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Abstract 

The link between in vitro hERG ion channel inhibition and subsequent in vivo QT interval prolongation, a critical risk 
factor for the development of arrythmias such as Torsade de Pointes, is so well established that in vitro hERG activity 
alone is often sufficient to end the development of an otherwise promising drug candidate. It is therefore of tre-
mendous interest to develop advanced methods for identifying hERG-active compounds in the early stages of drug 
development, as well as for proposing redesigned compounds with reduced hERG liability and preserved primary 
pharmacology. In this work, we present CardioGenAI, a machine learning-based framework for re-engineering 
both developmental and commercially available drugs for reduced hERG activity while preserving their pharmaco-
logical activity. The framework incorporates novel state-of-the-art discriminative models for predicting hERG chan-
nel activity, as well as activity against the voltage-gated  NaV1.5 and  CaV1.2 channels due to their potential implica-
tions in modulating the arrhythmogenic potential induced by hERG channel blockade. We applied the complete 
framework to pimozide, an FDA-approved antipsychotic agent that demonstrates high affinity to the hERG channel, 
and generated 100 refined candidates. Remarkably, among the candidates is fluspirilene, a compound which is of the 
same class of drugs as pimozide (diphenylmethanes) and therefore has similar pharmacological activity, yet exhibits 
over 700-fold weaker binding to hERG. Furthermore, we demonstrated the framework’s ability to optimize hERG, 
 NaV1.5 and  CaV1.2 profiles of multiple FDA-approved compounds while maintaining the physicochemical nature 
of the original drugs. We envision that this method can effectively be applied to developmental compounds exhibit-
ing hERG liabilities to provide a means of rescuing drug development programs that have stalled due to hERG-related 
safety concerns. Additionally, the discriminative models can also serve independently as effective components 
of virtual screening pipelines. We have made all of our software open-source at https:// github. com/ grego ry- kyro/ 
Cardi oGenAI to facilitate integration of the CardioGenAI framework for molecular hypothesis generation into drug 
discovery workflows.

Scientific contribution
This work introduces CardioGenAI, an open-source machine learning-based framework designed to re-engineer 
drugs for reduced hERG liability while preserving their pharmacological activity. The complete CardioGenAI frame-
work can be applied to developmental compounds exhibiting hERG liabilities to provide a means of rescuing drug 
discovery programs facing hERG-related challenges. In addition, the framework incorporates novel state-of-the-art 
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discriminative models for predicting hERG,  NaV1.5 and  CaV1.2 channel activity, which can function independently 
as effective components of virtual screening pipelines.

Keywords Generative AI, Deep learning, Molecular optimization, hERG, Drug discovery, Machine learning, 
Transformers, Graph neural networks

Introduction
There is a well-established connection between in  vitro 
blockade of the hERG (human Ether-à-go-go-Related 
Gene) potassium ion channel and in  vivo QT interval 
prolongation, where the QT interval, as recorded on 
electrocardiograms, indicates the time between the start 
of the heart’s ventricular depolarization (i.e., the rapid 
influx of sodium ions that renders the cell’s interior less 
negatively charge) and the end of repolarization (i.e., the 
restoration of the cell’s membrane potential to its rest-
ing negative state) [1]. The hERG channel contributes to 
repolarization of the cardiac action potential by selec-
tively allowing potassium ions to flow out of the cell fol-
lowing depolarization [2]. Inhibition of this channel can 
therefore directly disrupt cardiac repolarization, leading 
to prolongation of the QT interval, which consequently 
elevates the risk of potentially fatal arrythmias such as 
Torsade de Pointes (TdP) [3]. As a result, the potential 
propensity of drug candidates to present hERG liabili-
ties is subject to rigorous regulatory scrutiny, and the 
pharmaceutical industry devotes a significant amount of 
resources to identifying hERG liabilities during early, pre-
clinical and clinical phases of drug development [4].

The Comprehensive In  Vitro Proarrhythmia Assay 
(CiPA) initiative [5], supported by regulatory agen-
cies including the U.S. Food and Drug Administration 
(FDA), established guidelines for evaluating the proar-
rhythmia risk of drugs that also incorporate the volt-
age-gated sodium  (NaV1.5) and calcium  (CaV1.2) ion 
channels alongside the hERG channel due to observa-
tions that modulating  NaV1.5 and  CaV1.2 channel activi-
ties may mitigate the arrhythmogenic potential induced 
by hERG channel blockade [6–8]. A well-known example 
of this phenomenon is the case of verapamil, a drug that 
blocks both hERG and  CaV1.2 channels and is observed 
to have only a small impact on the QT interval, which 
is hypothesized to be due to the counteracting effects 
of  CaV1.2 blockade [9]. Additionally,  CaV1.2 blockade 
alone is reported to be a possible mechanism underlying 
undesirable blood-flow dynamics [10]. It is therefore of 
tremendous interest to develop highly capable methods 
for assessing how both prospective and currently avail-
able drugs interact with each of these three cardiac ion 
channels.

A multitude of experimental methods exist for in vitro 
determination of cardiac ion channel affinity [11–14]. 

However, they require synthesis of the compounds to be 
assayed, which is relatively time-consuming and expen-
sive compared to in silico methods. Machine learn-
ing (ML)-based methods for predicting hERG channel 
activity have been extensively explored, utilizing both 
protein structure-based and ligand-based models [15–
39]. However, structure-based predictive modeling of 
the hERG channel has proven to be difficult due to the 
channel’s intricate structure, its dynamic nature encom-
passing multiple conformations, and the possibility of 
unexpected interaction sites that are not apparent in 
conventional structural models [40]. For these reasons, 
ligand-based methods currently predominate. Predic-
tive modeling for  NaV1.5 and  CaV1.2 channel blocking 
is comparatively unexplored, as the amount of available 
data is much less compared to that for hERG. However, 
recent benchmarks for predicting  NaV1.5 and  CaV1.2 
channel activity have been established [41], and increas-
ing effort is being devoted to developing models for these 
channels as well [42–45].

While ML-based discriminative models for predict-
ing hERG channel activity have tremendous potential 
for applications in virtual screening, extending these 
capabilities to molecular generation through generative 
artificial intelligence (AI) can overcome the constraints 
of the currently available molecular libraries by enabling 
the direct in silico development of drugs with desired 
activities against cardiac ion channels. Numerous gen-
erative models have already demonstrated the ability to 
produce molecules with prespecified drug-like properties 
[46–105], and there has also been work aimed at gener-
ating molecules with desired on-target potency [53, 106, 
107]. Despite the progress, there has been comparatively 
less effort devoted to developing and applying generative 
models for off-target potency optimization. Moreover, 
the abundance of available datapoints with low hERG 
activity, as opposed to the general scarcity of datapoints 
with high on-target potency for a given target, suggests 
that generative models for off-target potency optimiza-
tion can more effectively identify patterns in the relevant 
chemical space and therefore be more successful than 
those for on-target potency optimization, further moti-
vating method development in this area of research.

In this work, we present an ML-based framework 
designed to re-engineer both developmental and com-
mercially available drugs for reduced hERG liability while 
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retaining their pharmacological activity. The method 
utilizes a generative model to produce molecules con-
ditioned on the molecular scaffold and physicochemical 
properties of the input hERG-active molecule. The gen-
erated ensemble is filtered using deep learning models 
for predicting hERG,  NaV1.5 and  CaV1.2 channel activ-
ity. A chemical space representation is then constructed 
from the filtered generated distribution and the input 
molecule, where nearby molecules exhibit similar chemi-
cal properties, thus facilitating the identification of mol-
ecules with similar pharmacological activity to the input 
molecule but with reduced hERG channel inhibition. 
This approach, while not a replacement for the expertise 
of medicinal chemists, is highly effective at rapid molecu-
lar hypothesis generation, proposing refined candidates 
that can then be investigated with more expensive com-
putational methods and experimental techniques.

Overview of CardioGenAI framework
The CardioGenAI framework combines generative and 
discriminative ML models to re-engineer hERG-active 
compounds for reduced hERG channel inhibition while 
preserving their pharmacological activity. A transformer 
decoder is trained on a dataset that we previously curated 
which contains approximately 5 million unique and valid 
SMILES strings derived from ChEMBL 33, GuacaMol 

v1, MOSES, and BindingDB datasets [108–112]. The 
model is trained autoregressively, receiving a sequence 
of SMILES tokens as context as well as the correspond-
ing molecular scaffold and physicochemical properties, 
and iteratively predicting each subsequent token in the 
sequence. Once trained, this model, which is effectively 
a compression of the training set, is able to generate valid 
molecules conditioned on a specified molecular scaf-
fold along with a set of physicochemical properties. For 
an input hERG-active compound, the generation is con-
ditioned on the scaffold and physicochemical properties 
of this compound (Fig.  1A). Each generated compound 
is subject to filtering based on activity against hERG, 
 NaV1.5 and  CaV1.2 channels. Depending on the desired 
activity against each channel, the framework employs 
either classification models to include predicted non-
blockers (i.e.,  pIC50 value ≤ 5.0) or regression models to 
include compounds within a specified range of predicted 
 pIC50 values. Both the classification and regression mod-
els utilize the same architecture, and are trained using 
three feature representations of each molecule: a feature 
vector that is extracted from a bidirectional transformer 
trained on SMILES strings, a molecular fingerprint, 
and a graph (more details in Sect.  "Data Featurization"). 
For each molecule in the filtered generated ensemble 
and the input hERG-active molecule, a feature vector is 

Fig. 1 The CardioGenAI framework for re-engineering hERG-active compounds. An autoregressive transformer decoder pretrained on a large 
dataset of SMILES strings generates compounds conditioned on the scaffold and physicochemical properties of a given input compound, 
and the generated ensemble is filtered based on desired activity against hERG,  NaV1.5 and  CaV1.2 channels. Cosine similarity is calculated 
between a 209-dimensional descriptor vector of the input compound and that of every filtered generated compound to identify the refined 
candidates most chemically similar to the input compound
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constructed from the 209 2D chemical descriptors avail-
able through the RDKit Descriptors module [113]. The 
redundant descriptors are then removed according to 
pairwise mutual information calculated for every possible 
pair of descriptors. Cosine similarity is then calculated 
between the processed descriptor vector of the input 
molecule and the descriptor vectors of every filtered gen-
erated molecule to identify the refined candidates most 
chemically similar to the input molecule (Fig. 1B).

Discriminative models for predicting cardiac ion 
channel activity
Data featurization
For training and evaluation of hERG,  NaV1.5 and  CaV1.2 
inhibition prediction models, we utilize the training 
and evaluation datasets included in the benchmarks 
recently developed by Arab et al. [41] These benchmarks 
are designed to assess model generalizability, enforc-
ing a maximum fingerprint similarity cutoff between 
molecules in the training and evaluation sets. Multiple 
published models in the field have been assessed using 
evaluation sets that have significant overlap with the cor-
responding training sets [38, 114], undoubtedly yielding 
overoptimistic results with respect to the models’ abili-
ties to generalize. The compounds in the evaluation sets 
used in this work have a structural similarity, as deter-
mined by pairwise Tanimoto similarity between 2048-bit 
Morgan fingerprints, no greater than 0.70 to any com-
pound in the corresponding training or validation sets. 
Compounds were sourced from the ChEMBL bioactivity 
database [115–117], PubChem [118], BindingDB [112, 
119], hERGCentral [120], and the scientific literature [38, 
121–123]. Each molecule is represented as a SMILES 
string which was canonicalized using RDKit, and labeled 
with the experimentally determined cardiac ion chan-
nel  pIC50 value. For compounds with multiple experi-
mentally determined  pIC50 values, the assigned label is 
calculated as the mean value while retaining only those 
within the 95th percentile to minimize the influence of 
outliers. For binary classification tasks, compounds with 
a  pIC50 value greater than or equal to 5.0 are labeled as 
blockers. For hERG,  NaV1.5 and  CaV1.2 channels, train-
ing sets contain 17 796 (78.3%), 1 653 (74.8%), and 641 
(72.6%) datapoints, validation sets contain 4 450 (19.6%), 
414 (18.7%), and 161 (18.2%) datapoints, and test sets 
contain 474 (2.1%), 142 (6.4%), and 81 (9.2%) datapoints, 
respectively. For more details regarding the curation of 
the datasets, we refer readers to the original paper. [41]

It is important to note that variations in experimen-
tal protocols could contribute to discrepancies in meas-
ured  pIC50 values for each channel due to differences in 
the probabilities of each channel occupying open, closed 
and inactivated states [124, 125]. Moreover, it has been 

demonstrated that systematic differences in assay condi-
tions, such as temperature, voltage protocols, and buffer 
composition, can lead to significant discrepancies in 
reported values. For instance, even minor deviations in 
experimental setup have been shown to cause variability 
exceeding 0.5 log units in  pIC50 values for the same com-
pound across different studies [126]. Thus, given that the 
datasets used are curations of publicly available data that 
were obtained via different experimental protocols, vari-
ability in the experimental conditions and state probabili-
ties may set an artificial limit on the predictive accuracy 
that models can achieve.

We found there to be a positive correlation (Pearson 
r = 0.256) between hERG  pIC50 values and the loga-
rithm of the partition coefficient between n-octanol and 
water (LogP), as well as a negative correlation (Pearson 
r = -0.215) with topological polar surface area (TPSA) 
(Figure S1 in Additional file  1). These findings are con-
sistent with established medicinal chemistry knowledge 
that increasing polarity or reducing lipophilicity reduces 
hERG channel blockade [127]. Additionally, we also 
identified a relation between hERG  pIC50 values and the 
presence of charged nitrogen atoms within aromatic or 
hydrophobic groups among the molecules exhibiting the 
most substantial hERG activity (Figure S2 in Additional 
file 1).

We represent each compound as three distinct forms: 
a 256-dimensional feature vector that is extracted from 
a bidirectional transformer trained on SMILES strings, 
a 1024-bit Extended-Connectivity Fingerprint with a 
diameter of 4 bonds (ECFP4) generated using the Mor-
gan algorithm, and a graph (Fig. 2). A bidirectional trans-
former is first trained for masked-token prediction on 
the same dataset used to train the autoregressive trans-
former, allowing it to develop an intricate internal rep-
resentation of molecular structure and grasp the syntax 
of SMILES notation (more details in Sect.  "Data Prepa-
ration"). After this model is fully trained, it is used as a 
means of extracting a context-rich feature vector as a 
representation of a given SMILES string. Specifically, we 
extract the processed vector from the penultimate layer 
of the model corresponding to the start token, which 
contains information about the entire SMILES string that 
contributes to the prediction of a masked token within 
the sequence. This information encapsulates nuanced 
inter-token relationships and patterns among different 
molecules, rendering this feature vector a powerful rep-
resentation that captures important characteristics of the 
molecule in a high-dimensional space (more details in 
Sect. "Model Architectures").

In the graph representation, nodes are atoms and edges 
are bonds. Each node is represented as a 14-dimensional 
vector of atomic features: carbon indicator, nitrogen 
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indicator, oxygen indicator, phosphorous indicator, sulfur 
indicator, hydrophobicity indicator, aromaticity indicator, 
hydrogen bond acceptor indicator, hydrogen bond donor 
indicator, ring structure indicator, number of bonds to 
heavy atoms, number of bonds to heteroatoms, partial 
charge, and atomic mass. Each edge is labeled with the 
corresponding bond order.

Model Architecture
The transformer-based feature vector and the ECFP4 
are each processed by separate two-layer feed-forward 
networks (Fig.  3B, C). For each of the two layers of the 
networks, the input vector undergoes a linear transfor-
mation followed by batch normalization. The normalized 
output is then passed through a ReLU activation func-
tion, followed by dropout with a rate of 50%.

The graph representation is processed by a graph atten-
tion network (GAT) consisting of two GAT convolutional 
layers (Fig.  3A). Initially, the graph is augmented with 
self-loops to ensure that each node’s feature vector is 
included in its own neighborhood during feature aggre-
gation. The fist GAT layer transforms the node feature 
vectors through a linear operation, followed by a soft-
max-based attention mechanism to assign weights to the 
features of each node’s neighbors, relative to the source 

node. The output of this layer is passed through a ReLU 
activation function and fed to the second GAT convolu-
tional layer which operates analogously to the first layer. 
After being processed by the second GAT convolutional 
layer, the updated node features are aggregated to form 
a graph-level representation using a global add pooling 
operation, which sums the node features across all nodes 
to generate a single vector that encapsulates the entire 
graph’s information.

After each of the three input feature representations 
has been encoded, they are concatenated to form a com-
bined feature vector. This combined feature vector is 
then passed through a two-layer feed-forward network 
(Fig. 3D). The first layer applies a linear transformation to 
the feature vector followed by batch normalization. The 
normalized output is then passed through a ReLU activa-
tion function followed by dropout with a rate of 50%. The 
output of this layer then undergoes a linear transforma-
tion to map it to the final output space.

Trainings and hyperparameters
The classification and regression models for each car-
diac ion channel were trained for 200 and 100 epochs, 
respectively, with a batch size of 32; we trained the clas-
sification models for an additional 100 epochs because 

Fig. 2 Featurization of a SMILES string—CCC(= O)CCNC(C)C(= O)c1ccncc1C—for use by the CardioGenAI discriminative models. The SMILES string 
is represented as A a 256-dimensional feature vector that is extracted from the penultimate layer of a bidirectional transformer trained on SMILES 
strings, B a 1024-bit Extended-Connectivity Fingerprint with a diameter of 4 bonds (ECFP4) generated using the Morgan algorithm, and C a graph
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the training loss had not converged after only 100 
epochs (Figure S3 of Additional File 1). The AdamW 
optimizer, a variant of the Adam optimizer that incor-
porates weight decay for regularization, was used with 
a learning rate of 3 ×  10–4 and a weight decay of 1 ×  10–4 
to optimize the models’ parameters. Additionally, L1 
regularization was applied with a regularization coef-
ficient of 1 ×  10–4 to induce sparsity within the model 
parameters. We integrated a learning rate scheduler 
which monitors the validation loss and halves the 
learning rate if no improvement is observed for 10 con-
secutive epochs. To ensure stability in training and pre-
vent gradient explosion, gradient clipping was applied 
with a maximum norm of 5.0. For the classification and 
regression models, binary cross entropy loss and mean 
squared error loss were used as objective functions, 
respectively. The model parameters used for inference 
are those from the epoch with the highest validation 
accuracy for classification and highest validation Pear-
son correlation for regression. Learning curves for each 
of the classification and regression models are reported 
in Figure S3 of Additional file 1.

Benchmarking against existing models
We found that utilizing all three feature representations 
(i.e., transformer-based feature vector, fingerprint, and 
graph) achieves the best performance on the hERG blocker 
classification benchmark compared to using any other pos-
sible combination of feature representations (Table  S4 in 
Additional file 1), and we therefore adopt this combination 
of feature representations for our classification models.

We compare the performance of our classification mod-
els to the highest-performing models in the literature that 
have been evaluated with the benchmarks used in this 
work. Computed metrics include:

(1)Accuracy (AC) =
TP + TN

TP + TN + FP + FN

(2)Sensitivity (SN) =
TP

TP + FN

(3)Specificity (SP) =
TN

TN + FP

Fig. 3 Illustration of the forward pass of the CardioGenAI discriminative models. The graph representation of a given SMILES string is encoded by A 
a graph attention network (GAT). The B transformer-derived and C fingerprint feature vectors are encoded by feed-forward networks. These three 
encodings are then concatenated and passed to D a final feed-forward network to generate a prediction
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where TP , TN  , FP , and FN  represent the number of true 
positives, true negatives, false positives, and false nega-
tives, respectively. We find that our hERG blocker clas-
sification model outperforms all existing models in the 
literature on the hERG benchmark for binary classifica-
tion (Table 1).

The improvement of our hERG blocker predictive 
model over previous models justifies its use within the 
CardioGenAI framework as opposed to other predictive 
models which have already been developed.

For the  NaV1.5 and  CaV1.2 benchmarks, only the mod-
els presented by Arab et  al. [41] have been evaluated, 
largely owing to the fact that these benchmarks have 
only recently been developed and the experimental data 
available for these channels is scarce compared to that 
for hERG. We find that our models demonstrate supe-
rior performance for both  NaV1.5 and  CaV1.2 channels 
(Table 2). Additionally, the area under the curve (AUC) of 
the receiver operating characteristic for each channel is 
commensurate with the accuracy that our models obtain; 
hERG AUC is 0.88,  NaV1.5 AUC is 0.89, and  CaV1.2 AUC 
is 0.95 (Figure S5B in Additional file 1).

We report the performance of our regression models 
in Figure S5C-E and Table  S6 in Additional file  1. The 
Pearson correlation between true  pIC50 values and those 
predicted by our regression models are 0.67 for hERG, 
0.60 for  NaV1.5, and 0.81 for  CaV1.2 benchmarks (Figure 
S5C-E in Additional file 1).

In order to provide interpretability of the regression 
models’ predictions, we calculate the correlation between 
predicted  pIC50 values and each property in a set of phys-
icochemical properties for each of the three cardiac ion 
channels (Table  S7 in Additional file  1). The key find-
ings of this analysis are as follows: predicted hERG  pIC50 
values correlate positively with the number of rotatable 
bonds (Pearson r = 0.327) and LogP (r = 0.321); predicted 
 NaV1.5  pIC50 values correlate negatively with the num-
ber of hydrogen bond donors (r = −  0.593) and TPSA 
(r = −  0.545), while correlating positively with LogP 
(r = 0.406); and predicted  CaV1.2  pIC50 values correlate 
positively with the number of hydrogen bond acceptors 
(r = 0.621), TPSA (r = 0.581), the number of heteroatoms 

(4)F1− score (F1) =
TP

TP + 1
2 (FP + FN )

(5)Correct Classification Rate (CCR) =
SN + SP

2

(6)

Matthews Correlation Coefficient (MCC)

=
TP × TN − FP × FN

√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )

(r = 0.555), molecular weight (r = 0.444) and the number 
of rotatable bonds (r = 0.318), while correlating negatively 
with the number of rings (r = − 0.315).

Additionally, in order to ensure that the predictive 
abilities of our models are not artifacts of spurious cor-
relations within the data, we perform Y-randomization 
tests for all discriminative models and report results in 
Table S8 and Figure S9 of Additional file 1.

Application to the drugcentral database of FDA‑approved 
drugs
To demonstrate the practical utility of our classification 
and regression models, we applied them to the FDA-
approved drugs from the DrugCentral database, offer-
ing a real-world context for assessing cardiac ion channel 
inhibition [130, 131]. It is important to note that many 
of the compounds occur in the training set of the dis-
criminative models. Thus, predictive ability for these 
compounds should not be interpreted as validation of 
the models’ predictive ability for unseen compounds. 
Of the 1692 unique FDA-approved drugs, we classify 
504 (29.8%) to be hERG blockers (i.e.,  pIC50 value ≥ 5.0), 
764 (45.2%) to be  NaV1.5 blockers, and 400 (23.6%) to 
be  CaV1.2 blockers (Figure S10A in Additional file  1). 
A more complete analysis of the predicted cardiac ion 
channel activity of the FDA-approved drugs is reported 
in Figure S10B of Additional file 1. In addition, we report 
the compounds with a predicted hERG  pIC50 value above 
7.0 (i.e., more than 100-fold greater hERG inhibitory 
potency than the blocker threshold) in Table 3.

For the 11 FDA-approved compounds with a pre-
dicted hERG  pIC50 value greater than 7.0, the predicted 
 pIC50 values are closely aligned with those that are 
experimentally determined, with notable agreement 
in cases where the compound is not in the training set 
of the model (Table 3). However, for three of the com-
pounds, namely pimozide, astemizole, and dofetilide, 
each predicted hERG  pIC50 value differs from the cor-
responding experimentally determined value by about 
an order of magnitude. The experimentally determined 
 pIC50 values for these three compounds are among the 
top four highest values in the set of FDA-approved 
compounds, and each is greater than three standard 
deviations above the mean  pIC50 value in the training 
distribution. Because these high values are not well-
represented in the training set, the model’s tendency 
to regress toward the mean  pIC50 value likely accounts 
for the observed discrepancy between predicted and 
experimentally determined  pIC50 values for these three 
compounds (see Figure S5C in Additional File 1).

The primary mechanism of action for three of the 
11 drugs is to block the hERG channel: ibutilide [134], 
dofetilide [135], and amiodarone [136]. Another three 
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of them function primarily as dopamine D2 recep-
tor antagonists: pimozide [137], droperidol [138], and 
haloperidol decanoate [139]. Pimozide is reported 
to cause QT interval prolongation and ventricular 
arrhythmias due to hERG channel blockade with high 
specificity and affinity [140]; droperidol is reported to 
cause TdP due to potent hERG channel blockade [141]; 
haloperidol decanoate has been found to cause sud-
den death due to hERG channel blockade-induced QT 
interval prolongation. [142]

Another two of the 11 drugs function primarily as 
 H1-receptor antagonists: astemizole and terfenadine 
[143, 144]. Both of these drugs were withdrawn from 
the market due to hERG blockade-induced cardiac 
arrhythmias [145, 146]. Of the remaining three drugs 
of the 11, nintedanib is reported to cause side effects 
related to hERG channel blockade [147], halofantrine 
is found to cause hERG blockade-induced QT inter-
val prolongation [148], and tolterodine is reported 
to cause hERG blockade-induced tachycardia and 
palpitations [149]. These results support the real-
world application of CardioGenAI to hERG activity 
prediction.

Limitations of the discriminative models
While the discriminative models used in the CardioGe-
nAI framework demonstrate robust predictive perfor-
mance, certain limitations should be acknowledged. A 
key limitation arises from the variability in the experi-
mental protocols used to obtain  pIC50 labels. These 
protocols often differ in assay conditions, measurement 
methodologies, and the probabilities of cardiac ion 
channels occupying open, closed, or inactivated states. 
Such variability introduces noise into the data and 
may impose an artificial upper bound on the predic-
tive accuracy achievable by models trained on publicly 
available hERG data.

Additionally, the models’ performance is likely influ-
enced by the inherent biases present in the training 
data. For example, underrepresentation of certain 
chemical scaffolds or activity ranges could impact the 
generalizability of the models to the corresponding 
regions of chemical space.

Table 1 Performance of CardioGenAI for binary classification of hERG blockers compared to that of the highest-performing models in 
the literature on the benchmark created by Arab et al. [41]

a Compounds in the test set have a structural similarity, as determined by pairwise Tanimoto similarity between 2048-bit Morgan fingerprints, no greater than 0.70 to 
any compound in the corresponding training or validation sets
b The top value achieved for each metric is shown in bold
c Accuracy (AC), sensitivity (SN), specificity (SP), F1-score (F1), correct classification rate (CCR), and Matthew’s correlation coefficient (MCC) are shown
d Results are shown for CToxPred-hERG [41], CardioTox [33], ADMETlab 2.0 [128], ADMETsar 2.0 [129], and CardPred. [21]

Model AC SN SP F1 CCR MCC

CardioGenAI 83.5 86.2 80.3 85.1 83.2 66.7
CToxPred-hERG 81.4 86.7 74.6 83.9 80.7 62.1

CardioTox 81.2 83.0 78.9 83.1 81.0 61.9

ADMETlab 2.0 71.7 71.6 71.8 73.8 71.7 43.1

ADMETsar 2.0 68.5 84.5 48.3 75.0 66.4 35.5

CardPred 56.1 52.7 60.3 57.0 56.5 13.0

Table 2 Performance of CardioGenAI for binary classification of  NaV1.5 and  CaV1.2 blockers compared to that of the models created 
by Arab et al. [41]

a Compounds in the test set have a structural similarity, as determined by pairwise Tanimoto similarity between 2048-bit Morgan fingerprints, no greater than 0.70 to 
any compound in the corresponding training or validation sets
b The top value achieved for each metric is shown in bold
c Accuracy (AC), sensitivity (SN), specificity (SP), F1-score (F1), correct classification rate (CCR), and Matthew’s correlation coefficient (MCC) are shown

Channel Model AC SN SP F1 CCR MCC

NaV1.5 CardioGenAI 89.4 95.9 75.6 92.5 85.7 75.1
CToxPred-Nav 81.7 85.6 73.3 86.5 79.5 58.2

CaV1.2 CardioGenAI 91.4 96.2 82.8 93.5 89.5 81.0
CToxPred-Cav 86.4 96.2 69.0 90.1 82.6 70.2
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Transformer‑based models
Data preparation
The generative autoregressive transformer and the bidi-
rectional transformer used for extracting features to be 
utilized by the discriminative models are both trained 
with a dataset that we previously curated by combining 
all of the unique and valid SMILES strings from ChEMBL 
33, GuacaMol v1, MOSES, and BindingDB datasets [108–
112]. The combined dataset initially had a vocabulary 
of 196 unique tokens. To reduce the size of the vocabu-
lary and thus improve the computational efficiency of 
the transformer models, we removed all SMILES strings 
containing at least one token that appeared less than 1 
000 times in the combined dataset; most of the SMILES 
strings that were excluded contain rare transition metals 
or isotopes. Of the remaining SMILES strings, the longest 
one contained 1 503 tokens, while 99.99% of the strings in 
the entire remaining dataset had 133 or fewer tokens. In 
order to reduce the block size of our transformer models, 
and thus further improve the computational efficiency, 

we removed all SMILES strings from the dataset that 
contained more than 133 tokens. The remaining SMILES 
strings were then extended, if necessary, to a length of 
133 using a padding token “ < pad > ”, and augmented 
with a start token “[CLS]” and an end token “[EOS]”. The 
processed dataset contains approximately 5.5 million 
SMILES strings which are randomly split into training 
(5 262 776 entries; 95%) and validation (276 989 entries; 
5%) sets. Please refer to our previous paper for complete 
details regarding SMILES string preprocessing. [108]

For each SMILES string, we calculated the molecular 
scaffold using the Murcko algorithm [150], which iden-
tifies the core structure by removing side chains from 
the molecular graph, retaining the ring systems and the 
linkers connecting them. We also calculated ten phys-
icochemical properties for each SMILES string: molecu-
lar weight, number of rings, number of rotatable bonds, 
number of hydrogen bond donors, number of hydrogen 
bond acceptors, TPSA, number of heteroatoms, LogP, 
number of stereocenters, and formal charge.

Table 3 Analysis of the FDA-approved compounds from the DrugCentral database with a predicted hERG  pIC50 value above 7.0

a Information regarding the pharmacological indication, mechanism of action, and FDA approval status for each drug is obtained from DrugBank [132, 133]
b Experimentally determined hERG  pIC50 values are obtained from the hERG dataset curated by Arab et al. [41]

Drug Name Pharmacological 
Indication

Mechanism of Action FDA Approval Status Predicted 
hERG  pIC50

In Training Set Experimentally 
Determined hERG 
 pIC50

Nintedanib Idiopathic pulmonary 
fibrosis

Kinase inhibitor Approved 8.234 yes 8.585

Ibutilide Atrial fibrillation, atrial 
flutter

hERG channel blocker Approved 7.977 yes 8.000

Pimozide Tourette’s disorder Dopamine D2 recep-
tor antagonist

Approved 7.629 yes 8.520

Halofantrine Severe malaria Forms toxic complexes 
with ferritoporphy-
rin IX

Approved 7.588 no 7.398

Astemizole Allergy symptoms H1-receptor antagonist Withdrawn due 
to concerns 
of arrhythmias

7.562 yes 8.538

Tolterodine Overactive bladder Muscarinic receptor 
antagonist

Approved 7.311 no 7.886

Droperidol Nausea and vomiting 
in surgical and diag-
nostic procedures

Dopamine D2 recep-
tor antagonist

Approved 7.300 yes 7.495

Dofetilide Atrial fibrillation, atrial 
flutter

hERG channel blocker Approved 7.164 yes 8.194

Haloperidol decanoate Schizophrenia, 
psychotic disorders, 
Tourette’s disorder

Dopamine D2 recep-
tor antagonist

Approved 7.149 no 6.921

Amiodarone Recurrent ventricular 
fibrillation, recurrent 
hemodynamically 
unstable ventricular 
tachycardia

hERG channel blocker Approved 7.127 yes 7.523

Terfenadine Allergic rhinitis, hay 
fever, allergic skin 
disorders

H1-receptor antagonist Withdrawn due 
to concerns 
of arrhythmias

7.022 yes 7.252
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Model architectures
For a given SMILES string, the autoregressive trans-
former considers the sequence of the SMILES string, 
the molecular scaffold, and the set of physicochemical 
properties, while the bidirectional transformer only 
considers the sequence. For both models, tokens in the 
sequence are embedded using a learnable embedding 
table, where each token in the vocabulary corresponds 
to a learnable embedding vector. The positions of the 
tokens in the sequence are embedded using a separate 
learnable embedding table, where each index in the 
sequence corresponds to a learnable embedding vec-
tor that allows the model to account for a given token’s 
position in the sequence and capture sequential con-
text within the SMILES string. For the autoregressive 
transformer, the set of physicochemical properties is 
mapped to the embedding dimension via a learnable 
linear transformation, and the molecular scaffold is 
embedded using a learnable embedding table analogous 
to that used for the token embeddings. For both mod-
els, all embeddings, each with an embedding dimension 
of 256, are summed to create a combined feature rep-
resentation, and then dropout is applied with a rate of 
10%.

The transformer architecture used consists of eight 
sequential blocks, each beginning with layer normaliza-
tion to stabilize the input. This is followed by a self-atten-
tion mechanism, where query (Q) , key (K ) , and value 
(V ) vectors are computed for each input token, atten-
tion scores are derived via a scaled dot product of Q and 
K  vectors, and the softmax function normalizes these 
scores to obtain weights that modulate the aggregation of 
V  , effectively capturing the magnitude with which each 
token will attend to every other token in the sequence. 
The self-attention mechanism is executed multiple 
times in parallel through what is referred to as multi-
head attention. The models used in this work employ 
eight attention heads, where each head uses its own set 
of learned linear transformations to generate Q , K  , and 
V  vectors for each token in the sequence, allowing the 
model to simultaneously focus on different aspects of the 
input across the various heads. Representative attention 
maps for the autoregressive and bidirectional transform-
ers are reported in Figures  S11 and S12 of Additional 
file 1.

The outputs of all attention heads are concatenated 
and passed through a learned linear transformation 
to generate the final output of the multi-head atten-
tion mechanism. A residual connection then merges 
this output with the initial block input. The resulting 
data tensor then undergoes another layer normaliza-
tion and progresses through a two-layer feed-forward 
network with a 10% dropout rate and GeLU activation, 

before reintegration with its pre-normalized state. The 
final step involves another layer normalization, followed 
by a linear transformation that projects the data tensor 
onto the vocabulary space, generating a logits vector 
(i.e., the unnormalized log probabilities for each token 
in the vocabulary). When using the trained bidirectional 
transformer to derive feature vectors to be utilized by 
the discriminative models, the data tensor is extracted 
immediately prior to the final linear transformation, and 
the vector corresponding to the start token is used as the 
feature vector.

Trainings and hyperparameters
The autoregressive transformer is trained for next-token 
prediction, and the bidirectional transformer is trained 
for masked-token prediction where each token in a given 
SMILES sequence has a 15% probability of being selected; 
of these, 80% are replaced with a mask token “ < MASK > ”, 
10% are replaced with a random token from the vocabu-
lary, and the remaining 10% are left unchanged. Both 
models were trained for 100 epochs with a batch size of 
512. The Sophia optimizer was used with a learning rate 
of 3 ×  10–4 and a weight decay of 1 ×  10–1, [151] and cross 
entropy loss was used as the objective function for both 
models. The model parameters used for inference are 
those from the last epoch of training. Learning curves 
for the autoregressive and bidirectional transformers are 
reported in Figure S13 of Additional file 1.

Molecular generation
The autoregressive transformer is used to generate 
SMILES strings, conditioned on both a molecular scaf-
fold and a set of ten physicochemical properties. To rig-
orously evaluate the model’s ability to generate molecules 
with prespecified physicochemical properties, we fix 
one property at a time to a discrete value while the other 
nine properties are sampled using a random uniform 
distribution within ranges of acceptable values based 
on ADMETlab 2.0 guidelines for medicinal chemistry 
[128]. This procedure is performed for 500 molecules 
per fixed property value. For example, we generate 500 
molecules conditioned on a molecular weight of 400 
g

mol and another 500 conditioned on a molecular weight 
of 600 g

mol to assess the model’s ability to generate mol-
ecules with a targeted molecular weight. We repeat this 
approach for each physicochemical property, and observe 
that the model is able to successfully generate molecular 
distributions that satisfy the prespecified criteria (Fig-
ure S14A-I in Additional file  1). We also demonstrate 
the model’s ability to generate molecules conditioned on 
multiple discrete physicochemical property values simul-
taneously (e.g., TPSA of 50 Å [2] and molecular weight of 
350 g

mol ), validating its utility and justifying its use within 
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the CardioGenAI framework (Figure S14J in Additional 
file 1).

Complete CardioGenAI framework
High‑level description of the workflow
The fundamental objective of the CardioGenAI frame-
work is to re-engineer hERG-active compounds for 
reduced hERG activity while preserving their pharmaco-
logical action. Within the framework, the autoregressive 
transformer first generates valid molecules conditioned 
on the molecular scaffold and physicochemical proper-
ties of the input hERG-active molecule, which are fil-
tered based on desired activity against hERG,  NaV1.5 and 
 CaV1.2 channels using the discriminative models. The 
input molecule and each filtered generated molecule are 
then converted into 209-dimensional chemical descrip-
tor vectors which are refined by removing the redundant 
descriptors according to pairwise mutual information 
between every possible descriptor pair. Cosine similar-
ity is then calculated between the descriptor vector of 
the input molecule and the descriptor vectors of every fil-
tered generated molecule to identify the molecules most 
chemically similar to the input molecule but with desired 
activity against each of the cardiac ion channels.

Case study: optimizing the FDA‑approved drug pimozide 
for reduced hERG activity
Pimozide is an FDA-approved antipsychotic agent that 
is used to treat Tourette’s syndrome as well as various 
other psychiatric disorders [152]. Its main pharmaco-
dynamic action is to blockade dopamine D2 receptors 
on neurons in the central nervous system (CNS); it also 
has various effects on other CNS receptor systems which 
are not fully characterized [137]. There are many reports 
linking the use of pimozide to QT interval prolongation 
and ventricular arrythmias [153, 154], and there are mul-
tiple reported instances of sudden, unexpected deaths of 
patients receiving pimozide [155].

It was initially observed clinically that only a very low 
dose of pimozide is necessary to produce QT interval 
prolongation, suggesting that it binds to one or more 
cardiac potassium ion channels with high affinity [153]. 
Subsequent experimental validation indicated pimoz-
ide’s high affinity to the hERG channel, evidenced by its 
potent inhibitory effect with an  IC50 value of approxi-
mately 18 nM [140].

Because of pimozide’s proarrhythmic effects, it is con-
traindicated in patients with congenital long QT syn-
drome, patients with a history of cardiac arrhythmias, 
patients taking other drugs that prolong the QT interval, 
and patients with known hypokalemia (i.e., low potas-
sium levels) or hypomagnesemia (i.e., low magnesium 
levels) [155]. It is therefore of tremendous interest to 

develop safer alternatives to pimozide that minimize its 
hERG activity while retaining its therapeutic efficacy.

In this work, we apply the CardioGenAI framework to 
re-engineer pimozide for reduced hERG inhibition while 
preserving its pharmacological activity. The experimen-
tally determined  pIC50 value of pimozide for the hERG 
channel is 8.520, and the value that our regression model 
predicts is 7.629, a difference (0.891  pIC50) which is suffi-
ciently small to be attributable to variance in experimen-
tal protocols used to obtain labels [156]. Our objective 
is to generate compounds with similar pharmacological 
properties, but with predicted hERG channel  pIC50 val-
ues less than 6.0.

We therefore condition the molecular generation on 
the scaffold and physicochemical properties of pimozide, 
and filter out molecules with a predicted hERG chan-
nel  pIC50 value greater than or equal to 6.0. This proce-
dure is performed until 100 compounds are generated, 
which takes approximately one minute using an NVIDIA 
GeForce RTX 4050 GPU. We then compute descrip-
tor vectors for pimozide and the filtered generated mol-
ecules, and then calculate the cosine similarity between 
the descriptor vector of pimozide and those of the gen-
erated molecules. In practice, many more molecules can 
be generated to create a molecular library for further 
screening.

We calculate the ten previously described physico-
chemical properties for pimozide, the 100 filtered gen-
erated molecules, and the molecules in the transformer 
training set, and then perform principal component anal-
ysis (PCA) to construct a lower-dimensional chemical 
space in which we can visually compare the filtered gen-
erated molecules to pimozide in relation to the broader 
transformer training set. Plotting the first two PCs 
reveals that the filtered generated molecules are closely 
aligned to pimozide, indicating that our framework suc-
cessfully navigates the initially vast chemical space to 
propose compounds with similar physicochemical char-
acteristics to pimozide but with reduced hERG activity 
(Fig.  4A; Figure S15 in Additional file  1). Additionally, 
the distribution of predicted  pIC50 values of the gener-
ated compounds ranges from 4.64 to 6.00 with a mean 
value of 5.59, indicating significant reductions in hERG 
activity (Fig.  4B). The most similar generated molecules 
to pimozide are reported in Table S16 of Additional file 1.

We analyze each of the 100 generated refined com-
pound with respect to all of the compounds provided in 
the DrugCentral Postgres v14.5 database to identify any 
compounds approved by either the FDA, the European 
Medicines Agency (EMA), or the Pharmaceuticals and 
Medical Devices Agency of Japan (PMDA) [130, 131]. 
Remarkably, among the 100 filtered generated com-
pounds is fluspirilene, a compound that belongs to the 
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same class of drugs as pimozide (diphenylmethanes) and 
therefore presents a highly similar pharmacological pro-
file [157]. Moreover, the experimental hERG  pIC50 value 
of fluspirilene is 5.638 (predicted: 5.785), as compared to 
8.520 (predicted: 7.629) for pimozide (Fig. 5), indicating a 
reduction in hERG activity by over 700-fold.

The reduced hERG activity of fluspirilene compared 
to pimozide can be attributed to the presence of an aro-
matic nitrogen-containing heterocyclic group in pimoz-
ide, which is absent in fluspirilene (Fig.  5). Aromaticity 
increases the basicity of the nitrogen, allowing for pro-
tonation and stronger electrostatic and π-cation inter-
actions with the hERG channel. This aligns with prior 
literature and our observations (Sect.  "Data Featuriza-
tion") that basic, aromatic nitrogens are significant con-
tributors to hERG activity [127].

This case study demonstrates the ability of the Cardio-
GenAI framework to re-engineer a hERG-active com-
pound for reduced hERG activity while preserving its 
pharmacological activity.

Additional applications of the complete framework 
for hERG activity optimization
In addition to re-engineering pimozide, we also apply the 
CardioGenAI framework to nintedanib, ibutilide, halo-
fantrine, and astemizole. Collectively, including pimoz-
ide, these five compounds are those among the set of 
FDA-approved compounds provided by DrugCentral 
that have the highest predicted  pIC50 values against the 
hERG channel. We show that for each drug, the frame-
work is able to successfully generate compounds with 
similar physicochemical profiles and with significantly 
reduced activity against the hERG channel (Fig. 6).

Applications of the complete framework for  NaV1.5 
and  CaV1.2 activity optimization
Moreover, given that modulating  NaV1.5 and  CaV1.2 
channel activities may mitigate the arrhythmogenic 
potential induced by hERG channel blockade [6–8], and 
considering that activity against each of these two chan-
nels alone can present problems related to the cardiac 
action potential [10, 45], we demonstrate the ability of 
the framework to optimize compounds for enhanced 
 NaV1.5 and  CaV1.2 profiles. Specifically, we assess the 
capabilities of the framework with respect to four inde-
pendent objectives: (1) Increase the  NaV1.5 activity of a 
compound that has high hERG activity but low  NaV1.5 
activity; (2) Increase the  CaV1.2 activity of a compound 
that has high hERG activity but low  CaV1.2 activity; (3) 
Decrease the  NaV1.5 activity of a compound that has 
high  NaV1.5 activity; (4) Decrease the  CaV1.2 activity of 
a compound that has high  CaV1.2 activity. For cases (1) 
and (2), we chose to re-engineer ibutilide, which has a 

predicted  pIC50 for hERG,  NaV1.5, and  CaV1.2 of 7.98, 
4.24 and 4.02, respectively. For case (3), we chose vene-
toclax, which has a predicted  NaV1.5  pIC50 of 6.72. For 
case (4), we chose itraconazole, which inhibits  CaV1.2 
with a predicted  pIC50 of 9.17. The CardioGenAI frame-
work is able to successfully improve the cardiac ion chan-
nel activity by at least one order of magnitude in each 
case for every generated refined compound while ensur-
ing that the generated compounds are physicochemically 
similar to the respective input drug. The results for each 
of these four cases are presented in Fig. 7.

Customizing the CardioGenAI framework 
for company‑specific industrial applications
Pharmaceutical companies have begun to leverage gen-
erative AI-based methods for specific tasks within the 
earlier stages of drug discovery pipelines [158]. In order 
to facilitate integration of CardioGenAI into drug discov-
ery workflows, all of the software is entirely open-source 
and the framework is designed to be easily customizable. 
Companies can therefore incorporate desired functional-
ity, and retrain all of the models on their internal data. 
It is expected that large pharmaceutical companies will 
significantly benefit from retraining the models, given 
that their internal data is likely more comprehensive and 
subject to significantly less experimental variance than 
the publicly available datasets used to initially train the 
models.

With respect to the incorporation of additional func-
tionality into the framework, CardioGenAI is designed 
such that predictive models can easily be integrated 
into the filtering phase along with the cardiac ion chan-
nel activity prediction models. For instance, a team of 
medicinal chemists will likely adhere to synthesis-related 
criteria; a rule-based filter, or a model fit to these crite-
ria, can easily be incorporated. The objective of such a 
model could be to identify compounds that can be pro-
duced given an initial compound and feasible synthetic 
pathways, or to predict a synthetic accessibility score for 
a given compound. In theory, any predictive model can 
be integrated into the framework (e.g., for predicting on-
target activity, solubility, metabolic stability, bioavailabil-
ity, etc.).

Because synthesizability is arguably the most important 
characteristic of a proposed compound, additional steps 
can be taken, aside from incorporating more models, 
to ensure that the proposed compounds are in accord-
ance with a company’s specific synthesis capabilities. For 
instance, the dataset used to train the generative autore-
gressive transformer could be curated to contain only 
compounds that a company deems sufficiently synthe-
sizable, thereby biasing the generative component of the 
framework to only propose compounds that are akin to 
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Fig. 4 Visualization of the CardioGenAI framework applied to pimozide. The input molecule (pimozide), the 100 generated refined molecules, 
and the molecules in the training set for the transformer-based models (approximately 5 million datapoints), are projected into a principal 
component analysis (PCA)-reduced physicochemical-based space, shown in (A). Pimozide is colored yellow, the generated refined compounds 
are colored purple, and the compounds in the training set of the transformer-based models are colored red. The first two principal components 
explain 45.07% and 17.61% of the total variance, respectively. Clearly, the CardioGenAI framework is able to identify the region of physicochemical 
space corresponding to compounds that are similar to pimozide, yet exhibit significantly reduced activity against the hERG channel. The density 
of predicted  pIC50 values against the hERG channel of the generated refined compounds as compared to that of pimozide is shown in (B). The 
distribution of generated compounds exhibits a maximum predicted  pIC50 value of 6.00, with a mean of 5.59 and minimum of 4.64

Fig. 5 CardioGenAI framework applied to pimozide, an FDA-approved antipsychotic drug that has an experimental hERG  pIC50 value of 8.520 
(predicted: 7.629), and is reported to cause hERG channel blockade-induced QT interval prolongation and arrhythmias. CardioGenAI proposes 100 
molecules, and among them is fluspirilene, a compound that belongs to the same class of drugs as pimozide but exhibits over 700-fold weaker 
binding to hERG (experimental  pIC50 value is 5.638)



Page 14 of 20Kyro et al. Journal of Cheminformatics           (2025) 17:30 

those that satisfy these synthesizability standards. Addi-
tionally, rather than defining the chemical space based 
on RDKit descriptors to identify molecules that are phys-
icochemically similar to the input molecule, the space 
can be designed such that nearby molecules are easily 
synthesizable.

In the current implementation, RDKit is used to vali-
date the proposed molecules generated by the frame-
work, ensuring that molecular representations conform 
to basic valence and bonding rules. However, it does not 
assess chemical plausibility beyond these criteria. As 
such, some structures may be valid according to RDKit 
but exhibit features that are chemically improbable. To 
address this, the framework can easily be augmented 
with additional criteria applied at the generation stage 

to enforce properties such as thermodynamic stability or 
broader chemical plausibility. These enhancements allow 
users to refine the generative process further, ensuring 
that proposed compounds align with expectations.

Summary
Although numerous generative models have demon-
strated the ability to produce molecules with prespeci-
fied drug-like properties, as well as molecules with 
desired on-target potency, there has been comparatively 
less effort devoted to developing and applying genera-
tive models for off-target potency optimization. In this 
work, we present an ML-based framework for re-engi-
neering hERG-active compounds for reduced hERG 
activity while preserving their pharmacological activity. 

Fig. 6 Visualization of the CardioGenAI framework applied to nintedanib (A, B), pimozide (C, D), ibutilide (E, F), halofantrine (G, H), and astemizole 
(I, J). In each application, the specified maximum predicted hERG  pIC50 value of any of the generated compounds was set to 6.00. For each 
optimization, the input molecule, the 100 generated refined molecules, and the molecules in the training set for the transformer-based 
models (approximately 5 million datapoints), are projected into a principal component analysis (PCA)-reduced physicochemical-based 
space. The input compound is colored yellow, the generated refined compounds are colored purple, and the compounds in the training set 
of the transformer-based models are colored red. The first two principal components explain 45.07% and 17.61% of the total variance, respectively. 
In each case, the CardioGenAI framework is able to identify the region of physicochemical space corresponding to compounds that are similar 
to the input compound, yet exhibit significantly reduced activity against the hERG channel. The densities of predicted  pIC50 values against the hERG 
channel of the generated refined compounds as compared to that of the respective input compound are shown in [B]. Relevant metrics are shown 
on each plot
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The method utilizes an autoregressive transformer-based 
generative model to produce molecules conditioned on 
the molecular scaffold and set of physicochemical prop-
erties of the input molecule. The generated ensemble 
is filtered based on hERG,  NaV1.5 and  CaV1.2 activity 
using state-of-the-art discriminative deep learning mod-
els. A physicochemical-based space is then constructed 
from the filtered generated distribution and the input 
molecule, where nearby molecules have similar phys-
icochemical profiles, thus facilitating the identification 
of molecules with similar pharmacological activity to 
the input molecule but with reduced hERG liability. We 
applied the framework to pimozide, an FDA-approved 
antipsychotic agent that demonstrates high affinity to the 
hERG channel, and generated a compound of the same 
class of drugs that has a significantly lower hERG  pIC50 
value as indicated by both predicted and experimental 
values. Furthermore, we demonstrated the framework’s 
ability to optimize hERG,  NaV1.5 and  CaV1.2 profiles of 
multiple FDA-approved compounds while maintain-
ing the physicochemical nature of the original drugs. In 

addition, the state-of-the-art performances of the hERG, 
 NaV1.5, and  CaV1.2 activity prediction models support 
their independent utility as effective components of vir-
tual screening campaigns.

Technical implementation details
The transformer-based models and the feed-forward 
networks in the discriminative models were built using 
PyTorch [159]. The parameters of the transformer-based 
models were optimized using the Sophia optimizer [151]. 
The GAT components of the discriminative models were 
built using PyTorch Geometric [160]. The hyperparam-
eters of the discriminative models were optimized using 
Optuna [161]. The hyperparameters that were optimized 
include: batch size, learning rate, weight decay, the num-
ber of GAT attention heads used in the graph model, the 
output dimension of the GAT mechanism used in the 
graph model, and the dropout rate applied to the fully 
connected components of the complete architecture. 
SMILES canonicalization, as well as the calculations of 
physicochemical properties and molecular scaffolds were 

Fig. 7 Visualization of the CardioGenAI framework applied to venetoclax (A, B), itraconazole (C, D), and ibutilide (E–H). In each case, the specified 
predicted cardiac ion channel  pIC50 value for each of the generated compounds is set to be at least an improvement of one order of magnitude 
compared to that of the input compound. For each optimization, the input molecule, the 100 generated refined molecules, and the molecules 
in the training set for the transformer-based models (approximately 5 million datapoints), are projected into a principal component analysis 
(PCA)-reduced physicochemical-based space. The input compound is colored yellow, the generated refined compounds are colored purple, 
and the compounds in the training set of the transformer-based models are colored red. The first two principal components explain 45.07% 
and 17.61% of the total variance, respectively. For venetoclax, which has a predicted  NaV1.5  pIC50 of 6.72, we reduce the  NaV1.5  pIC50 by at least 
one order of magnitude for each generated compound (B). For itraconazole, which inhibits  CaV1.2 with a predicted  pIC50 of 8.72, we reduce 
the  CaV1.2  pIC50 by at least one order of magnitude for each generated compound (D). For ibutilide, which has a predicted  pIC50 for hERG,  NaV1.5, 
and  CaV1.2 of 7.98, 4.24 and 4.02, respectively, we independently increase the  NaV1.5  pIC50 by at least one order of magnitude for each generated 
compound (F) and increase the  CaV1.2  pIC50 by at least one order of magnitude for each generated compound (H). In each case, the CardioGenAI 
framework is able to identify the region of physicochemical space corresponding to compounds that are similar to the input compound, yet exhibit 
significantly improved activity against the respective cardiac ion channel. The densities of predicted  pIC50 values of the generated refined 
compounds against the respective cardiac ion channel are shown. Relevant metrics are shown on each plot
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performed using RDKit [113]. Scikit-learn was used to 
calculate pairwise mutual information between chemical 
features and cosine similarity between descriptor vectors, 
as well as to perform PCA [162].
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