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Abstract 

Transformer-based, template-free SMILES-to-SMILES translation models for reaction prediction and single-step ret-
rosynthesis are of interest to computer-aided synthesis planning systems, as they offer state-of-the-art accuracy. How-
ever, their slow inference speed limits their practical utility in such applications. To address this challenge, we propose 
speculative decoding with a simple chemically specific drafting strategy and apply it to the Molecular Transformer, 
an encoder-decoder transformer for conditional SMILES generation. Our approach achieves over 3X faster infer-
ence in reaction product prediction and single-step retrosynthesis with no loss in accuracy, increasing the potential 
of the transformer as the backbone of synthesis planning systems. To accelerate the simultaneous generation of mul-
tiple precursor SMILES for a given query SMILES in single-step retrosynthesis, we introduce Speculative Beam Search, 
a novel algorithm tackling the challenge of beam search acceleration with speculative decoding. Our methods aim 
to improve transformer-based models’ scalability and industrial applicability in synthesis planning.

Scientific contribution 

We present the first application of speculative decoding to accelerate the inference of a transformer neural network 
for SMILES-to-SMILES conversion for reaction modeling. We propose a chemically specific simple drafting strategy 
for speculative decoding of SMILES. We also introduce Speculative Beam Search - the first method to accelerate beam 
search decoding from the transformer with speculative decoding.

Keywords CASP, Speculative decoding, Single-step retrosynthesis, Fast inference, Reaction prediction

Introduction
Automated planning of organic chemical synthesis, first 
formalized around fifty years ago [1], is one of the core 
technologies enabling computer-aided drug discovery. 
While first computer-aided synthesis planning (CASP) 
systems relied on manually encoded rules [2, 3], research-
ers now primarily focus on CASP methods powered by 
artificial intelligence techniques. The design principles 
of the latter were outlined in the seminal work by Segler 
et al. [4]: a machine learning-based single-step retrosyn-
thesis model combined with a planning algorithm. The 
former proposes several candidate retrosynthetic chemi-
cal transformations for a given molecule, and the latter, 
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e.g., Monte-Carlo Tree Search, uses those candidates 
to construct a synthesis tree. Single-step retrosynthe-
sis models are now commonly developed in two para-
digms: template-based models and template-free models. 
Besides retrosynthesis, one can also build a model to pre-
dict the products of chemical reactions (Fig. 1).

The principle of template-based models is to use a set 
of SMIRKS templates extracted from reaction data and 
a machine learning model for classification or ranking to 
select a matching template for a query SMILES that will, 
upon application, transform the query into the product 
SMILES (for product prediction), or the SMILES of pos-
sible reactants (for single-step retrosynthesis). In con-
trast, in template-free models, the query transforms into 
the result without resorting to SMIRKS templates, e.g., 
with a sequence of predicted graph edits [5, 6] or through 
“translation” of the query SMILES into the desired 
SMILES with a conditioned text generation model [7–9]. 
While CASP systems leveraging template-based single-
step models proved to be effective [10], there is an inter-
est in building CASP with template-free models instead, 
as they demonstrate state-of-the-art accuracy in both 
single-step retrosynthesis and reaction product predic-
tion [11, 12]. Most accurate template-free models are 
currently conditional autoregressive SMILES genera-
tors based on the transformer architecture [13], which 
also serves as the backbone for Large Language Models 
(LLM) [14, 15]. Molecular Transformer [8] was the first 
SMILES-to-SMILES transformer for reaction modeling, 
which served as a basis for subsequent modifications [7, 
9], which demonstrate state-of-the-art accuracy in reac-
tion prediction and single-step retrosynthesis. Unfortu-
nately, the high accuracy of such autoregressive models 
like Chemformer [7] comes at the cost of a slow inference 
speed [16], which hinders their successful adoption as 
part of industrial CASP systems.

Possible ways of addressing the problem of slow infer-
ence in such autoregressive transformers include reduc-
ing the number of parameters in the model while trying 

to preserve its accuracy using knowledge distillation [17, 
18] from a larger model or reducing the computational 
complexity of the transformer’s forward pass by a clever 
architectural design [19]. However, such approaches pre-
sent trade-offs with the accuracy of the model.

Our work proposes another method to accelerate the 
inference from SMILES-to-SMILES translation models. 
We turn to speculative decoding [20, 21], a general tech-
nique for LLM inference acceleration, to make the Molec-
ular Transformer [8] up to three times faster in reaction 
prediction and single-step retrosynthesis without chang-
ing the model architecture, training procedure and with-
out compromising on accuracy. We propose a chemically 
specific drafting scheme for speculative decoding based 
on extracting subsequences of a query SMILES. We also 
design a speculative variant of beam search to accelerate 
the prediction of multiple candidate SMILES for a query 
in single-step retrosynthesis and product prediction.

Methods
Speculative decoding
Autoregressive sequence models, such as variants of the 
Transformer [13, 14, 22], generate sequences token by 
token, and every prediction of the next token requires a 
forward pass of the model. Such a process may be com-
putationally expensive, especially for models with bil-
lions of parameters. Therefore, an intriguing question 
arises whether one could generate several tokens in one 
forward pass of the model, thus completing the output 
faster. Speculative decoding [20, 21] answers positively. 
Recently proposed as a method of inference acceleration 
for Large Language Models, it is based on the draft-and-
verify idea. At every generation step, one can append 
some draft sequence to the sequence generated by the 
model so far and see if the model “accepts” the draft 
tokens.

If the draft sequence has length N, in the best case, 
the model adds N + 1 tokens to the generated sequence 
in one forward pass, and in the worst case, it adds one 
token as in standard autoregressive generation. The 
acceptance rate for one generated sequence is the num-
ber of accepted draft tokens divided by the total num-
ber of tokens in the generated sequence. One can also 
test multiple draft sequences in one forward pass taking 
advantage of parallelization, and choose the best one. 
Speculative decoding does not affect the content of the 
predicted sequence in any way compared to token-by-
token decoding.

One can freely choose a way of generating draft 
sequences. For LLMs, one would usually use another 
smaller language model that performs its forward pass 
faster than the main LLM [20] or additional generation 
heads on top of the LLM’s backbone [23]. However, one 

Fig. 1 Both reaction product prediction and single-step 
retrosynthesis can be formulated as SMILES-to-SMILES translation 
and approached with a model like an encoder-decoder transformer
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can also construct draft sequences without calling any 
learned functions. For example, generate random draft 
sequences, even though their acceptance rate will be 
minimal.

Speculative decoding may imply the training of a 
separate model for drafting, but it does not require any 
changes to the architecture or training procedure of the 
main autoregressive model that generates the output.

Drafting strategy for SMILES
In reaction product prediction and single-step retrosyn-
thesis as SMILES-to-SMILES conversion problems 
(Fig.  1), the source and target sequences are often rela-
tively similar. In a chemical reaction, large fragments of 
reactants typically remain unchanged, which means 
that the SMILES of products and reactants have many 
common substrings. It is especially true if reactant and 
product SMILES are aligned to minimize the edit dis-
tance between them [12]. This characteristic of chemical 
reaction data enables a convenient heuristic for specula-
tive decoding. Specifically, one can extract multiple sub-
strings of a chosen length D from the query SMILES and 
use them as draft sequences with a high acceptance rate. 
Such an approach to draft generation is conceptually 
reminiscent of the LINGO method [24], which fragments 
a SMILES string into a collection of fixed-length over-
lapping substrings for QSPR modeling and molecular 
similarity estimation. Figure 2 demonstrates our drafting 
method in product prediction. Before generating the tar-
get string, we can assemble a list of token subsequences 

from the source sequence (reactant tokens) with a slid-
ing window of a desired length (4 in this example) and 
stride 1. Then, at every generation step, we can try all 
draft sequences in one forward pass of the model to see 
if the model can copy up to 4 tokens from one of them. 
The draft token acceptance rate in this example reaches 
78%. We can also make the drafting strategy “smarter” by 
only considering the substrings of the query SMILES that 
start with the token currently concluding the generated 
output and stripping the first token in those substrings 
(Fig. 3). This strategy would partially address the haunt-
ing problem of throughput-latency trade-off (section 3.1), 
and we use this strategy in our experiments as well (e.g., 
in section 3.3.2).

Speculative beam search
Speculative decoding was initially formulated for the 
accelerated generation of a single sequence for a given 
query, e.g. with greedy decoding or nucleus sampling. 
However, generating one sequence per query has limited 
utility in the context of reaction modeling. In CASP, the 
single-step retrosynthesis model must suggest multiple 
different reactant sets for every query product so that 
the planning algorithm can choose from them. Also, in 
product prediction, it is possible that a reaction results in 
a mixture of products. Therefore, the real problem is to 
accelerate the generation of multiple SMILES for a single 
given SMILES. When using a SMILES-to-SMILES trans-
former, beam search is the standard choice for generating 
a set of outputs instead of one.

Fig. 2 Speculative decoding accelerates product prediction with the Molecular Transformer or a similar autoregressive SMILES generator. Before 
generating an output sequence, we prepare a list of subsequences of a desired length, e.g., four, of the tokenized query SMILES of reactants. Then, 
at every generation step, the model can copy up to four tokens from one of the draft sequences to the output, thus generating from one to five 
tokens in one forward pass. Colors highlight the best draft at every decoding step
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We found a way to accelerate beam search with specu-
lative decoding. The main idea behind it is that at every 
decoding step, we use a draft sequence to generate mul-
tiple candidate sequences of different lengths in one for-
ward pass, which we then order by probabilities and keep 

the best K of them. We call our algorithm “speculative 
beam search” (SBS). Algorithm  1 provides an outline of 
the speculative beam search procedure we implement for 
our experiments. The algorithm features the following 
functions.

Fig. 3 One improvement over the naive drafting strategy in Fig. 2 is to only consider drafts that start with the token that currently concludes 
the generated output. For example, for the first call of the model we consider only those substrings of the source sequence that start with the [BOS] 
token, and there is only one such subsequence. We strip the first token (in gray) from the chosen subsequence and use the remainder as a draft. 
After two calls, we consider only the subsequences that start with “(” and strip this token to finalize drafts, and so on
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Algorithm 1 Speculative Beam Search

Functions in the SBS algorithm
makeDrafts Produces N subsequences of length D 
from every query sequence to use as drafts according to 
our heuristic drafting scheme (section  2.2). The subse-
quences are extracted by a sliding window with a uniform 
step size. If N is larger than Ls , the extra sequences are 

padded with the most frequent non-service token in the 
vocabulary.

encoder Forward pass of the encoder of the Molecu-
lar Transformer. Gives the embeddings of the source 
sequences M to be used in the decoder.

decoder Forward pass of the decoder of the Molecu-
lar Transformer. Gives the logits L.

concat: Concatenates every sequence decoded so far 
with all its corresponding draft sequences.

bestDraft Uses the logits predicted by the decoder to 
select the best draft for every resulting sequence and dis-
card the others. The best draft is the one with the largest 
number of accepted tokens. The model accepts a token at 
a given position if that token is among the top three most 
probable tokens that the model predicts at that posi-
tion. There can also be fewer than top three contestants 
for acceptance, if the sum of their probabilitis exceeds 
a threshold like in nucleus sampling, e.g., 99.75%. For 
example, if one of the tokens gets 100% predicted prob-
ability, as it often happens in our SMILES-to-SMILES 
experiments, that token will be the only candidate for 
acceptance.

seqTree The core of the SBS algorithm. Proposes 
many candidate sequences for the decoding step based 
on the single accepted draft. The candidate sequences 
may have different lengths. The candidate sequences are 
organized in a tree, in which every path from the root to 
a leaf gives a candidate sequence continuation. Figure 4 
demonstrates an example. M is the largest number of 
candidate continuations in the batch.

Fig. 4 An example of two first iterations of the sampling of candidate sequence trees in our speculative beam search with two generated 
sequences maintained for one query sequence in the batch. Here, we select the two best candidates at each iteration. The draft length D in this 
example is 10. The best draft for the first iteration is c1cn(C(=O). It gets concatenated with the BOS token. The first forward pass generates 12 
candidate sequences. The best sequences in the first iteration are c1c[nH] and c1cn(C(=O)O, and they become the “beams”. In the second iteration, 
the best draft for the first “beam” is c2ccc(C(C), and for the second one it is C(C)(C)C)c. The second forward pass generates 24 sequences overall, 
which all get sorted by their probabilities. The most probable sequences after the second iteration are c1c[nH]c2ccc(C(C)= and c1cn(C(=O)
OC(C)(C)C)c2, and they become the generated sequences for the next iteration. In this example, after two iterations SBS generates two sequences 
of lengths 15 and 22, respectively, whereas the standard beam search would have generated two sequences of length 2
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extractTop: Orders the candidate sequences by 
probabilities, keeps the K ones with the highest probabili-
ties and discards the others.

Model
We demonstrate the application of our method to the 
Molecular Transformer (MT) [8], an encoder-decoder 
transformer model for SMILES-conditioned SMILES 
generation.

The original Molecular Transformer [8] adopts Open-
NMT [25], a general framework for neural machine 
translation, for SMILES-to-SMILES translation. Since 
the code in this framework is complex and intractable 
to customize, we decided to re-implement the model 
in PyTorch Lightning to keep only the necessary code 
and have more design freedom in the model’s inference 
procedure implementation. We do not provide com-
parisons with the decoding speed from the original MT 
because its underlying OpenNMT inference implemen-
tation is optimized with various techniques that we do 
not use for the conceptual simplicity. Those techniques 
are independent of speculative decoding yet compatible 
with it, and the OpenNMT implementation would ben-
efit from speculative decoding as much as the imple-
mentation in our demonstration.

Training details
For product prediction, we train our model with 
the same hyperparameters as in Schwaller et  al. [8] 
with four encoder and decoder layers, eight heads, 
embedding dimensionality of 256, and feedforward 
dimensionality of 2048, which results in 11,4 million 
parameters. For single-step retrosynthesis, we set the 
hyperparameters as in n Zhong et al. [12] (six encoder 
and decoder layers, eight heads, embedding dimension-
ality of 256, and feedforward dimensionality of 2048), 
which results in 17,4 million parameters. The diction-
ary is the same for the encoder and the decoder in both 
models. We use the Adam optimizer for both models.

Data
We used the open reaction data from US patents [26] 
for training all models. We trained the model for reac-
tion product prediction as in the original paper [8] on 
the USPTO MIT dataset, a standard benchmark for 
product prediction, without reactant-reagent separa-
tion. We trained the model for single-step retrosyn-
thesis on USPTO 50K, a standard dataset for the task. 
In this dataset, we augmented every reaction in the 
training set 20 times using SMILES augmentation [9] 
with root-aligned SMILES [12]. We followed the stand-
ard atomwise tokenization procedure [8] to tokenize 
SMILES.

Results and discussion
Our implementation of the Molecular Transformer suc-
cessfully reproduces the accuracy scores of the original 
MT [8] that relies on OpenNMT. Comparing our MT 
and the original MT, we observe at most 0.2 percentage 
points discrepancy of top-1 to top-5 accuracy in prod-
uct prediction with beam search (Table 1). Having veri-
fied the correctness of our MT’s implementation in this 
way, we replace the standard decoding procedures for 
the MT with our methods based on speculative decod-
ing and achieve a significant speed-up in product pre-
diction and single-step retrosynthesis. We report our 
experiments done on one NVIDIA Tesla V100 GPU 
with 32GB of memory.

Throughput‑latency trade‑off
Before discussing the application of speculative decod-
ing to SMILES generation, we should emphasize the 
existence of the throughput-latency trade-off in the 
transformer. When processing the test dataset, one can 
increase the batch size to improve throughput, as the 
processing will require fewer model calls. A larger batch 
size typically reduces the time needed to process the 
entire dataset. However, this improvement comes at the 
cost of increased latency per batch. The forward pass 
becomes slower as larger batches demand more compu-
tational resources and memory. At a certain point, the 
increase in latency may outweigh the benefits of higher 
throughput, ultimately leading to slower overall decod-
ing. Simultaneously improving latency and throughput is 
challenging, and one typically must carefully balance the 
two.

Product prediction
We tested our MT with speculative decoding for prod-
uct prediction on USPTO MIT mixed, i.e., without an 
explicit separation between reactants and reagents. The 
test dataset in this benchmark comprises 40 thousand 
reactions.

Table 1 The top-5 accuracy of the Molecular Transformer (MT) 
in predicting reaction products on USPTO MIT (mixed) in the 
original report and our reimplementation. Both models use 
beam search with beam size 5 to generate five predictions for 
every query. Our model successfully reproduces the accuracy of 
the original model with negligible discrepancy

Accuracy Original MT Our MT �

Top-1, % 88.6 88.4 −0.2

Top-2, % 92.4 92.5 0.1

Top-3, % 93.5 93.7 0.2

Top-5, % 94.5 94.7 0.2
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Greedy decoding acceleration
When serving a transformer as an AI assistant that pre-
dicts reaction products, one could start by using greedy 
decoding for inference. Table 2 summarizes our experi-
ments with greedy decoding from MT on the test set of 
USPTO MIT. On the V100 GPU, our greedy speculative 
decoding is faster than the greedy decoding by 3.53, 
2.84, 1.57, and 1.18 times on average at batch sizes 1, 4, 
16, and 32, respectively. Here, the throughput-latency 
trade-off comes into play. With our heuristic drafting, 
we ensure a high acceptance rate by trying multiple 
drafts in parallel for every sequence in the batch. How-
ever, it can significantly inflate the effective batch size 
of the model’s input. As a result, the latency of the for-
ward pass will worsen, reversing all benefits of specula-
tive decoding at larger batch sizes. We find the balance 
between throughput and latency by doing a grid search 
over the number of drafts and the draft length on a 
fraction (500 reactions) of the test dataset (Fig. 5). For 
batch size 1, 23 drafts of 17 tokens give the best speed-
up to greedy decoding. For batch size 4, 15 drafts of 14 
tokens for every sequence work best. For batch size 16, 
it is 7 drafts of 7 tokens. For batch size 32, it is 3 drafts 
of 5 tokens (Fig. 5A). The results in Table 2 are given for 
the corresponding drafting parameters. At even larger 
batch sizes, the effect of speculative greedy decoding 
reverses, and it becomes slower than standard greedy 
decoding.

Even accelerating greedy decoding inference with the 
batch size of 1 would be sufficient for an improved user 
experience with reaction prediction assistants: chem-
ists would usually enter one query at a time in a user 
interface of a reaction model like IBM RXN.

The model’s accuracy is 88.3% with greedy decod-
ing, and it is not affected when switching to speculative 
greedy decoding.

Beam search acceleration
We compare the inference time of standard beam search 
with beam size 5 and our speculative beam search in 
product prediction (Table 3). Standard beam search com-
pletes in around 298 min, 167 min, 152 min, and 88 min 
on average at batch sizes 1, 2, 3, and 4, respectively. SBS 
works consistently faster, and gives a speed-up of around 
2.12, 1.53, 1.63, and 1.07 times. The speed-up becomes 
smaller as the batch size increases due to the increased 
latency of a single forward pass of the model. Before 
comparing the methods, we determined the optimal 
drafting parameters for SBS using a grid search as in the 
greedy speculative decoding experiments. In Table 3, SBS 
uses 23 drafts of 10 tokens for batch size 1, 10 drafts of 
14 tokens for batch size 2, 10 drafts of 9 tokens for batch 
size 3, and 7 drafts of 10 tokens for batch size 4 (Fig. 5B). 
The optimal number of simultaneous drafts decreases to 
combat the increasing forward pass latency as the batch 
size grows.

While speculative greedy decoding guarantees that the 
generated outputs will be the same as the outputs gen-
erated by standard greedy decoding, our SBS does not 
guarantee the same outputs as beam search. However, in 
practice the difference is negligible. The top-1 accuracy of 
SBS in product prediction is 88.4 %, the top-3 accuracy is 
93.7 %, and the top-5 accuracy is 94.7 % (Table 6A). There 
is practically no difference in accuracy compared to 
standard beam search in product prediction (Table 6A): 
the accuracy percentage differs in the second decimal 

Table 2 Wall time of the model’s inference on the USPTO MIT test set in reaction product prediction with standard and speculative 
greedy decoding. “B” stands for batch size. The average time and the standard deviation are estimated based on five runs. The number 
of drafts and the draft length in the speculative greedy algorithm is different for every batch size to ensure the most speed-up by 
balancing the throughput-latency trade-off: 23 drafts of length 17 for B=1, 15 drafts of length 14 for B=4, 7 drafts of length 7 for B=16, 
3 drafts of length 5 for B=32

Decoding Time (B=1), min Time (B=4), min Time (B=16), min Time (B=32), min

Greedy 190.5 ± 36.0 81.8 ± 12.3 28.7 ± 2.3 16.8 ± 1.8

Speculative Greedy 53.9 ± 3.6 28.8 ± 3.2 18.2 ± 1.0 14.2 ± 0.3

Table 3 Wall time of the model’s inference on the USPTO MIT test set in reaction product prediction with beam search (BS) and 
speculative beam search (SBS). The number of generated sequences (denoted by “K”) is 5. “B” stands for batch size. The number of 
drafts and the draft length in the speculative beam search is different for every batch size. The average time and the standard deviation 
are estimated based on five runs

Decoding (K=5) Time (B=1), min Time (B=2), min Time (B=3), min Time (B=4), min

Beam search 297.9 ± 20.2 166.5 ± 32.0 151.8 ± 19.4 87.7 ± 13.8

SBS 140.4 ± 7.2 109.1 ± 3.6 93.3 ± 1.3 82.1 ± 0.6
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place in the Top-5 case but not in Top-1 or Top-3. The 
number of invalid predicted SMILES also differs insignif-
icantly for the fifth prediction, not the first or the third.

Single‑step retrosynthesis
We carried out single-step retrosynthesis experiments 
on USPTO 50K, in which the training dataset was aug-
mented 20 times. The augmentation procedure is to con-
struct alternative root-aligned [12] SMILES for every 
dataset entry. This augmentation minimizes the edit 
distance between reactants and products, which simpli-
fies training, pushes the model’s accuracy higher, and 
increases the acceptance rate in our speculative decoding 
method. We did not augment the test set; it comprises 
5007 reactions.

Beam search at different beam widths
Greedy decoding is less relevant to single-step retrosyn-
thesis than to product prediction. Therefore, we describe 
only the acceleration of beam search with speculative 
decoding.

The wall time our retrosynthesis model takes to pro-
cess the USPTO 50K test set with beam search and batch 
size 1 is around 67 min, 70 min, 71 min, and 72 min when 
generating 5, 10, 15, and 20 predictions for every query 
SMILES, respectively (Table  4), although we notice the 
spread of the wall time to be above 10 min in all cases. 
The average wall time increases as expected with the 
number of maintained hypotheses as the effective batch 
size becomes larger. When we replace the standard beam 
search with our SBS at the same batch size and the num-
ber of generated sequences, the generation finishes in 
around 29, 39, 46, and 47 min, accelerating the inference 

by around 2.3, 1.8, 1.56, and 1.53 times, respectively. 
Like in the case of greedy speculative decoding, we run 
a greed search over the number of drafts and the number 
of tokens in drafts on 500 reactions from the test set to 
find the optimal combinations of parameters that give the 
best acceleration. SBS with B=1 and K=5 uses 15 drafts 
of length 11, SBS with B=1 and K=10 uses 10 drafts of 
length 10, with B=1 and K=15 it also uses 10 drafts of 
length 10, and with B=1 and K=20 it uses 5 drafts of 
length 14 (Fig.  5C). To summarize, our SBS works con-
sistently faster than beam search at batch size fixed to 
one, although the effect becomes less pronounced as the 
number of outputs per sequence grows.

Beam search at different batch sizes
We also check the behaviour of beam search and SBS at 
varying batch size and a fixed number of hypotheses per 
sequence. We keep the latter to be equal to 10, as it is a 
realistic setting for synthesis planning which also does 
not inflate the effective batch size too much. As Table 5 
shows, the standard beam search finishes in 70, 42, 27, 
and 19  min on average with batch size 1, 2, 4, and 8, 
respectively. SBS finishes faster: in 39, 30, 28, and 20 min, 
respectively. The speed-up is 1.78 with batch size 1 and 
1.4 with batch size 2, and with batch sizes 4 and 8 SBS 
becomes slightly slower than beam search. The number 
of drafts and draft length is again optimized beforehand 
with the help of a grid search. To further combat the 
latency increase overwhelming the throuthput benefits, 
we tried changing the drafting strategy. In the variant of 
SBS, which we here call “SBS with smart drafts”, we first 
select only the drafts that start with the same token as the 
last token generated by the model so far, and then strip 

Table 4 Wall time of the model’s inference on the USPTO 50k test set (5K reactions) in single-step retrosynthesis with beam search 
and speculative beam search (SBS). Batch size is 1. “B” stands for batch size, and “K” stands for the number of generated sequences 
(beam size for beam search). The number of drafts and the draft length in the speculative beam search is different for every K. The 
average time and the standard deviation are estimated based on five runs

Decoding (B=1) Time (K=5), min Time (K=10), min Time (K=15), min Time (K=20), min

Beam search 66.7 ± 11.1 70.0 ± 13.2 71.3 ± 14.9 72.2 ± 15.9

SBS 28.9 ± 2.9 39.2 ± 3.4 45.5 ± 1.2 47.2 ± 1.2

Table 5 Wall time of the model’s inference on the USPTO 50k test set (5K reactions) in single-step retrosynthesis with beam search 
and speculative beam search (SBS). “B” stands for batch size, and “K” stands for the number of generated sequences (beam size for 
beam search). Here K is equal to 10. The number of drafts and the draft length in the speculative beam search is different for every B. 
The average time and the standard deviation are estimated based on five runs

Decoding (K=10) Time (B=1), min Time (B=2), min Time (B=4), min Time (B=8), min

Beam search 70.0 ± 13.2 42.1 ± 6.7 26.9 ± 3.5 18.7 ± 1.2

SBS 39.2 ± 3.4 30.1 ± 0.8 28.1 ± 0.3 20.1 ± 0.2

SBS (smart drafts) 22.7 ± 1.3 16.6 ± 0.4 14.8 ± 0.1 13.4 ± 0.1
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Fig. 5 Results of the grid search over the draft length and the number of drafts: the model needs different time to give predictions for 500 queries 
from the full test dataset with different combinations of hyperparameters in reaction prediction and single-step retrosynthesis. We ran the grid 
search once without estimating the spread of processing time
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the first draft token (Fig. 3). This strategy allows to reduce 
the number of drafts tried at the same time and reduce 
the effective batch size while maintaining high accept-
ance rate. The smart drafting allows SBS to consistently 
outperform the speed of beam search on batch sizes 
from 1 to 8 (Table 5), improving it by 3.1, 2.5, 1.8, and 1.4 
times, respectively.

The accuracy when using SBS is the same as with beam 
search in top-1 and top-5; in top-10, it differs only in the 
decimals of a percent point (Table  6B). The proportion 
of invalid predictions also changes insignificantly. Thus, 
our SBS accelerates the MT’s generation of multiple reac-
tant sets several times without having to compromise on 
accuracy. Such a speed-up could make the autoregressive 
transformer a more attractive basis for single-step mod-
els in multi-step synthesis planning.

Limitations
The benefits of speculative decoding in accelerating 
greedy decoding and beam search decoding of SMILES 
with our drafting methods become less manifested with 
the increase of the batch size or the number of generated 
outputs per sequence. Since our methods rely on apply-
ing multiple drafts in parallel to every sequence being 
generated in the batch at every step, the effective batch 
size of the model’s input inflates from BK to BKN, where 
B is the batch size, K is the number of generated outputs 
per sequence, and N is the number of drafts. This infla-
tion leads to the increase in latency of the model’s for-
ward pass, which may cancel the benefits of reducing 
the number of model calls when BKN is large enough. 

Nonetheless, we are confident that the proposed specula-
tive decoding methods are promising for building trans-
former-based CASP systems and reaction prediction 
assistants. The acceleration will likely extend into larger 
B and K with better drafting strategies that use fewer 
drafts (ideally one) with a high acceptance rate, and with 
other inference acceleration techniques used in conjunc-
tion with speculative decoding, such as kv-caching or 
quantization.

Conclusion
We combine speculative decoding and chemical insights 
to accelerate inference in the Molecular Transformer, a 
SMILES-to-SMILES translation model. Our methods 
make processing the test set up to three times faster in 
both single-step retrosynthesis on USPTO 50K and reac-
tion product prediction on USPTO MIT compared to 
the standard decoding procedures (greedy decoding and 
beam search). We propose a novel Speculative Beam 
Search method to accelerate the generation of multiple 
output SMILES per query. Our method aims at making 
state-of-the-art template-free SMILES-generation-based 
models such as the Molecular Transformer more suitable 
for industrial applications such as computer-aided syn-
thesis planning systems.
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Table 6 The top-N accuracy of our model and the proportion of invalid SMILES in the N-th prediction with different decoding 
strategies in product prediction on USPTO MIT (A) and in single-step retrosynthesis on USPTO 50K (B). The difference in accuracy 
between standard and speculative beam search is negligible

(A) Product prediction Top‑1, % Top‑3, % Top‑5, %

Accuracy Beam search 88.425 93.690 94.733

SBS 88.425 93.690 94.720

Pred. 1, % Pred. 3, % Pred. 5, %

Invalid SMILES Beam search 0.232 8.270 13.182

SBS 0.232 8.275 13.285

 (B) Single‑step retrosynthesis Top‑1, % Top‑5, % Top‑10, %

Accuracy Beam search 52.077 82.069 88.918

SBS 52.077 82.069 89.038

SBS (smart drafts) 52.077 82.069 88.978

Pred. 1, % Pred. 5, % Pred. 10, %

Invalid SMILES Beam search 0.799 3.534 8.107

SBS 0.799 3.534 8.007

SBS (smart drafts) 0.799 3.534 8.187
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