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Abstract 

Molecular optimization is a crucial step in drug development, involving structural modifications to improve 
the desired properties of drug candidates. Although many deep-learning-based molecular optimization algorithms 
have been proposed and may perform well on benchmarks, they usually do not pay sufficient attention to the syn-
thesizability of molecules, resulting in optimized compounds difficult to be synthesized. To address this issue, we first 
developed a general pipeline capable of constructing functional reaction template library specific to any property 
where a predictive model can be built. Based on these functional templates, we introduced Syn-MolOpt, a synthe-
sis planning-oriented molecular optimization method. During optimization, functional reaction templates steer 
the process towards specific properties by effectively transforming relevant structural fragments. In four diverse tasks, 
including two toxicity-related (GSK3β-Mutagenicity and GSK3β-hERG) and two metabolism-related (GSK3β-CYP3A4 
and GSK3β-CYP2C19) multi-property molecular optimizations, Syn-MolOpt outperformed three benchmark models 
(Modof, HierG2G, and SynNet), highlighting its efficacy and adaptability. Additionally, visualization of the synthetic 
routes for molecules optimized by Syn-MolOpt confirms the effectiveness of functional reaction templates in molecu-
lar optimization. Notably, Syn-MolOpt’s robust performance in scenarios with limited scoring accuracy demonstrates 
its potential for real-world molecular optimization applications. By considering both optimization and synthesizability, 
Syn-MolOpt promises to be a valuable tool in molecular optimization.

Scientific contribution Syn-MolOpt takes into account both molecular optimization and synthesis, allowing 
for the design of property-specific functional reaction template libraries for the properties to be optimized, and pro-
viding reference synthesis routes for the optimized compounds while optimizing the targeted properties. Syn-
MolOpt’s universal workflow makes it suitable for various types of molecular optimization tasks.
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Introduction
Drug development is a lengthy and complex process, 
primarily focused on the efficient identification of novel 
molecules with desirable properties [1–3]. Traditionally, 
this task heavily relied on human expertise in design-
ing, synthesizing, and evaluating new molecular entities 
[4]. Although this approach has yielded many scien-
tific breakthroughs, the high costs and time-consuming 
nature of traditional methods constrain the exploration 
of the chemical space. However, the recent advent of deep 
learning (DL) technology has propelled the use of genera-
tive models in molecular design, significantly enhancing 
the efficiency of searching the chemical space for optimal 
compound structures [5, 6]. Despite notable advance-
ments, examples of these models successfully discovering 
molecules that satisfy a range of predefined properties 
remain scarce [7, 8]. Hence, structural modifications of 
candidate molecules are often essential to further refine 
their desired properties, emphasizing the crucial role of 
molecular optimization in drug development.

In recent years, many DL-based molecular optimiza-
tion algorithms have been proposed, often delivering 
impressive results on in silico benchmarks. However, 
most of these methods face a severe drawback: insuf-
ficient consideration of molecular synthesizability [9, 
10], which poses a formidable challenge for physically 
testing these novel designs. Especially during lead opti-
mization, researchers usually rely on algorithmic predic-
tions to modify the structures of candidate molecules. 
However, even slight structural changes can complicate 
synthesis, thereby stalling drug development. There-
fore, it is important to prioritize molecular synthesiz-
ability in optimization algorithm design, enhancing drug 
development efficiency and ensuring the practicality of 
these algorithms. To tackle this issue, some approaches 
have incorporated synthetic accessibility (SA) scores as 
a synthesizability metric into molecular optimization 
algorithms [11, 12]. While this strategy facilitates rapid 
screening and assessment of compounds, its reliance on 
predefined chemical and heuristic rules [13] limits pre-
diction accuracy and fails to provide practical synthesis 
pathways. The challenge of devising feasible synthesis 
routes for new molecules is a major obstacle in validat-
ing molecular optimization algorithms [14]. Fortunately, 
computer-assisted synthesis planning (CASP) [15–25] 
offers a solution by inputting the target molecule’s struc-
ture and outputting feasible reaction pathways. However, 
due to the exhaustive search within vast chemical spaces, 
CASP algorithms usually require seconds to minutes to 
plan the synthesis routes for a target molecule. This ren-
ders post-filtering strategies, which separate optimiza-
tion from synthesis planning, less ideal for molecular 
optimization workflows [9]. Consequently, an integrated 

molecular optimization method incorporating synthesis 
planning has emerged as a promising alternative, offering 
a streamlined pathway from calculation to synthesis.

Recently, numerous synthesis planning-driven molecu-
lar design strategies have emerged, categorized broadly 
into template-free and template-based approaches. 
Template-free methods [26–28] directly model chemical 
reactions using data-driven algorithms to predict reac-
tion outcomes, offering enhanced flexibility and a wider 
exploration space. However, compared to template-based 
methods, they may experience reduced prediction accu-
racy, particularly when faced with out-of-domain data 
[10]. Template-based methods [14, 29–32] use reaction 
templates from scientific literature to quickly identify 
potential reaction pathways, providing more chemically 
feasible routes. However, they face challenges due to lim-
ited template coverage. For instance, SynNet, a molecular 
design algorithm developed by Gao et al. [14], utilizes 91 
publicly available reaction templates, these templates pri-
marily focused on molecular skeleton construction and 
peripheral modifications. However, there is a potential 
concern that these templates may not include functional 
reaction templates specifically tailored for optimizing 
specific properties. In drug design, medicinal chem-
ists prefer to analyze molecular properties and reactiv-
ity through chemically significant fragments, rather than 
isolated atoms or bonds. Optimizing lead compounds 
often involves strategic substitution of bioisosteres and 
functional groups. This fragment-oriented approach 
aligns with chemical logic and provides clear guidance 
for molecular optimization. Therefore, crafting func-
tional reaction templates that can precisely transform 
or modify specific fragments stands out as a promising 
avenue for precise optimization of molecular properties. 
Moreover, on multi-property molecular optimization, 
amalgamating various optimization goals into a compos-
ite objective function is common. This involves determin-
ing the relative importance of each goal, yet the ability 
to explore trade-offs among objectives is limited [33]. 
In synthesis planning-driven molecular optimization, 
the strategic utilization of functional reaction templates 
to transform pertinent fragments integrates structural 
optimization into the construction of synthesis tree. This 
approach extends beyond sole reliance on the guidance 
and constraints of the target composite function, provid-
ing a practical solution to address this limitation.

In this study, we back up our claim by introducing 
Syn-MolOpt, a synthesis planning-driven molecular 
optimization framework based on data-derived func-
tional reaction templates. Initially, utilizing the sub-
structure mask explanation method (SME) [34], we 
introduce a general pipeline that can design property-
specific functional reaction templates for any property 
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for which a predictive model can be built. During mol-
ecule optimization, these templates are used to guide 
optimization towards specified properties by effectively 
transforming relevant structural fragments. Currently, 
most molecular optimization algorithms predomi-
nantly focus on enhancing bioactivity and certain 
well-modeled properties of candidate molecules, such 
as logP and QED [35–37]. However, the toxicity [38, 
39] and metabolic properties [40, 41] of molecules are 
critical in assessing their safety and clinical potential, 
and therefore require careful consideration. Therefore, 
this study identifies two toxicity and two metabolic 
characteristics as properties requiring optimization. 
The results demonstrate that our approach exhibits 
promising capabilities on multi-property optimization 
compared to existing methods. Moreover, our model 
demonstrates remarkable robustness in scenarios 
where the scoring feedback for properties undergoing 
optimization is not sufficiently accurate, highlighting 
its potential in practical molecular optimization appli-
cations. Syn-MolOpt takes into account both molecular 
optimization and synthesis, with its universal workflow 
suitable for optimizing various molecular properties, 
promising to emerge as an effective tool in molecular 
optimization.

Results and discussion
The overall workflow of Syn‑MolOpt
In this study, we introduce Syn-MolOpt, a synthesis 
planning-driven molecular optimization method based 
on the data-derived property-specific functional reaction 
template library (Sect.  "The Construction of Domain-
Relevant Functional Substructure Datasets and Func-
tional Reaction Template Libraries") to precisely modify 
or transform specific structural fragments. Syn-MolOpt 
can provide reference synthetic pathways for proposed 
molecules with optimized properties. Moreover, the 
Syn-MolOpt framework can be employed to build opti-
mization models for any property that is amenable to 
quantitative structure–activity relationship (QSAR) 
modeling, making it suitable for molecular optimization 
tasks across various domains. A detailed explanation of 
the Syn-MolOpt construction process is outlined below.

Design of functional reaction template library Figure 1 
illustrates the process of creating a library of functional 
reaction templates specific to certain properties using 
Syn-MolOpt. With sufficient training data for a property 
predictor, we can design customized functional reac-
tion templates for that particular property. This process 
initially relies on a molecular dataset, taking mutagen-
icity as an example, to construct a consensus model 

Fig. 1 Overview of the functional reaction template library design process. A Functional substructure analysis: using SME to analyze the impacts 
of substructures on specific property; B Reaction template extraction: extracting reaction templates from open-source reaction datasets using 
RDChiral; and C Reaction template screening and management: screening reaction templates by substructure matching
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for property prediction through the Relational Graph 
Convolutional Network (RGCN) [42] algorithm. It is 
important to note that the molecular dataset used for 
building a consensus model needs to have both a suffi-
cient quantity and high quality of data to ensure effec-
tive QSAR modeling. Utilizing our previously introduced 
perturbation-based SME explanation method [34], the 
molecules in the dataset are dissected into various sub-
structures, including BRICS substructures [43], Murcko 
scaffolds [44], and functional groups. Each substructure 
is then assigned a contribution value, denoting its influ-
ence on the specified property, as depicted in Fig.  1A. 
A description of SME method can be found in the Sup-
plementary Information. This process ultimately results 
in a mutagenicity functional substructure dataset with 
attributed values, where a positive attribution signifies 
a promoting role in mutagenicity, whereas a negative 
attribution indicates a detoxifying effect. As illustrated 
in Fig.  1B, general SMARTS retrosynthetic reaction 
templates are extracted from an open-source reaction 
dataset using the RDKit wrapper RDChiral [45], and sub-
sequently transformed into forward reaction templates. 
This study used the USPTO reaction dataset, which has 
undergone preliminary atom mapping with rxnmapper 
[46]. Finally, as shown in Fig. 1C, the reaction templates 
extracted in the previous step are filtered and managed 
in three steps. Firstly, positively attributed substructures 

(toxic groups) are employed to screen the reactant-side of 
the above reaction templates via substructure matching, 
selecting those with toxic groups. Secondly, the filtered 
templates are further screened on the product-side using 
the same positively attributed substructures, but exclud-
ing templates with toxic groups on the product-side. This 
yields templates that successfully transform mutagenic 
substructures on the reactant-side. Thirdly, negatively 
attributed substructures (detoxifying groups) are used to 
filter the product-side of the reaction templates obtained 
in the second stage, selecting those with detoxifying 
groups. The resulting templates contain toxic groups on 
the reactant-side and detoxifying groups on the product-
side, enabling the conversion of toxic groups. It is worth 
noting that functional templates often emerge from the 
first two steps, and the need of the third step depends on 
the availability of suitable templates. Since there might be 
overlap or encompassing of templates, manual interven-
tion is required to ensure the independence and practi-
cality of each template. Detailed information about the 
manual intervention can be found in the Supplementary 
Information.

Implementation of Syn-MolOpt As illustrated in Fig. 2, 
the implementation of Syn-MolOpt consists of two 
stages: model training and molecular optimization. Syn-
MolOpt models the synthesis pathway of a compound 
as a bottom-up synthesis tree (Fig. 2A), which each step 

Fig. 2 The overall workflow of Syn-MolOpt. A Model training stage; and B molecular optimization stage. During the model training stage, four 
neural networks were trained to predict the reaction action, the first reactant, the reaction template, and the second reactant. In the molecular 
optimization stage, these neural networks were used to predict the aforementioned four reaction elements respectively
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modeled as a Markov decision process. This is achieved 
through training four neural networks (Fig.  2A) for the 
reaction action ( Ract ), the first reactant ( Rrct−1 ), the reac-
tion template ( Rrxn ), and the second reactant ( Rrct−2

). The performance of these four neural networks are 
detailed in Table  S5 in the Supplementary Informa-
tion. Subsequently, in the molecular optimization phase 
(Fig. 2B), these networks are used to predict Ract , Rrct−1 , 
Rrxn , and Rrct−2 . The predicted reactants, Rrct−1 and 
Rrct−2 (or Rrct−1 in the case of a unimolecular reaction 
template), undergo a reaction according to the predicted 
Rrxn . If the resulting mid-product matches a functional 
reaction template, functional processing is carried out. 
The synthesis tree is updated after each reaction step. 
Beyond utilizing functional reaction templates for struc-
tural modifications, a genetic algorithm (GA) is also used 
to numerically optimize the embeddings of the root mol-
ecules of the synthesis tree. The synthesis tree generator 
then decodes these optimized vectors to produce synthe-
sizable molecules. This iterative process continues until 
molecules with the desired properties are generated. A 
detailed description of the model’s framework is pro-
vided in Sect. "Model architecture".

The construction of domain‑relevant functional 
substructure datasets and functional reaction template 
libraries
To create customized functional reaction template librar-
ies for specific properties, we initially utilized the SME 
method to build domain-specific functional substructure 
datasets focused on optimizing desired properties. In this 
study, the properties targeted for optimization include 
two types of toxicity and two types of metabolic proper-
ties: mutagenicity (Mutag), hERG-related cardiotoxicity 
(hERG), CYP3A4, and CYP2C19. We constructed four 
consensus models, each exhibiting outstanding perfor-
mance on the test set, with the ROC-AUC scores of 0.901, 
0.862, 0.913, and 0.909 for Mutag, hERG, CYP3A4, and 
CYP2C19, respectively. Utilizing these consensus models, 
SME calculates the contributions of substructures to the 
predicted outcomes, enabling the construction of data-
sets comprising substructures that significantly impact 
the molecular properties under optimization. Functional 
groups, predefined as molecular substructures, are evalu-
ated for their property contributions based on their attri-
bution values across the entire dataset. We analyzed the 
attributions of functional groups that occurred at least 
10 times in the Mutag, hERG, CYP3A4, and CYP2C19 
datasets. Table S1 shows the detailed information of the 
representative functional groups with positive and nega-
tive attributions in each dataset. In the Mutag and hERG 
datasets, a positive attribution means that the functional 
group enhances toxicity, whereas a negative attribution 

denotes its detoxifying effect. In the CYP3A4 and 
CYP2C19 datasets, a positive value suggests the func-
tional group is favorable to metabolic inhibition, while a 
negative attribution indicates that it helps reduce meta-
bolic inhibition. Our analysis of the functional substruc-
ture datasets for Mutag and hERG revealed considerable 
overlap in both positively and negatively attributed sub-
structures. A similar situation was observed in the func-
tional substructure datasets for CYP3A4 and CYP2C19. 
Therefore, we integrated the functional substructure 
datasets for Mutag and hERG, and, following the pro-
cess of building the functional reaction template library, 
extracted a set of universal reaction templates that can 
effectively mitigate both toxicity types. Similarly, we 
extracted general reaction templates to reduce the inhibi-
tory effects of compounds on CYP3A4 and CYP2C19.

The application of Syn‑MolOpt on toxicity optimization
Given that many candidate molecules exhibit promis-
ing binding affinities but fall short in drug development 
due to excessive toxicity [47], we conducted multi-prop-
erty optimization experiments to sustain or enhance the 
molecular binding affinity to glycogen synthase kinase 
3 beta (GSK3β) while reducing Mutag and hERG risks. 
Specifically, for molecules that bind well to GSK3β but 
possess toxicity, the goal is to optimize them into non-
toxic molecules that exhibit even greater binding capa-
bility to GSK3β (evidenced by a high GSK3β score and 
low Mutag/hERG scores). To validate the effective-
ness of Syn-MolOpt on multi-property optimization, 
we conducted a comparative analysis with three estab-
lished models: HierG2G [48], Modof [35], and SynNet 
[14]. Notably, Modof and HierG2G have been reported 
to perform well on multi-property optimization tasks 
(DRD2 and QED), while SynNet is a molecular design 
strategy driven by synthesis planning. The Mutag and 
hERG scores predicted by the corresponding consensus 
models represent the likelihood of the toxicity of a com-
pound. Meanwhile, the GSK3β score predicted through 
the Therapeutic Data Common (TDC) interface [49] 
indicates the probability that a compound is an inhibitor 
of GSK3β. Table 1 provides the details of the molecules 
to be optimized on four multi-property optimization 

Table 1 Details of the molecules to be optimized on four multi-
property optimization experiments

a The score is the probability value

Experiment Initial mean  scorea

GSK3β-Mutag GSK3β: 0.787 ± 0.109 Mutag: 0.887 ± 0.055

GSK3β-hERG GSK3β: 0.782 ± 0.105 hERG: 0.807 ± 0.094

GSK3β-CYP3A4 GSK3β: 0.772 ± 0.090 CYP3A4: 0.949 ± 0.021

GSK3β-CYP2C19 GSK3β: 0.767 ± 0.086 CYP2C19: 0.846 ± 0.192
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experiments, where each experiment involves refining 
128 molecules. We examined the performance of each 
method by assessing the properties of the top-N (N = 1, 
10, 100, 128) molecules generated by each approach. 
Additionally, we analyzed the synthesizability of the opti-
mized molecules. For molecules optimized by Modof 
and HierG2G, we employed the multi-step retrosynthe-
sis tool AiZynthFinder, developed by Genheden et  al. 
[50], to plan their synthesis routes. We set specific search 
parameters for the retrosynthesis, including a maximum 
depth of 6, a search time of 120 s, and an iteration of 300 
rounds. Molecules with successfully planned synthesis 
routes by AiZynthFinder were deemed synthesizable, 
allowing us to determine their synthesizable ratio. As 
Syn-MolOpt and SynNet can directly provide synthesis 
routes for their optimized molecules, their synthesizable 
ratio was inherently rated as 100%. However, to ensure 
a fair comparison, we also assessed the synthesizability 
of the molecules optimized by these two methods using 
AiZynthFinder. Since AiZynthFinder relies on prede-
fined rules and known reactions, it may not always plan 
synthesis routes for compounds for which Syn-MolOpt 
(or SynNet) has already identified a route. In addition, 
to further assess the performance of Syn-MolOpt, we 
conducted similar experiments on c-Jun N-terminal 
Kinases-3 (JNK3) as we did on GSK3β, and the results 
can be found in the Supplementary Information.

Experimental results on multi‑property optimization 
of GSK3β‑Mutag
As shown in Table 1, the molecules designated for opti-
mization in the GSK3β-Mutag multi-property optimi-
zation experiment already exhibit a favorable average 
GSK3β score (0.787 ± 0.109). However, they also suf-
fer from a higher average Mutag score (0.887 ± 0.055), 
indicating a high mutagenic potential. Thus, the goal 

of optimization is to mitigate the mutagenic poten-
tial (reduce Mutag scores) while enhancing the GSK3β 
scores simultaneously. Table  2 outlines the GSK3β and 
Mutag scores of molecules optimized by Syn-MolOpt, 
Modof, HierG2G, and SynNet. The data show that Syn-
MolOpt outperforms other methods in almost all metrics 
except for the top-10 Mutag score. Moreover, compared 
to the initial molecules, the top-128 molecules opti-
mized by Syn-MolOpt significantly reduced the average 
Mutag score (from 0.887 ± 0.055 to 0.128 ± 0.051) and 
improved the average GSK3β score (from 0.787 ± 0.109 
to 0.867 ± 0.024). However, Modof, HierG2G, and Syn-
Net face challenges in effectively reducing the muta-
genicity of compounds while maintaining their GSK3β 
binding affinity. This is evident as the average GSK3β 
scores of the top-128 molecules optimized by these 
three methods all showed varying degrees of decline 
compared to the average GSK3β score of the initial mol-
ecules. Furthermore, based on the synthesis route plan-
ning by AiZynthFinder, we calculated the synthesizable 
ratio of the top-128 molecules optimized by Modof and 
HierG2G, yielding scores of 0.500 and 0.651, respectively. 
This suggests that a considerable portion of these mole-
cules are challenging to synthesize, posing difficulties for 
experimental application. In contrast, Syn-MolOpt and 
SynNet provide synthesizable route references for the 
optimized compounds, thereby enhancing their practical 
usability. Additionally, we visualized the structures of the 
top-1 molecule optimized by each of the four methods. 
As depicted in Fig. 3, the top-1 molecules optimized by 
Modof and SynNet respectively contain substructures 
with detoxifying effects: –NC(=O)N– and –NS(=O)
(=O)–. The top-1 molecule optimized by Syn-MolOpt, 
featuring two detoxifying groups (sulfonamide and car-
boxyl) achieves a GSK3β score of 0.900 and a Mutag score 
of 0.020. Analysis of its synthetic route in Fig. 4 revealed 

Table 2 Overall comparison on multi-property optimization of GSK3β-Mutag

Bold values indicate the highest performance metrics
a Top-n is the average score for the top n output molecules
b Syn-ratio is synthesizable ratio
c The value in parentheses represents the synthesizable ratio evaluated by AiZynthFinder

Methods Property Top‑1a Top‑10 Top‑100 Top‑128 Syn‑ratiob ↑

Modof GSK3β ↑ 0.870 0.852 ± 0.047 0.762 ± 0.134 0.736 ± 0.138 0.500

Mutag ↓ 0.057 0.080 ± 0.069 0.445 ± 0.376 0.527 ± 0.387

HierG2G GSK3β ↑ 0.830 0.872 ± 0.105 0.498 ± 0.277 0.474 ± 0.286 0.651

Mutag ↓ 0.092 0.396 ± 0.268 0.417 ± 0.321 0.412 ± 0.319

SynNet GSK3β ↑ 0.860 0.838 ± 0.022 0.787 ± 0.036 0.780 ± 0.038 1.000 (0.695)c

Mutag ↓ 0.080 0.093 ± 0.045 0.134 ± 0.068 0.142 ± 0.072

Syn-MolOpt GSK3β ↑ 0.900 0.899 ± 0.017 0.871 ± 0.021 0.867 ± 0.024 1.000 (0.703)
Mutag ↓ 0.020 0.094 ± 0.009 0.121 ± 0.046 0.128 ± 0.051
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Fig. 3 The top-1 molecule structures optimized by Modof, HierG2G, SynNet, and Syn-MolOpt on the GSK3β-Mutag multi-property optimization 
experiment

Fig. 4 The synthetic route of the top-1 molecule optimized by Syn-MolOpt on the GSK3β-Mutag multi-property optimization experiment. The 
dotted box displays the functional reaction template used
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that the sulfonamide derives from commercially available 
building blocks, while the carboxyl group is introduced 
through ester bond hydrolysis via a functional reaction 
template. And with the introduction of carboxyl groups, 
the Mutag score of the compound gradually decreases, 
highlighting the effectiveness of functional reaction 
templates. In Figure S4, we present more examples of 
functional reaction templates that aid in molecular opti-
mization. In addition, we have visualized the synthetic 
routes of the top-10 molecules generated by Syn-MolOpt 
in the Supplementary Information and discussed the fea-
sibility of these routes.

Experimental results on multi‑property optimization 
of GSK3β‑hERG
In the GSK3β-hERG optimization task, the initial 
molecules had average GSK3β and hERG scores of 
0.782 ± 0.105 and 0.807 ± 0.094 (Table  1), respectively. 
These scores imply a significant likelihood of hERG-
related cardiac toxicity. Table  3 shows the optimization 
results for four different methods. The data reveals that 
Syn-MolOpt, barring slightly inferior hERG scores for 
the top-1 molecule and average GSK3β scores for the 
top-10 molecules compared to Modof and HierG2G, 
performed the best on all other performance metrics. 
Notably, among the top-128 molecules, only Syn-MolOpt 
succeeded in effectively reducing hERG toxicity while 
enhancing GSK3β binding affinity. Furthermore, the 
synthesizability rates for the compounds optimized by 
Modof and HierG2G were 0.422 and 0.682, respectively.

The application of Syn‑MolOpt on metabolic property 
optimization
The experimental results clearly demonstrated that 
the generic functional reaction template library con-
structed for mitigating Mutag and hERG toxicity enables 

Syn-MolOpt to effectively reduce the Mutag or hERG 
toxicity of molecules. Cytochrome P450 inhibitors inter-
fere drug metabolism, potentially leading to unsafe drug 
accumulation in humans. Consequently, optimizing 
the metabolic properties of candidate molecules is ben-
eficial for enhancing their safety and efficacy. To test the 
adaptability of our property-specific functional reaction 
template library, we applied the Syn-MolOpt workflow 
to a multi-property optimization focusing on binding 
affinities and metabolic properties. Specifically, given 
a molecule that binds well to GSK3β but exhibits CYP 
inhibitory properties, the objective is to optimize it into 
another molecule that has lower metabolic inhibitory 
properties and enhanced GSK3β binding (with a higher 
GSK3β score and a lower CYP3A4/CYP2C19 score). 
CYP3A4 and CYP2C19 scores are predicted by the cor-
responding consensus models, representing the likeli-
hood of metabolic inhibition. We also benchmarked 
Syn-MolOpt’s performance against Modof, HierG2G, 
and SynNet. Initially, in the GSK3β-CYP3A4 multi-prop-
erty optimization task, the test molecules had GSK3β 
and CYP3A4 scores of 0.772 ± 0.090 and 0.949 ± 0.021, 
respectively, as shown in Table 1. The molecular optimi-
zation results are summarized in Table 4, revealing that 
the Syn-MolOpt’s average GSK3β score for the top-10 
molecules (0.892 ± 0.019) was slightly lower than that of 
HierG2G (0.899 ± 0.100). However, the molecules opti-
mized by Syn-MolOpt demonstrated the best perfor-
mance on the other metrics, with the top-1 molecule 
achieving a GSK3β score of 0.920 and a CYP3A4 score 
of 0.013. Moreover, in the GSK3β-CYP2C19 optimiza-
tion task, Syn-MolOpt consistently outperformed the 
other three methods, except for the CYP2C19 score of 
the top-ranked molecule. An analysis of the top-128 
molecules in the GSK3β-CYP3A4 and GSK3β-CYP2C19 
tasks revealed that only Syn-MolOpt achieved the goal of 

Table 3 Overall comparison on multi-property optimization of GSK3β-hERG

Bold values indicate the highest performance metrics
a Top-n is the average score for the top n output molecules
b Syn-ratio is synthesizable ratio
c The value in parentheses represents the synthesizable ratio evaluated by AiZynthFinder

Methods Property Top‑1a Top‑10 Top‑100 Top‑128 Syn‑ratiob ↑

Modof GSK3β ↑ 0.870 0.840 ± 0.065 0.751 ± 0.125 0.720 ± 0.138 0.422

hERG ↓ 0.084 0.191 ± 0.125 0.432 ± 0.326 0.499 ± 0.339

HierG2G GSK3β ↑ 0.920 0.882 ± 0.094 0.436 ± 0.266 0.403 ± 0.275 0.682

hERG ↓ 0.282 0.385 ± 0.159 0.312 ± 0.242 0.310 ± 0.242

SynNet GSK3β ↑ 0.900 0.854 ± 0.032 0.774 ± 0.050 0.765 ± 0.053 1.000 (0.648)c

hERG ↓ 0.111 0.147 ± 0.073 0.154 ± 0.087 0.161 ± 0.097

Syn-MolOpt GSK3β ↑ 0.940 0.866 ± 0.039 0.804 ± 0.042 0.793 ± 0.044 1.000 (0.883)
hERG ↓ 0.105 0.107 ± 0.064 0.132 ± 0.073 0.131 ± 0.071
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simultaneously optimizing both target properties com-
pared to the initial molecules. Additionally, a synthesiz-
ability analysis indicated that many molecules optimized 
by Modof and HierG2G were challenging to synthesize in 
both tasks.

The exploration of Syn‑MolOpt’s potential in real‑world 
molecular optimization scenarios
As mentioned above, similar to the tasks of optimiz-
ing for toxicity, the Syn-MolOpt workflow has also 
demonstrated remarkable performance in optimizing 
compounds’ binding affinity and metabolic properties, 
confirming the versatility of this molecular optimization 
approach. In addition to its practicality, Syn-MolOpt 
integrates molecular optimization with synthesis plan-
ning, offering synthesis pathways for the optimized 
output molecules. Similarly, SynNet can also generate 
synthesis routes for the output molecules. In the optimi-
zation process, SynNet navigates the chemical space and 
selects compounds via a fitness function (a QSAR model 
for a target property) in a GA. The accuracy of this fitness 
function significantly influences the outcomes of molec-
ular optimization. In contrast to SynNet, Syn-MolOpt 
strategically uses functional reaction templates to guide 
the structural optimization of compounds during the 
synthesis tree generation, and subsequently uses the 

fitness function to select compounds with desired prop-
erties, rather than relying solely on the fitness function. 
However, in real-world scenarios, the data available for 
the properties requiring optimization is often insufficient 
to train a highly accurate QSAR model.

To assess the practical potential of Syn-MolOpt, we 
simulated a real-world molecular optimization sce-
nario and compared the performances of Syn-MolOpt 
and SynNet. We respectively extracted 20% of the data 
from the training sets of the Mutag and hERG toxicity 
datasets based on scaffold classification to retraining 
two consensus models  (Mutag20%-trn and  hERG20%-trn). 
As shown in Table  5, compared to the consensus 
models trained on the entire datasets  (Mutag100%-trn 
and  hERG100%-trn), the performance of the retrained 
models declined with reduced training data, achiev-
ing ROC-AUCs of 0.837 and 0.773, respectively. Using 

Table 4 Overall comparison on multi-property optimization of GSK3β-CYP3A4 and GSK3β-CYP2C19

Bold values indicate the highest performance metrics
a Top-n is the average score for the top n output molecules
b Syn-ratio is synthesizable ratio
c The value in parentheses represents the synthesizable ratio evaluated by AiZynthFinder

Task GSK3β‑CYP3A4

Methods Property Top‑1a Top‑10 Top‑100 Top‑128 Syn‑ratiob ↑

Modof GSK3β ↑ 0.880 0.771 ± 0.094 0.770 ± 0.112 0.740 ± 0.117 0.531

CYP3A4 ↓ 0.041 0.162 ± 0.121 0.735 ± 0.335 0.778 ± 0.310

HierG2G GSK3β ↑ 0.880 0.899 ± 0.100 0.472 ± 0.296 0.447 ± 0.303 0.682

CYP3A4 ↓ 0.147 0.428 ± 0.243 0.466 ± 0.340 0.468 ± 0.335

SynNet GSK3β ↑ 0.900 0.810 ± 0.043 0.734 ± 0.053 0.721 ± 0.056 1.000 (0.789)c

CYP3A4 ↓ 0.015 0.055 ± 0.086 0.078 ± 0.084 0.081 ± 0.085

Syn-MolOpt GSK3β ↑ 0.920 0.892 ± 0.019 0.842 ± 0.033 0.836 ± 0.036 1.000 (0.727)

CYP3A4 ↓ 0.013 0.033 ± 0.023 0.046 ± 0.055 0.058 ± 0.066
Task GSK3β-CYP2C19

Modof GSK3β ↑ 0.850 0.828 ± 0.033 0.705 ± 0.129 0.682 ± 0.139 0.406

CYP2C19 ↓ 0.025 0.103 ± 0.078 0.346 ± 0.359 0.423 ± 0.389

HierG2G GSK3β ↑ 0.910 0.859 ± 0.103 0.551 ± 0.295 0.539 ± 0.297 0.587

CYP2C19 ↓ 0.072 0.246 ± 0.297 0.474 ± 0.372 0.487 ± 0.373

SynNet GSK3β ↑ 0.850 0.811 ± 0.032 0.746 ± 0.059 0.730 ± 0.069 1.000 (0.820)c

CYP2C19 ↓ 0.065 0.095 ± 0.063 0.167 ± 0.124 0.167 ± 0.134

Syn-MolOpt GSK3β ↑ 0.920 0.869 ± 0.032 0.806 ± 0.038 0.797 ± 0.039 1.000 (0.766)

CYP2C19 ↓ 0.076 0.094 ± 0.035 0.108 ± 0.066 0.108 ± 0.065

Table 5 Performance comparison of the consensus models

Model ROC‑AUC 

Mutag100%-trn 0.901

hERG100%-trn 0.862

Mutag20%-trn 0.837

hERG20%-trn 0.773
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these retrained consensus models, we reconstructed 
the functional reaction template library for optimizing 
Mutag and hERG toxicity. In simulated real-world opti-
mizations of GSK3β-Mutag and GSK3β-hERG, we used 
 Mutag20%-trn and  hERG20%-trn as the fitness functions 
and implemented the reconstructed functional reac-
tion template library in Syn-MolOpt. The molecules 

designated for testing in the GSK3β-Mutag and GSK3β-
hERG optimization tasks (Table  1) were then used to 
evaluate the performance of Syn-MolOpt and SynNet 
in this specific scenario. To ensure an objective com-
parison, we assessed the Mutag and hERG scores of 
the final optimized molecules using the highly accurate 
 Mutag100%-trn and  hERG100%-trn models (Table  5). The 

Fig. 5 Performance comparison of Syn-MolOpt and SynNet in simulated real-world optimizations of A GSK3β-Mutag and B GSK3β-hERG
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optimization results for the GSK3β-Mutag and GSK3β-
hERG tasks are presented in Fig.  5A and B. These fig-
ures illustrate that in molecular optimization tasks with 
low-accuracy scoring functions, Syn-MolOpt outper-
forms SynNet, particularly in toxicity optimization. The 
top-1 and top-10 molecules generated by Syn-MolOpt 
exhibit significantly lower Mutag and hERG scores 
compared to those optimized by SynNet. Specifically, 
the top-1 and top-10 molecules from Syn-MolOpt had 
the Mutag scores of 0.054 and 0.269, respectively, while 
those from SynNet were 0.522 and 0.331. Furthermore, 
the hERG scores for the top-1 and top-10 molecules 
from Syn-MolOpt were 0.094 and 0.251, respectively, 
while those from SynNet were 0.355 and 0.504. This 
suggests that by strategically transforming fragments 
using functional reaction templates during synthe-
sis tree generation, Syn-MolOpt achieves more robust 
performance, even with inaccurate scoring feedback. 
This highlights Syn-MolOpt’s applicability in real-world 
molecular optimization scenarios.

Conclusion
In this study, to address the issue that most current 
molecular optimization algorithms inadequately con-
sider the synthesizability of their optimized molecules, 
we proposed a synthesis planning-driven molecular 
optimization scheme, Syn-MolOpt, based on functional 
reaction templates. This method allows for the design 
of property-specific functional reaction template librar-
ies for the properties to be optimized, providing refer-
ence synthetic routes for the optimized compounds 
while optimizing the targeted properties. We focus on 
the optimization of toxicity and metabolic properties, 
across two toxicity-related (GSK3β-Mutag and GSK3β-
hERG) and two metabolism-related (GSK3β-CYP3A4 
and GSK3β-CYP2C19) multi-property molecular opti-
mization tasks. Syn-MolOpt demonstrated superior 
performance compared to three benchmark models, 
Modof, HierG2G, and SynNet, confirming its effec-
tiveness and versatility. The visualization of synthetic 
routes for molecules optimized by Syn-MolOpt dem-
onstrates that functional reaction templates can help 
facilitate molecular optimization. Furthermore, simu-
lated real-world experiments show that Syn-MolOpt, 
by using functional reaction templates to effectively 
transform relevant fragments during the synthesis tree 
generation process rather than relying solely on scoring 
functions to guide the process, can achieve robust per-
formance even when the scoring feedback on proper-
ties to be optimized is not sufficiently accurate. Despite 
these advancements, there is still room for improve-
ment in Syn-MolOpt. In our current multi-property 

molecular optimization experiments, we have con-
structed functional reaction template libraries for only 
one property. For instance, in the GSK3β-Mutag opti-
mization task, we have only designed reaction tem-
plates specifically for Mutag. Designing more universal 
functional reaction template libraries for multiple prop-
erties could potentially further enhance molecular opti-
mization performance.

Methods
Dataset
The Mutag and hERG datasets were collected from our 
previous work [34], and the CYP3A4 and CYP2C19 data-
sets were collected from the study of Huang et  al. [49]. 
The details of the above datasets are shown in Table S2. 
The reaction templates used include property-specific 
functional reaction templates and 91 publicly avail-
able reaction templates from Hartenfeller et  al. [51] 
and Button et  al. [52]. The purchasable building blocks 
were sourced from Enamine Building Blocks (US stock; 
accessed on June 12, 2023) and then filtered by substruc-
ture matching using toxicity alerts (or CYP alerts) to filter 
out potential blocks that may increase toxicity (or CYP 
inhibition).

Model architecture
As shown in Fig.  2, the implementation of Syn-MolOpt 
consists of two stages: model training and molecular 
optimization. In Syn-MolOpt, the synthesis pathway of 
a compound is modeled as a tree structure, referred to 
as a synthesis tree. A valid synthesis tree, by a series of 
discrete reaction templates, connects the root node (the 
final product molecule) to purchasable building blocks 
through feasible reactions, representing all steps and 
branches of the target compound’s synthesis pathway. 
We construct the synthesis tree in a bottom-up manner, 
one reaction step at a time, modeling the construction of 
the synthesis tree as a Markov decision process. The state 
transitions of the synthesis tree must satisfy the Markov 
property: P(St+1|St , · · · , S0) = P(St+1|St) . After obtain-
ing a specific intermediate compound, subsequent reac-
tion steps of the synthesis tree can be inferred based on 
the intermediate compound. We define the intermediate 
synthesis tree at reaction step t as Tt . The implementa-
tion of each step in constructing the synthesis tree can be 
divided into four steps: First, reaction action ( Ract ) sam-
pling, with possible action types including "add", "extend”, 
"merge", and "end"; second, sampling of the first reactant 
( Rrct−1 ); then, reaction template sampling ( Rrxn ); finally, 
sampling of the second reactant ( Rrct−2 ). When Ract = 
"Add", one or two new reactant nodes will be added to 
Tt , and a new product node will be generated under the 
given reaction template. When Ract = "Expand", the most 
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recently added node is treated as the first reactant, and a 
new product node will be added to Tt if the given reaction 
template is for a unimolecular reaction; for a bimolecular 
reaction template, the second reactant is selected first, 
then the reaction is carried out according to the reac-
tion template, adding a new reactant node and a product 
node to Tt . In the Syn-MolOpt frame only unimolecu-
lar and bimolecular reactions are allowed. When Ract = 
"Merge", two root nodes act as reactants in a bimolecular 
reaction to produce a product molecule according to the 
given reaction template, adding a new product node to Tt 
and merging two synthesis subtrees. When Ract = "End", 
it indicates that the construction of the synthesis tree is 
complete. Based on the reaction templates, and the pre-
processed set of purchasable building blocks, we first 
generated valid synthesis trees according to the construc-
tion method of the synthesis tree described above, then 
characterized the generated synthesis trees, and trained 
four neural networks as described before ( Nact , Nrct−1 , 
Nrxn , and Nrct−2).

As shown in Fig. 2B, molecular optimization is a con-
ditional synthesis tree generation process, comprising 
five modules, using the concatenated embeddings of the 
target molecule to be optimized and the most recently 
added molecule in the synthesis tree as the current 
state embedding EState−T of the synthesis tree. Initially, 
EState−T serves as the input for both Nact and Nrct−1 , 
predicting the action type for the reaction step and the 
embedding of the first reactant Erct−1 , respectively. The 
embedding of the first reactant serves as a query to select 
the appropriate first reactant from the pre-processed set 
of building blocks using k-NN search. Next, the concat-
enated embedding of EState−T and Erct−1 is input into 
Nrxn , which outputs a probability distribution of available 
reaction templates, and masks inapplicable reaction tem-
plates based on the first reactant, thus selecting a suitable 
reaction template. If the chosen reaction template is for 
a bimolecular reaction, the concatenated embedding of 
EState−T , Erct−1 , and the embedding of the predicted reac-
tion template Erxn serve as the input for Nrct−2 , output-
ting the embedding of the second reactant Erct−2 , which 
is then selected through the k-NN algorithm. Finally, the 
predicted first and second reactants (or the first reactant 
in the case of a unimolecular reaction template) react 
according to the predicted reaction template, and the 
resulting intermediate is matched with functional reac-
tion templates, if a match is successful, functional pro-
cessing is carried out. The synthesis tree is updated after 
each reaction step. Apart from molecular optimization 
through functional reaction templates during the con-
struction of the synthesis tree, on the other hand, GA is 
used to perform numerical optimization on the embed-
dings of the root molecules of the synthesis tree. The GA 

operates on Morgan fingerprints with a configuration of 
4096 bits and a radius of 2. The mutation is defined as 
flipping 24 bits in the fingerprint, occurring with a prob-
ability of 0.5. The population size is initially set to 128, 
and the offspring size generated in each iteration is 512. 
The algorithm runs for a maximum of 50 generations, 
with an early stop criterion activated if the increase in 
the population’s mean value is less than 0.01 across 10 
consecutive generations, signaling convergence. The syn-
thesis tree generator is then used as a decoder to obtain 
synthesizable molecules corresponding to the optimized 
vectors, and this process is repeated until the conditions 
are satisfied.

Model construction and evaluation
In the construction of drug-likeness models for many 
real-world scenarios, a common practice is to integrate 
the prediction results of multiple models to obtain a con-
sensus model. In our study, Mutag score, hERG score, 
CYP3A4 score and CYP2C19 score were the predic-
tion results of their respective consensus models. When 
training the consensus model, each dataset is randomly 
divided into training, validation and test sets in a ratio of 
8:1:1. First, 10 RGCN models based on different random 
seeds are constructed. Subsequently, a consensus model 
was constructed by integrating these 10 RGCN sub-mod-
els. The average of the predictions from the 10 submodels 
will be used as the output of the final consensus model. 
The four consensus models are all used for classification 
tasks, evaluated by the area under the receiver operat-
ing characteristic curve (ROC-AUC). When training the 
Ract network, the Rrct−1 network, the Rrxn network, and 
the Rrct−2 network in Syn-MolOpt, Morgan molecular 
fingerprints and one-hot encoding are used to represent 
molecules and reaction templates, respectively, as inputs 
for the MLPs. The length of Morgan molecular finger-
print is 4096 and the radius is 2. Among them, the pre-
diction of Ract and Rrxn are classification tasks, Rrct−1 and 
Rrct−2 prediction are regression tasks.
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