compounds, which 
may have internal structural relationships, can signifi-
cantly alter both the effectiveness of modeling and the 
reliability of validation [35, 36]. More generally, observed 
performances of ML methods depend on the way in 
which samples are allocated between training and test 
sets within the validation procedure of choice. In particu-
lar, the choice of splitting strategy primarily depends on 
the assumptions that the researchers want to test (e.g., 
generalization to structurally novel compounds), and sec-
ondarily on the availability of sufficient data to enable the 
training of functional models [8, 32, 37, 38].

To investigate which aspects of the cancer DRP are 
more challenging and what level of performance can be 
realistically expected in real-life settings, in this paper, 
we analyze the DRP validation problem. Here we start 
by listing the increasingly stringent strategies available to 
define the training and test sets (see Fig. 1C for an over-
view of the splitting strategies): 

1	 Random splits: This approach is also called Mixed-
Set in [8, 39], and it is generally the least challenging, 
leading to the highest observed performance scores. 
In this scenario, a randomly selected subset of drug-
cell line pairs is excluded from the training set and 
used as the test set. This train-test Splitting Strategy 
quantifies how accurate a model is in filling the gaps 
in a drug-cell lines matrix containing some unob-
served values. Practically, this would correspond to 
filling a non-exhaustive screening on a panel of oth-
erwise known cell lines and drugs. In this scenario, 
the model is not evaluated in terms of its ability to 
generalize to cell lines or drugs for which we com-
pletely lack drug response measurements.

2	 Unseen cell lines: In this case, the train and test splits 
are made by ensuring that the cell lines in the train-
ing set are not present in the test. The test set is con-
structed by randomly selecting a subset of cell lines 
and all of their IC50 values from the entire dataset. 
To achieve high performance scores in this valida-
tion, the models need to be able to generalize to 
unseen cell lines. With respect to the Random Splits, 

this therefore increases the difficulty of the predic-
tion task.

3	 Unseen drugs: The train and test splits are made to 
ensure that the drugs that appear in the test set are 
not present in the training set. To perform well in 
this setting, the model must be able to generalize well 
to completely unseen drugs.

4	 Unseen cell line-drug pairs: This is the most stringent 
validation setting. In this case, the training and test 
splits are built to ensure that each of the cell lines 
and drugs present in the test set are both absent from 
the training set. This setting therefore evaluates the 
ability of the model to generalize at the same time 
to unseen drugs and cell lines, which should be the 
ultimate goal of the cancer drug sensitivity predic-
tion field. However, until now, generalization in this 
setting has been nearly impossible, and as such, it is 
infrequently utilized in evaluations [9].

These different Splitting Strategies are generally a stand-
ard in DRP literature [8, 9, 40], however, there is notice-
able variability in their actual use [8]. For example it is 
common practice to pay special attention to issues like 
this, with scaffold splitting being one such technique used 
to avoid bias from specific molecular structures [41, 42]. 
For instance, the DREAM Challenge on drug sensitivity 
prediction emphasized the importance of rigorous split-
ting by evaluating models on a blind test set of entirely 
unseen cell lines [10]. In the context of QSAR modeling, 
the choice of train-test split impacts performance esti-
mates, model internal optimization, and generalizability 
[43]. Figure 3A visually illustrates the generalization dif-
ficulty that the DRP models need to overcome, when they 
are assessed using these strategies.

Results
Beyond global metrics: aggregation strategies for robust 
model evaluation
DRP methods need careful evaluation to assess their real-
world applicability. In this section, we introduce a novel 
framework that examines prediction performance from 
multiple perspectives, moving beyond the traditional 
“global” evaluation approach commonly used in the field.

Once the predictions are computed with one of the 
train-test splitting strategies described above, some per-
formance metrics must be computed on the predictions 
to evaluate their level of agreement with the ground truth 
used as labels.

Typically, in ML model validation, metrics are applied 
“globally”, namely they are computed across all predicted 
values in the test set, and this is indeed the approach 
usually adopted by DRP methods. But what is precisely 
lost, in terms of analyzing what the predictions mean, 
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by using just this “global” averaging? Here we look at the 
predictions from two other angles as well, computing the 
performance scores also across drugs and cell lines sepa-
rately, obtaining three prediction Aggregation Strategies: 

1.	 Global: This is the most common approach. The per-
formance metrics are calculated over the entire test 
set (i.e., overall correlations).

2.	 Fixed-drug: In this Aggregation Strategy, the perfor-
mance metrics are computed individually for each 
drug, and the resulting Fixed-Drug performance 
scores are then averaged over the entire test-set 
(across all the drugs). This Aggregation Strategy ena-
bles us to analyze the prediction quality for individual 
drugs independently, thereby highlighting the mod-

Fig. 1  A Schematic representation of the complete NxtDRP model pipeline. B Representative dose-response curve illustrating the definition of IC50 
and the Area Under the Dose-Response Curve (AUDRC). C Data splitting strategies employed for model evaluation: Random Splits, Unseen Cell 
Lines, and Unseen Drugs (red cells indicate the test set). D Distribution of IC50 values derived from the GDSC dataset. E Distribution of individual 
IC50 values normalized by their corresponding drug’s mean IC50. F Distribution of individual IC50 values normalized by their corresponding cell 
line’s mean IC50. G Individual IC50 values relative to the maximum drug concentration tested in each cell viability experiment. All IC50 values are 
expressed on the natural logarithm (ln) scale



Page 5 of 16Codicè et al. Journal of Cheminformatics           (2025) 17:33 	

el’s ability to discern between the potentially unique 
behaviors of different cell lines.

3.	 Fixed-cell line: In the third Aggregation Strategy, the 
metrics are calculated individually for each cell line 
in the test set. The resulting Fixed-Cell Line per-
formance scores are then averaged over the entire 
test set. This approach allows us to analyze the per-
formance on each cell line independently from the 
drugs used, emphasizing the model’s ability to distin-
guish between different drugs when a fixed cell line is 
considered.

In the scientific literature, Global aggregation is preva-
lent. However relying solely on this Aggregation Strategy 
may result in unreliable (i.e. inflated) prediction perfor-
mance, depending on the dataset characteristics. The role 
that these Aggregation Strategies play in terms of what 
they precisely measure is also tightly intertwined with the 
Splitting Strategy being used. For a mathematical defini-
tion of these strategies, see Suppl. Section S2. Figure 3B 
visually illustrates how reliable these aggregation strate-
gies are when it comes to evaluate the generalization abil-
ity of DRP models on drugs and cell lines. Throughout 
the rest of the paper, we delve into this phenomenon in 
detail.

A novel non‑linear multi‑omics drug response prediction 
method
To showcase the relevance of various combinations of 
train-test splits and prediction aggregation strategies for 
the validation of DRP methods on cancer cell lines, we 
developed a novel multiomics prediction method, called 
NxtDRP. It is based on the NXTfusion non-linear data 
fusion library proposed in [44], and allows total flexibility 
in testing the relevance of different types of omics data, 
making it particularly suitable for our analyses. The NXT-
fusion library generalizes the classical Matrix Factoriza-
tion approach to perform inference over heterogeneous 
sources of information represented as Entity-Relation 
(ER) graphs. Each Entity in the ER graph corresponds 
to a class of objects (i.e. Cell Lines and Drugs), and it is 
internally represented by a set of latent variables that 
are optimized to accurately predict the target labels (i.e. 
IC50 values). Each -omic data matrix is added to the ER 
graph as a Relation connecting two Entities. For example, 
the Proteomics and RNA-Seq data are respectively rep-
resented as relations between the Cell Lines and the Pro-
teins and between the Cell Lines and the Genes entities 
(see Fig. 6 and Methods "Entity-relation graph inference 
for DRP" for more details).

To benchmark NxtDRP, we used the GDSC dataset, 
which is the most commonly used database for this task 

[45], due to its size and the availability of various omics to 
characterize cell lines.

As mentioned above, this dataset exhibits greater vari-
ability between drugs than between cell lines. This pecu-
liarity is shared by the other major DRP datasets, such as 
CCLE and CTRP (see Fig. 4).

We extracted 948 cell lines and 223 drugs, totaling 
172,114 drug response values in the form of IC50 (see 
Fig. 1D). We followed the same pre-processing steps pro-
posed in [16] (see Methods Datasets for more details). 
Figure 1A, shows an overview of NxtDRP and the multi-
omics data it integrates, such as RNA-Seq expression and 
Proteomics profiles from GDSC.

We compared the performance of NxtDRP with differ-
ent ER graphs, to evaluate how the integration of differ-
ent multi-omics data contribute to the prediction. The 
most basic ER graph involves only the Main Task (MT), 
namely the matrix containing the IC50 values corre-
sponding to the Cell Line-Drug pairs available in GDSC 
(Fig.  6B). We then added to this minimal ER graph the 
available omics, one at a time, including Proteomics (PR) 
and RNA-Seq (EX) matrices as additional relations (see 
Fig.  6C–E), in an attempt to better characterize the cell 
lines. Throughout the paper, we refer to these relations 
respectively as MT, PR and EX, to indicate which are 
included in each model.

To make it more suitable for DRP, we also extended the 
original NXTfusion library [44] by adding a Graph NN to 
incorporate the molecular details of target drugs. See the 
Methods "An entity-relation data fusion model to predict 
the cancer cell lines drug sensitivity" and "Drug structure 
representation for machine learning" for more details.

We benchmarked NxtDRP with two previously pub-
lished DRP methods: tCNN [16] and GraphDRP [15]. To 
ensure a fair comparison, we adopted the same iterated 
train-test design they used, as described in the tCNN 
paper [16]. This means that we trained and tested Nxt-
DRP 40 times, each time with a new selection of the train 
and test sets (90–10% proportion), according to the cho-
sen train-test Splitting Strategy.

To measure the performance of the methods, we 
adopted the Root Mean Squared Error (RMSE) and 
Pearson correlation metrics (r), averaging them over the 
train-test iterations (see Suppl. Section S1 for the details).

A detailed analysis of performance in the random splits 
validation
The Random Splits validation strategy measures how 
good a predictor is at filling the gaps in untested drugs-
cell lines pairs. Practically, this corresponds to filling an 
incomplete screening on a panel of otherwise known cell 
lines and drugs. When validating a model following a 
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Random Splits strategy, developers and users must know 
that the model is not actually tested on its ability to gen-
eralize to cell lines or drugs for which we completely lack 
drug response measurements.

The results in Fig.  2A are obtained with the Random 
Splits validation strategy. The Global performance col-
umn indicates that NxtDRP, tCNN [16] and Graph-
DRP[15] are able to achieve high scores, with a Pearson 
correlation up to r = 0.93 over the entire dataset. The 

main reason why this setting does not present a substan-
tial challenge is that the same drugs and cell lines can 
be present in both the training and test set (just not the 
same cell lines and drug pairs).

In Fig. 2A there is no substantial difference in perfor-
mance, across all Aggregation Strategies, between the 
model that incorporates multi-omics data and the one 
that does not (see NxtDRPMT and NxtDRPMT+PR+EX 
models). Previous research has highlighted the uncertain 

Fig. 2  Boxplots showing the distribution of the prediction performances, measured by Pearson’s r values, for the tCNN [16], GraphDRP [15], 
and the NxtDRP models on the GDSC dataset across three Aggregation Strategies (columns) and three Splitting Strategies (rows A,B, and C). 
The NxtDRP variants MT, PR, and EX denote the omics data utilized: none, Proteomics, and Transcriptomics, respectively (for further details, refer 
to Fig. 6B–E)
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relevance of omics data in this context [46, 47]. This can 
be explained by the fact that, in terms of information 
content, all the IC50 values that the model observes for 
a given cell line and drug are sufficient to saturate the 
information it can learn, and therefore the additional 
omics data have no added value. In the Random Splits 
strategy, the contextual information provided by multi-
omics measurements does not aid in characterizing 
the involved entities (Drugs and Cell Lines) more than 
what the drug response data alone ( NxtDRPMT ) already 
achieves.

If we focus on the other columns of Fig.  2A, we see 
that the Fixed-Drug performances are lower than 

Global performances. One probable cause of this 
behavior is that the model is trained globally, and, by 
minimizing its loss function, it therefore tends to cap-
ture primarily the main source of variance present in 
the data. As shown in Fig. 4A, in GDSC, this variance 
is indeed primarily driven by drugs (this is true even 
for CCLE and CTRP, see Fig.  4B,C). This is a possible 
reason for the poorer modeling of the cell line variabil-
ity highlighted by the Fixed-Drug performance. At the 
same time, we can observe that Global performance 
and Fixed-Cell Line performance are comparable. This 
is explained by the fact that Global performance reflects 
variance both within drugs and cell lines; since the 

Fig. 3  A Heatmap qualitatively showing the difficulty of generalizing to either Drugs or Cell Lines with respect to different Splitting Strategies. 
B Heatmap qualitatively showing how various Aggregation Strategies underscore the level of generalization achieved for different entities, such 
as drugs or cell lines. C Heatmap quantitatively summarizing the Pearson r correlations of the predictions of NxtDRPMT+PR+EX on AUDRC in relation 
to both Splitting Strategy and Aggregation Strategy

Fig. 4  Plot showing the distribution of drugs and cell lines mean IC50 values on GDSC (A), CCLE (B), CTRP (C) datasets. All the IC50 values are 
expressed in logarithmic scale
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primary source of variance in the data is globally due 
to the drugs anyway, the two measurements are indeed 
extremely similar. Instead, Fixed-Cell Line aggregation 
considers only variance within drugs.

The importance of prediction aggregation strategies 
in the unseen cell lines validation
What happens instead if we populate the test sets used 
during validation only with samples coming from cell 
lines that are not present in the corresponding training 
sets? In real-life scenarios, this would evaluate the ability 
of our models to use the multi-omics data to generalize 
to unseen cell lines, without having observed any drug 
response values on them.

Why are global performances of unseen cell lines high even 
without multi‑omics data?
The most noticeable aspect in Fig. 2B is that the Global 
performance of NxtDRPMT , which does not include any 
multi-omics information able to contextualize the cell 
lines, is already able to reach state-of-the-art perfor-
mance ( r = 0.85).

To study this perplexing behaviour we looked at the 
distribution of the drugs IC50 values over the cell lines. 
As mentioned in Sect.  "A detailed analysis of perfor-
mance in the Random Splits validation", in Fig.  4A, we 
see that the variability among drugs ( σ 2

= 2.38 ) is greater 
than that among cell lines ( σ 2

= 0.72 ). This means that, 
on GDSC, the predictors can already accurately model 
much of the variability in the data by just observing the 
drug responses available in the training set, regardless of 
the cell lines involved. This means that, if we only con-
sider the Global aggregation of the predictions, like most 
of the state-of-the-art predictors do [14–16, 48–51], we 
remain completely unaware of the model ability to truly 
generalize over cell lines, which was supposed to be the 
goal of this Splitting Strategy.

The fact that the high Global performance in Fig.  2B 
are misleading becomes evident when we compare the 
Global and Fixed-Drug (which directly assesses the 
model’s capacity to generalize to unseen cell lines) per-
formance of NxtDRPMT . The Pearson correlation sharply 
decreases from r = 0.85 to r = 0 , as is supposed to be, 
since NxtDRPMT with the Unseen Cell Lines Splitting 
Strategy could not learn anything about the cell lines 
drug response in the test set. This drop dramatically 
highlights how the Global aggregation of predictions 
can lead to inflated and therefore meaningless perfor-
mance scores: we see a Global Pearson correlation of 0.85 
despite the actual model inability to discriminate unseen 
cell lines ( NxtDRPMT Fixed-Drug r = 0).

Another noticeable aspect is that when additional 
relations are added to characterize the cell lines 

( NxtDRPMT+EX+PR ) the model reaches a Global r = 0.87 , 
outperforming tCNN and GraphDRP respectively by 
3.44% and 2.71% (see Suppl. Table S2). On the other hand 
in the Fixed-Drug settings of Fig. 2B we see that adding 
additional relations to the model ( NxtDRPMT+EX+PR ) 
becomes highly relevant for the performance, provid-
ing an increase in Pearson correlation, from 0.00 to 
0.33, while the multi-omics contribution was only a 2% r 
increase in the Global aggregation.

A dummy model highlights the bias induced by Global 
Aggregation
To make the analysis of this behavior clearer, we intro-
duce the DummyDrugAvg model, which predicts the 
IC50 for a drug d as the average IC50 of d as observed 
on the training set (see Methods "Dummy models" for 
more details). DummyDrugAvg extremizes the situation 
already observed with NxtDRPMT , since by construction 
it cannot model or recognize different cell lines. None-
theless, it achieves a Global Pearson correlation of 0.85 
(see Fig. 2B), which is in line with all the real DRP meth-
ods benchmarked in the same settings. This value corre-
sponds indeed to the correlation we measured in Fig. 1E. 
Similarly to NxtDRPMT , DummyDrugAvg suddenly 
drops to 0.0 correlation when the Aggregation Strategy 
switches to Fixed-Drug since it cannot predict how the 
same drug performs on different cell lines, but just the 
Global drugs trends over the entire test-set.

On the other hand, DummyDrugAvg and all the 
NxtDRP variants reach a high correlation ( r ≃ 0.88 ) in 
the Fixed-Cell Line aggregation performance, since the 
global ranking of the drugs effectiveness is mostly con-
served also within each individual cell line (see Suppl. 
Figure S3). This means that generally strong drugs will 
be stronger than generally weaker drugs, with an average 
correlation across cell lines of r = 0.885.

Prediction and evaluation challenges in the unseen drugs 
validation
Analysing the poor generalization in the unseen drugs 
validation
Mirroring the previous Splitting Strategy on Unseen Cell 
Lines, here we predict the IC50 values for drugs that are 
entirely absent from the training set. To perform well in 
the Unseen Drugs Splitting Strategy, a DRP model should 
be able to generalize to drugs never seen before, rely-
ing only on biologically relevant information such as its 
structure. In the case of NxtDRP , the drug structure is 
extracted from PubChem [52] and fed to the model via a 
Graph NN (see Methods "Drug structure representation 
for machine learning" and "Entity-relation graph infer-
ence for DRP" for more details).
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The accurate prediction of IC50 values for the Unseen 
Drugs Splitting Strategy is currently a challenge, as shown 
by the lack of reliable in silico methods for this type of 
validation [14, 16]. This problem is challenging because 
the chemical space covered by the dataset is both sparse 
and highly diverse, making it difficult for deep learning 
models to generalize, as they would require a much more 
comprehensive representation of the chemical space to 
make accurate predictions; structurally similar drugs 
may be locally well-modeled, but predicting sensitivity of 
unseen compounds remains highly unreliable.

The difficulty of this task is indeed confirmed by the 
generally low prediction performance shown in Fig. 2C. 
Moreover, the variability is very high, making it impossi-
ble to directly compare models. This is mainly due to the 
high variability of the IC50 values, caused by the differ-
ing biochemical mechanisms of the drugs in the dataset 
and their relative effective concentration range, leading 
to heterogeneous subsets in each split and affecting pre-
diction accuracy.

The difficulty of the problem posed by this Splitting 
Strategy is also evident from the other prediction Aggre-
gation Strategies. In the Fixed-Cell Lines aggregation, 
which evaluates the models’ ability to predict the dynam-
ics between different drugs acting on the same cell line, 
the performance of NxtDRPMT has a 22% drop ( r = 0.28 ) 
with respect to Global performance.

In Fig.  2C, the Global performance is relatively simi-
lar to the Fixed-Cell Line performance. As already men-
tioned in Sect. "A detailed analysis of performance in the 
Random Splits validation", this is because the former, 
due to higher variability among drugs (see Fig. 4), tends 
to measure mostly how well the model approximates the 
dynamics of drug-related IC50 values, which is the same 
that the Fixed-Cell Line aggregation exclusively does.

To better understand these results, we compared it with 
two baseline dummy predictors. The first is DummyCel-
lAvg, which simply computes the mean of the IC50 values 
associated to each cell line c on the training set, and uses 
this mean as prediction value for any drug applied on c 
in the test set. This method achieves a Global correlation 
of r = 0.26 . This value is substantially lower compared 
to the DummyDrugAvg performance on the unseen cell 
lines, which was r = 0.85 (see Suppl. Table  S2). This is 
due to the fact that they both just exploit the variance 
in the dataset (respectively among cell lines and drugs), 
and the second is substantially higher than the first, as 
shown from the comparison of Fig. 1E and F. These plots 
show that the Global correlation achieved by Dummy-
CellAvg corresponds exactly to the correlation in Fig. 1F, 
showcasing what a Global Aggregation Strategy truly 
measures when it comes to quantifying the prediction 

performance of DRP methods on datasets presenting a 
substantial structure in the data.

In the previous Sect.  "The importance of prediction 
Aggregation Strategies in the unseen cell lines valida-
tion", we showed that to properly assess the models’ 
ability to predict previously Unseen Cell Lines, the 
Fixed-Drug Aggregation Strategy is the most meaningful. 
Analogously, here we see that to reliably evaluate the pre-
dictions on Unseen Drugs, we should use the Fixed-Cell 
Lines Aggregation Strategy, since it explicitly measures 
the ability of the model to characterise the effect of dif-
ferent drugs in the same condition (the cell line). Indeed 
we see from Fig.  2C that the DummyCellAvg baseline 
achieves zero correlation in this Aggregation Strategy, 
while NxtDRPMT with just the drug information fed 
through the Graph NN reaches r = 0.283.

Conversely, the Fixed-Drug performance of Dum-
myCellAvg and NxtDRPMT in Fig.  2C is higher to both 
Global and Fixed-Cell Line performance ( r ≃ 0.50 ). The 
reason for this is that the IC50 values of cell lines are 
similarly distributed among different drugs ( r = 0.51 , see 
Suppl. Figure S3). Analogously to the evidence in Sect. A 
dummy model highlights the bias induced by Global 
Aggregation, this confirms that certain cell lines tend to 
be more sensitive to drugs, while others are generally less 
sensitive, however this difference is less pronounced than 
the analogous effect among drugs.

The addition of omics data in the Unseen Drugs split-
ting provides little to no noticeable improvement in 
terms of performance. As already highlighted in Sect. "A 
detailed analysis of performance in the Random Splits 
validation" given a drug-cell line pair, if the training set 
contains enough drug response values for that cell line, 
the model will be able to characterize it without relying 
on omics data.

The maximum drug concentration alone outperforms DRP 
methods
The drastic drop in performance from Fig. 2A and C con-
firms the general observation [8, 15, 16, 28] that DRP 
predictors struggle to generalize to unseen drugs [14, 16], 
with high errors on the IC50 predictions.

Part of this issue might be related to the fact that dif-
ferent drugs are tested at different concentration ranges, 
resulting in IC50 values that are expressed within these 
ranges. These concentration ranges are typically selected 
a priori based on existing in vitro and clinical data associ-
ated with each drug [26].

This behavior is also visible in Fig. 1G, where we show 
that the Maximum Concentration (MC) at which the 
drugs are tested strongly correlates ( r = 0.66 ) with the 
IC50.
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To gauge how this might affect the models predictions, 
we ran an additional test in which the model is provided 
with the MC at which each drug has been experimentally 
tested in order to infer the IC50.

We first integrated the MC as a feature in NxtDRP (see 
box NxtDRPMT+PR+MC in Fig.  2C), by concatenating it 
with the drug representation generated by the Graph NN. 
This value alone increases the Global Pearson correlation 
by 67% ( r = 0.60).

To further investigate the role of MC in relation to the 
other inputs fed to NxtDRPMT+MC , we designed an addi-
tional baseline model, called DummyMC. For each drug 
d, DummyMC predicts its IC50 by simply outputting the 
MC tested for d. This trivial approach outperforms any 
other DRP predictor in the Global predictions aggrega-
tion ( r = 0.61 ) without even requiring any type of mod-
eling of the cell line or the drug.

If we look at the Fixed-Drug performance in Fig.  2C, 
we see that the DummyMC Pearson correlation drops to 
almost zero, since it always outputs the same IC50 value 
to each drug d, regardless of the cell line involved. Con-
versely, NxtDRPMT+PR+MC on Fixed-Drug performance 
achieves r = 0.56 , because the cell lines are characterized 
in this case.

DummyMC simply reflects the assumptions on which 
the in vitro experiments that DRP models wish to emu-
late, and it could therefore considered a baseline for 
benchmarking DRP performance. Unfortunately, as we 
show in Fig. 2C, current DRP methods are unable to sur-
pass this baseline.

Discussion
In this paper we highlight two issues that, to the best 
of our knowledge, have not been adequately addressed 
in the DRP field. We believe that the development of 
increasingly sophisticated DRP models cannot ignore 
the need for a validation protocol that truly assesses their 
generalization capability. The critical points we have 
addressed concern the use of IC50 as the target label and 
the standard approach adopted for the validation of DRP 
models.

Beyond IC50: the area under the dose‑response curve 
as an alternative prediction label
We showed how IC50 values strongly correlate with MC 
(see Fig.  1G), and how this becomes problematic since 
a baseline represented by the mere MC value (Dum-
myMC) results in higher performance than advanced 
DRP models.

What makes this correlation even more problematic 
is the fact that it is subtly influenced by the assump-
tions underlying IC50, which is based on the premise 
that exists a concentration inhibiting 50% of cells [27]. In 

reality, 62% of the IC50 values in GDSC are higher than 
the actual MC tested for the target drug, meaning that 
most of the IC50 values have never been actually experi-
mentally observed, and it is interpolated from the dose-
response sigmoid instead. This is even more striking on 
the CCLE dataset, since when the IC50 exceeded the MC 
tested (the 55% of the cases), the IC50 was approximated 
by using the MC value instead (see Suppl. Figure S2).

An option in this sense is to use the Area Under the 
Dose-Response Curve (AUDRC) (see Fig. 1B), that is pro-
vided in drug response datasets. AUDRC, also known as 
AUC in chemistry literature, of 1 means that the drug is 
not able to inhibit the viability of cancer cell, even at the 
MC tested, while an AUDRC value close to zero indicates 
that the drug is extremely effective against cancer cells, 
even at the lowest concentrations tested. The AUDRC, 
commonly reported in its normalized form, effectively 
decouples the concentration ranges tested for each drug 
from their effectiveness as anticancer agents. This is 
because these ranges define the boundaries of the calcu-
lated area, as shown in Fig. 1B.

AUDRC has already been proposed as the preferred 
target label for DRP methods [8, 27, 30]. In this paper, we 
add further reasons and evidence to endorse the use of 
AUDRC as a more reliable target label. From a real-world 
clinical perspective, AUDRC represents a prediction at 
least as useful as IC50, as it can be used similarly to pri-
oritize drug-cell line pairs for in vitro testing. At the same 
time, because AUDRC is normalized with respect to the 
concentration ranges specific to each drug, it also ena-
bles improved comparability among different drugs by 
abstracting away from the assumptions (e.g., cytotoxicity 
thresholds) made for that particular drug. It is robust in 
reflecting the drug’s effectiveness across the concentra-
tion ranges at which the drug is active and providing a 
more accurate measure of the drug-cell interaction com-
pared to the simple IC50 value [53].

The long‑overlooked role of the aggregation strategies
Casting aside the discourse related to the target label 
of choice, our study shows that the validation of DRP 
methods is hindered by the fact that the only Aggrega-
tion Strategy currently used in literature (Global) biases 
the performance towards the entity showing greater 
variance, which happens to be the drug entity in GDSC, 
CCLE and CTRP (see Figs. 4 and 5). This leads to mod-
els that reach completely misleading high Global perfor-
mance, even though they are actually unable to generalize 
on these entities.

The differentiation of the Aggregation Strategies that 
we propose addresses this issue. In addition to the Global 
aggregation, Fixed-Drug and Fixed-Cell Line aggrega-
tions must be used to assess the true performance of DRP 
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methods. They assess the ability of DRP models to gener-
alize to unseen cell lines (Fixed Drug aggregation) and to 
unseen drugs (Fixed Cell Line aggregation), as we showed 
in Sects. "The importance of prediction aggregation strat-
egies in the unseen cell lines validation" and "Prediction 
and evaluation challenges in the unseen drugs validation".

Aggregation Strategies are also relevant to evaluate the 
predictions in the Random Splits setting, as they provide 
an overview of the degree of generalization achieved 
independently for Drugs and Cell Lines.

Similar issues have been highlighted in [24], where the 
authors propose to predict a z-scored AUDRC value to 
address the variability problem. However, this approach 

becomes inapplicable in the Unseen Drugs setting, since 
mean and variance cannot be computed for never seen 
before drugs. Our proposed differentiation of Aggrega-
tion Strategies offers a more flexible solution, allowing 
us to avoid being misled by dataset variance while spe-
cifically analyzing the model’s predictive capabilities with 
respect to either drugs or cell lines.

A more robust validation protocol for DRP methods
When using AUDRC, there is still a difference in variabil-
ity between drugs and cell lines, albeit to a lesser extent 
(see Fig. 5A). For this reason, it is also necessary to cou-
ple it with the proper prediction Aggregation Strategies, 

Fig. 5  Plot showing the distribution of drugs and cell lines mean AUDRC values on GDSC (A), CCLE (B), CTRP (C) datasets. All the IC50 values are 
expressed in logarithmic scale. For CCLE the area above the dose-response curve is reported

Fig. 6  A Representation of the dualism of the abstract representation of the data in an Entity-Relation graph and the NXTFusion schematization 
of the non-linear inference over that ER graph. B ER Graph representing only the Main Task that is the DRP on IC50 values. C ER Graph representing 
the Main Task with the addition of RNA-Seq expression relation. D ER Graph representing the Main Task with the addition of Proteomics relation. E 
ER graph representing the Main Task with both Proteomics and RNA-Seq relations
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to avoid the issues highlighted in Sects. "The importance 
of prediction aggregation strategies in the unseen cell 
lines validation" and "Prediction and evaluation chal-
lenges in the unseen drugs validation", since also the 
AUDRC Global performance could be biased by the fact 
that it mostly describes the model’s ability to explain vari-
ance among drugs rather than among cell lines.

To provide a complete solution to these issues, here we 
propose a novel validation protocol for DRP methods, 
which is free from the issues we highlighted so far: 

1.	 Use AUDRC as prediction label, instead of the IC50.
2.	 Aggregate the predictions using the Fixed-Drug and 

Fixed-Cell Lines strategies (see Sect.  "Beyond global 
metrics: Aggregation Strategies for robust model 
evaluation"). In particular, the Fixed-Drug aggre-
gation describes the model ability to discriminate 
between cell lines, and vice versa, the Fixed-Cell Line 
performance indicates how well the model correctly 
distinguishes between different drugs.

3.	 In the case of a validation with Unseen Drugs train-
test splits, the most relevant Aggregation Strategy 
will be Fixed-Cell Line. Conversely, to evaluate the 
generalization ability in the Unseen Cell Lines splits, 
the main prediction Aggregation Strategy should be 
Fixed-Drug.

To showcase the novel validation procedure we propose, 
we tested NxtDRP on AUDRC as target label in these set-
tings. The results are shown in Suppl. Section S4.

Conclusion
In this study, we demonstrated that conventional evalu-
ation practices for DRP methods result in misleading 
performance scores due to inherent dataset biases, par-
ticularly the disproportionate variability among drugs 
compared to cell lines in widely used datasets like GDSC, 
CCLE, and CTRP. By relying solely on global aggregation 
metrics, existing DRP models appear to achieve high per-
formance by exploiting drug-specific trends rather than 
generalizing to unseen cell lines or drugs. This “specifi-
cation gaming” phenomenon masks critical limitations in 
model generalizability.

To address this, we introduced three Aggregation Strat-
egies—Global, Fixed-Drug, and Fixed-Cell Line—that 
allow us to evaluate performance independently across 
the entities involved in the prediction, namely cell lines 
and drugs. These strategies revealed stark discrepancies: 
models achieving high global scores often failed to gener-
alize to novel cell lines (Fixed-Drug aggregation) or drugs 
(Fixed-Cell Line aggregation). For instance, with Unseen 
Cell Line splits, dummy models leveraging drug averages 

achieved near-state-of-the-art global performance, but 
collapsed to zero correlation when evaluated under task-
specific aggregation, underscoring the necessity of tai-
lored validation protocols, depending on the assumptions 
that need to be validated.

Furthermore, we highlighted fundamental limitations 
of IC50 as a prediction label. Its strong dependency on 
drug concentration ranges, particularly the Maximum 
Concentration (MC), enables trivial baselines (e.g. Dum-
myMC) to outperform sophisticated DRP models. We 
advocate for replacing IC50 with AUDRC, which pro-
vides a more robust and interpretable measure of drug 
efficacy across concentrations.

By integrating AUDRC with our proposed validation 
framework-combining task-aligned Splitting and Aggre-
gation Strategies-we establish a rigorous protocol to 
ensure DRP models are evaluated on their true ability to 
generalize, advancing their reliability for preclinical drug 
discovery and precision oncology applications.

Methods
Datasets
In this study, we used GDSC v. 6.0 [5] as our main drug-
response dataset. It contains 1,074 cell lines and 224,510 
IC50 measurements of 265 drugs. For each cell line, the 
following omics are available: whole genome sequencing, 
transcriptomics, proteomics, copy number variation and 
methylation data. Drugs are identified by their PubChem 
IDs, facilitating the retrieval of their chemical structures.

GDSC dataset contains drug dose-response data 
measurements. These measurements are obtained using 
fluorescence signal intensities, testing 9 different concen-
trations per drug with 2-fold dilution series [5]. The dose-
response curve is then fitted by a nonlinear mixed effect 
model on a sigmoid curve. The IC50 values we use as 
prediction labels are therefore the results of the interpo-
lation of the dose-response curve with the sigmoid curve 
(see Fig. 5A). These IC50 values are therefore subject to 
noise due, for example, to high experimental variability 
that may cause a poor fitting, which is estimated by an 
RMSE value. We excluded IC50 values with an RMSE 
> 0.3 from the analysis.

To facilitate a fair comparison with existing approaches, 
we followed the pre-processing steps outlined in [16]. 
First, only compounds with a PubChem ID were consid-
ered, resulting in a final dataset of 223 drugs and 948 cell 
lines, with a total of 172,114 drug response IC50 values. 
Next, we rescaled these values to the [0,1] range using the 
formula y = 1

1+y−0.1 [16].
Additionally, we retrieved quantitative proteomics 

intensity values from GDSC and scaled them to the [0,1] 
range. This data matrix comprises 4,538,041 data points 
across 874 cell lines and 8,457 proteins. We also obtained 
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RNA-Seq data containing 20,080,264 transcript per mil-
lion (TPM) measurements, which were scaled to the [0,1] 
range. This data matrix involves 912 cell lines and 36,447 
genes. To reduce dimensionality and retain the most 
informative features, we selected the top 1000 most vari-
able genes, resulting in a total of 369,072 Cell Line-Gene 
pairs.

For further analyses, we employed two additional 
datasets—CCLE and CTRP—to investigate the variance 
among drugs and cell lines, as shown in Figs.  4 and 5. 
CCLE dataset contains 11,670 drug-cell line pairs, com-
prising 504 cell lines and 24 drugs, while the CTRP data-
set contains 482,528 pairs, including 887 cell lines and 
544 drugs.

Drug structure representation for machine learning
Each drug is uniquely identified by a PubChem ID. From 
PubChem we retrieved their Simplified Molecular Input 
Line Entry System (SMILES) representation [52]. How-
ever, this representation cannot be used as input in a DL 
model as is. We therefore transformed them into graphs 
that represent the molecular structures of the drugs.

Each drug is represented by a molecular graph in which 
the nodes corresponds to an atom and is described by 
the following set of features: atomic symbol (one-hot 
encoding), atomic number, atomic degree, atomic for-
mal charge, atom in a ring, atom radical electrons, atom 
hybridization state, and atom aromaticity. Each edge 
in this graph correspond to a chemical bond between 
atoms.

Each molecular graph is used as input to a Graph NN, 
that consists of 4 graph attention layers [54], followed by 
a final global sum pooling step. The final pooling is neces-
sary to provide a final latent representation of each drug 
that is independent of the actual number of atoms of 
each drug.

An entity‑relation data fusion model to predict the cancer 
cell lines drug sensitivity
Predicting the response of cancer cell lines to antican-
cer drugs requires integrating heterogeneous sources of 
information, such as the omics available for each cell line 
and the molecular information related to each drug. To 
build a model able to do that, we started from our data 
fusion framework NXTFusion [44], which allows us to 
describe these heterogeneous data sources within an 
Entity-Relation (ER) graph (see Main Fig. 6A), which can 
be intuitively thought as a relational database on which it 
is possible to perform inference.

An ER graph consists of two key elements: a set of enti-
ties denoted as E, which represent classes of objects, and 
a set of relations R that specify how pairs of entities are 

interconnected. Each entity has a specific cardinality that 
corresponds to the number of instances present in the 
available data. For example, the Cell Line entity on GDSC 
data has 948 instances.

From a modeling perspective, the entities are rep-
resented by a set of trainable latent variables ei . Each 
observed data matrix Rij (for example proteomics data) 
corresponds to a relation between a pair of entities (i, j).

The training is performed globally on the ERG by 
finding the embedding sets ei and ej that minimize the 
reconstruction error on each observed matrix (relation) 
Rij . The loss function to be minimized for each Rij is 
therefore Lij(Rij ,Mij(fi(ei), fjej)) where Lij is the relation-
specific loss function, fi is an entity specific differenti-
able function (such as a feed-forward NN), and Mij(., .) a 
relation-specific mixing function (such as bilinear layer) 
[44]. The loss function Lij can match the type of data con-
tained in each relation Rij , depending on whether it is a 
classification, regression, or multi-class prediction task 
(see Fig. 6A).

Since the ER graph might contain an arbitrary number 
of relations between entities, the global objective func-
tion to be optimized is the following

where W is the set of trainable parameters of each NN 
module in f and M functions. ω is a scale factor meant to 
ensure that different relations have a comparable weight 
in the global loss (see [44] for more details).

Essentially, NXTfusion achieves data fusion through 
learning several tasks concurrently. The auxiliary tasks 
help the inference of the main task by providing addi-
tional context, which acts as an informed regularization 
[44], therefore helping the generalization on the main 
task by ensuring the convergence to more informative 
latent representations of the entities involved in the ER 
graph [37].

The prediction is performed by considering, for the 
relation of interest Rij , all pairs of embeddings corre-
sponding to entities ei and ej for which the interaction 
label has to be predicted. Clearly, the value of the relation 
for those entities pairs must not have been included in 
the training set. At inference time, the outcome is com-
puted as Y = Mij(fi(ei), fj(ej)) . That is, the predictions 
rely on the embeddings as well as the weights of f  and M 
that were learned during the training phase. In case of an 
unseen entity instance (cell line or drug) for the main task 
Rij the embedding for that instance is learned through 
the reconstruction of auxiliary task. If no auxiliary task 
is available, the model is not able to learn a meaningful 
embedding (this is the reason of random performance of 

argmin
W

∑

Rij∈R

ωijLij(Rij ,Mij(fi(ei), fjej))
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NxtDRPMT on Unseen Cell Lines split and Fixed-Drug 
aggregation).

Entity‑relation graph inference for DRP
In the context of our DRP task, the ER graph comprises 
four entities: cell lines, drugs, proteins, and genes. The 
corresponding relations include the Cell Line-Drug rela-
tion (built on drug response values from GDSC and serv-
ing as the target for predictions during testing), the Cell 
Line-Protein relation (based on quantitative proteom-
ics data), and the Cell Line-Gene relation (derived from 
RNA-Seq data).

Each entity-specific module fi consists of a linear trans-
formation, followed by a normalization (LayerNorm) 
and a hyperbolic tangent (Tanh) activation. For all rela-
tions, the mixing function Mij is implemented as a bilin-
ear layer, succeeded by LayerNorm, a Dropout with a 
probability of 0.1, a Tanh activation, and a final linear 
transformation.

The last crucial piece in the picture is the contextual-
ization of the drugs. We therefore decided not to use a 
latent representation (embedding) to represent them, but 
to extend the concept of side information (i.e. features 
in the Matrix Factorization jargon [44, 55]) by directly 
connecting a Graph NN to the Cell Line-Drug relation 
(Fig.  6B–E). This Graph NN operates on the molecu-
lar graph representation of each drug (as described in 
Sect.  "Drug structure representation for machine learn-
ing"), dynamically encoding structural and functional 
properties into relational embeddings. By design, this 
eliminates the need for drug’s entity embeddings, allow-
ing molecular features to propagate through the ER graph 
during both training and inference.

During the training phase the model jointly learns all 
the observed relations in the ER graph, except for the 
Cell Line-Drug interaction pairs reserved for the test set; 
these held-out pairs are masked during optimization. 
The predictions for the Cell Line-Drug pairs of the test 
set rely on two key components: (1) the learned embed-
dings for cell lines (reflecting their multi-omics and drug 
response profiles), and (2) the Graph NN-generated rep-
resentations of drug molecules. The final predictions are 
computed by the mixing function layer M that combines 
these elements.

To assess the impact of integrating multiple omics, 
we compared different ER graphs with different combi-
nations of relations (see Fig. 6B–E). The simplest graph, 
denoted as the Main Task (MT) graph, includes only the 
Cell Line-Drug relation (i.e. the IC50 matrix from GDSC, 
which is the target for predictions). We then progres-
sively augmented this graph with additional relations: one 
for proteomics (PR) and another for RNA-Seq (EX) data, 
to enrich the cell line characterization (see Fig. 6B–E).

The method along with the code for its implementation 
is available at github.​com/​codic​ef/​NxtDRP to reproduce 
the results.

Dummy models
The dummy models in this paper are categorized into 
two groups. The first group is based on simple transfor-
mations of the IC50 values from the dataset, while the 
second utilizes external information, such as the maxi-
mum concentration (MC) at which the drug was tested.

For the first category, these models employ IC50 data 
based on the specific validation performed. For Unseen 
Cell Lines, the average IC50 values for each drug (Dum-
myDrugAvg) are used, excluding data from cell lines in 
the test set. Similarly, for Unseen Drugs, the average 
IC50 values for cell lines (DummyCellAvg) are utilized, 
excluding data from drugs in the test set. In the Ran-
dom Splits strategy, a basic linear regression model 
(DummyLR) trained on concatenated one-hot-encoded 
identifiers for drugs and cell lines.

As for the dummy model based on MC, it simply uses 
the MC value at which each drug was tested (Dum-
myMC). This information is known a priori from the 
screening experiments that the DRP models aim to 
replicate.
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