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Abstract 

Protein–protein interactions (PPIs) are central to the mechanisms of signaling pathways and immune responses, 
which can help us understand disease etiology. Therefore, there is a significant need for efficient and rapid automated 
approaches to predict changes in PPIs. In recent years, there has been a significant increase in applying deep learn-
ing techniques to predict changes in binding affinity between the original protein complex and its mutant variants. 
Particularly, the adoption of graph neural networks (GNNs) has gained prominence for their ability to learn representa-
tions of protein–protein complexes. However, the conventional GNNs have mainly concentrated on capturing local 
features, often disregarding the interactions among distant elements that hold potential important information. In 
this study, we have developed a transformer-based graph neural network to extract features of the mutant segment 
from the three-dimensional structure of protein–protein complexes. By embracing both local and global features, 
the approach ensures a more comprehensive understanding of the intricate relationships, thus promising more accu-
rate predictions of binding affinity changes. To enhance the representation capability of protein features, we incor-
porate a large-scale pre-trained protein language model into our approach and employ the global protein feature 
it provides. The proposed model is shown to be able to predict the mutation changes in binding affinity with a root 
mean square error of 1.10 and a Pearson correlation coefficient of near 0.71, as demonstrated by performance 
on test and validation cases. Our experiments on all five datasets, including both single mutant and multiple mutant 
cases, demonstrate that our model outperforms four state-of-the-art baseline methods, and the efficacy was sub-
jected to comprehensive experimental evaluation. Our study introduces a transformer-based graph neural network 
approach to accurately predict changes in protein–protein interactions (PPIs). By integrating local and global features 
and leveraging pretrained protein language models, our model outperforms state-of-the-art methods across diverse 
datasets. The results of this study can provide new views for studying immune responses and disease etiology related 
to protein mutations. Furthermore, this approach may contribute to other biological or biochemical studies related 
to PPIs.

Scientific contribution Our scientific contribution lies in the development of a novel transformer-based graph neural 
network tailored to predict changes in protein–protein interactions (PPIs) with excellent accuracy. By seamlessly inte-
grating both local and global features extracted from the three-dimensional structure of protein–protein complexes, 
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and leveraging the rich representations provided by pretrained protein language models, our approach surpasses 
existing methods across diverse datasets. Our findings may offer novel insights for the understanding of complex dis-
ease etiology associated with protein mutations. The novel tool can be applicable to various biological and biochemi-
cal investigations involving protein mutations.

Keywords  Graph neural network (GNN), Graph transformer, Protein–protein interaction (PPI), Binding affinity, 
Mutation changes

Introduction
Protein–protein interactions (PPIs) are crucial for many 
fundamental biological processes. Among them, PPIs 
induced by mutations play a critical role in understand-
ing the mechanisms of some signaling pathways, immune 
responses, or the structural integrity of cellular compo-
nents [1]. For instance, antibodies, which are a major 
component of human’s immune system, interact with 
specific target antigens to trigger an immune response. 
There are studies suggesting that research on these inter-
actions may aid in understanding how specific mutations 
will affect protein stability and help to study potential 
genetic susceptibility [1].

Binding affinity, or free energy of binding, is a com-
monly recognized thermodynamic criterion for measur-
ing PPIs. Since wet-lab experiments are labor-intensive 
and time-consuming, emphasis has been placed on rapid 
and accurate automated methods. In particular, some 
machine learning methods, such as gradient boosting 
trees and support vector machines, offer the possibility to 
directly establish the relationship between mutations and 
binding affinity changes. Moreover, with the increasing 
complexity of data, there has been a growing interest in 
deep learning methods. So far, these automated methods 
fall into two main categories: sequence-based methods 
and structure-based methods [2]. Sequence-based meth-
ods, such as Stacked Auto-encoder, proposed by Sun 
et al. have been shown to achieve good prediction perfor-
mance [3]. Nevertheless, structural information of PPIs, 
such as their locations and adjacent nodes, has also been 
shown to be important in PPI prediction [4]. As a result, 
deep learning frameworks incorporating structural fea-
tures of proteins for prediction have been increasingly 
developed. For example, TopGBT [5] employs topology-
based features to depict the protein complexes, whereas, 
this type of features are not initially intended to represent 
the interatomic interactions, thereby constraining their 
predictive capacity for the alterations in binding affin-
ity arising from mutations or the detection of nuanced 
alterations in conformations due to their topological 
abstraction. The study of mCSM-PPI2 [6] integrates 
the well-established mutation Cut-off Scanning Matrix 
(mCSM) graph-based signatures framework with seven 
features including graph-based structure, evolutionary 

information, and non-covalent interaction network 
analysis to predict the effect of mutations on PPIs. The 
famous MutaBind2 [7] approach incorporates seven fea-
tures, including the interaction between proteins, the 
evolutionary conservation of proteins, and the thermo-
dynamic stability of protein complexes, etc.

Despite the growing interest in using machine learning 
to understand the structure of proteins, this task presents 
unique challenges that differ from other types of data 
since protein structures cannot be directly reduced to 
simple numerical or pixel representations. Unlike many 
other types of data, proteins are composed of atoms and 
chemical bonds that possess inherent distance and angle 
information, rendering them unsuitable for placement in 
Euclidean domains. Geometrically, proteins are graphs 
by nature. This has sparked interests in the Graph Neu-
ral Networks (GNNs), which have emerged in recent 
years and excel in processing data from non-Euclidean 
domains. GNNs possess the ability to learn from the 
topology and connectivity of the graph structure, cap-
turing complex relationships between atoms and their 
neighbors such as the distances between atoms, the 
angles between bonds, and the orientation of the entire 
molecule. These properties play a key role in determining 
the functions of the proteins and the effect of mutations 
on protein–protein interactions. Consequently, they can 
perform better for the processing of protein features and 
can provide more information than those are based on 
structural data only [8].

The advent of GNNs has come to the forefront in the 
past two years and has paved the way for the develop-
ment of new learning and prediction methods that uti-
lize these networks [8]. A study known as ScanNet [9] 
specifically introduces a spatio-chemical arrangement 
of neighbors neural network. GeoPPI [10], a geometric 
deep learning approach that generates the graph rep-
resentations of mutations and learns the mapping from 
these representations to corresponding mutation effects, 
thereby enabling the prediction of affinity changes. Con-
spicuously, the test of GeoPPI [10] on the M1707 [7] 
dataset can reach a Pearson correlation of 0.74, which 
is the best performance of the benchmark methods on 
multi-point mutation datasets.
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Furthermore, with the proliferation of large-scale pre-
trained language models in the broader field of machine 
learning, more and more large-scale pre-trained protein 
language models are emerging and being embraced in 
cheminformatics research. These include models that 
focus on capturing evolutionary signals within proteins, 
leveraging extensive sequence information to predict 
their structure, functions, and other foundational proper-
ties exclusively from their amino acid sequences, which is 
similar to using large language models to derive seman-
tic information and language patterns from the contexts 
[11–14]. Typically developed through unsupervised strat-
egies on sufficiently large datasets, these models exhibit 
intricate architectures with a large number of param-
eters, enabling them to encapsulate an extensive range 
of sequence information and complex feature interde-
pendencies. As a result, they are well-equipped to gener-
alize effectively across diverse branching tasks, marking 
a significant stride towards enhanced comprehension 
and application within the domain of protein-centric 
research. These findings serve as a compelling evidence 
of the potential of deep learning methods, particularly 
geometric ones, in accurately predicting the effects of 
the protein mutations on PPIs. Furthermore, they drive 
us to explore innovative avenues for model enhancement, 
integrating valuable insights from prior investigations to 
develop more effective approaches and achieve meaning-
ful outcomes.

The present study successfully designs a novel method 
for predicting the effects of protein mutations on pro-
tein–protein interactions based on the three-dimensional 
structure of protein–protein complexes. The proposed 
model improves efficiency, accuracy and generalization 
ability over traditional models, thereby showing promise 
for applications in studying complex genetic diseases as 
well as in drug development.

Materials and methods
Datasets
In this work, we used five open-source datasets contain-
ing single-point and multi-point mutations of known 
proteins, with experimentally determined effects of these 
mutations on the folding free energy. Additionally, we 
incorporated a dataset for a case study, comprising potent 
antibodies targeting SARS-CoV-2 S protein complexes. 
For the five open-source datasets, the graph inputs for 
the neural network were derived from the experimen-
tally resolved complex structures provided within the 
datasets. For the case study dataset, due to the absence 
of high-resolution structures, the graph inputs were gen-
erated from homology models built by the Rosetta3 tool 

based on sequence information. Rosetta3 was selected 
due to its foundation in physicochemical modeling and 
statistical mechanics, offering greater interpretability [15, 
16].

The training and testing process involves the follow-
ing five datasets (Table 1): S2648 [17], S3421, S4169 [18], 
M1101, and M1707 [7], which have been widely used to 
train and evaluate PPI prediction methods. These data-
sets include data on the changes in thermodynamic 
energy and kinetic rate constants upon mutations in 
PPIs, with the solved complex structures. S2648 encom-
passes a total of 2648 single-point mutations occurring 
in 131 distinct globular proteins, while S3421 comprises 
3421 mutations identified experimentally in 150 proteins. 
Additionally, S4169 consists of 4169 variants selected 
from 319 different complexes, representing single-point 
mutations filtered from the SKEMPI 2.0 dataset [18]. The 
dataset denoted as M1101, on the other hand, includes 
1101 distinct data points, which consist of both single-
point mutations and multi-point mutations. The dataset 
M1707 comprises a total of 1337 variants, which include 
multi-point mutations along with their corresponding 
reversed mutations in certain regions. These data will be 
used as predictors of changes in binding affinity to assess 
the effect of PPIs.

Method
Problem formulation
A protein–protein complex arises from the non-cova-
lent interaction between two or more protein mole-
cules, facilitated through hydrogen bonds, electrostatic 
forces, and van der Waals forces [19]. This interaction 
can lead to structural changes in the protein conforma-
tion, which can ultimately impact its activity or function. 
The strength of the protein–protein interaction is often 
measured by binding affinity, which is estimated using 
the change in Gibbs free energy ( ��G ) associated with 
a mutation.

In this study, the main objective is to prognosticate the 
��G that is expected to occur in the protein–protein 
complex, because of mutations in the protein structure.

Table 1  Summary of datasets

Dataset Data Type Task Number of 
proteins 
complexes

S2648 Single Mutation Regression 2648

S3421 Single Mutation Regression 3421

S4169 Single Mutation Regression 4169

M1101 Single and Multipoint Mutation Regression 1101

M1707 Multipoint mutation Regression 1707
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where �G represents the unfolding energy of a protein. 
�Gwild−type signifies the change in free energy upon bind-
ing in the wild-type protein complex, while �Gmutant 
represent the same quantity for the mutant complex.

Graph Initialization
The input data derived from the Protein Data Bank (PDB) 
files typically encompasses the elemental composition 
and structural details pertaining to protein complexes. 
To focus on the region where the mutation occurs and 
capture the salient feature information, some methods 
focus directly on mutant partial features, such as ProS_
GNN [20], which extract data pertaining to the mutant 
segment and utilizing message passing to effectively cap-
ture molecular characteristics. Drawing on this strategy, 
in this work we first "pruned" the involved and adjacent 
residues from the original protein–protein complex and 
its corresponding mutants, and then we devised the 
feature vector for individual atoms, encapsulating both 
vertex and edge information. This kind of feature vec-
tor effectively encoded a spectrum of attributes, includ-
ing elemental identity, the number of neighboring atoms, 
implicit valence, and the presence of aromatic bonds. 
The “pruning” process not only facilitates targeted model 
training but also enhances computational efficiency. Fur-
thermore, with these encoded features, we could success-
fully initialize the input graph for subsequent stages of 
analysis, wherein the nodes denote atoms, and the edges 
denote chemical bonds, thereby enabling a more focused 
and efficient exploration of molecular interactions.

Protein language model
Concurrently with the training and demonstration of 
the remarkable general-purpose language capabilities 
of large-scale language models, their transfer applica-
tions within the field of biochemistry have been evolv-
ing [21]. This evolution has given rise to the emergence 
of large-scale protein language models. Similar to their 
counterparts in the domain of natural language, protein 
language models possess the capability to deduce and 
acquire knowledge from large-scale data sets, have been 
regarded as their corpus, intrinsic biochemical attributes, 
diverse structural layers, and the implicit functional prin-
ciples embedded within sequence information, which 
can be seen as their “contextual” relationships. These pre-
trained protein language models find utility in various 
downstream applications, including predicting protein 
structures, inferring protein functions, and generating 
novel sequences.

Furthermore, it is worthwhile to contemplate language 
models that place a particular emphasis on capturing 

(1)��G = �Gwild−type −�Gmutant , evolutionary information embedded within sequences 
[22]. It has been widely acknowledged that protein 
sequences in organisms are not randomly arranged per-
mutations of amino acids, but rather exhibit discernible 
patterns, attributable to natural selection. For example, 
the pattern of variation of a protein in its family can 
reflect its structure, or non-independently evolved pro-
teins may interact in a tertiary folded structure. Some 
methods that incorporate evolutionary profiles, such as 
SSIPe, have obtained good results [23]. Such patterns are 
presumably not captured by limited-scale models trained 
on small datasets.

Model structure
We propose a new architecture, named GES-PPI (a 
Graph-based neural network integrated with Evolu-
tionary Scale modeling for Protein–Protein Interac-
tions prediction), to predict the effects of mutations on 
protein–protein interactions The model consists of two 
primary components: a gated GNN and a graph trans-
former, as illustrated in Fig. 1. Overview of the GES_PPI 
Model Architecture. The pruned wild-type information 
and mutation information are fed into the model sepa-
rately for analysis.

A gated GNN [24] is subsequently utilized to process 
the atomic features of the pruned region and facilitate the 
mapping of the protein’s 3D structural information and 
component composition to a high-dimensional represen-
tation. Here we employ a graph convolutional network in 
which the key idea is to apply convolution over the graph 
with the propagation rule of

with the Â = A+ I . A ∈ R
n×n is the adjacent matrix, 

where n is the number of the mutant atoms. I is the iden-
tity matrix, and D is the diagonal node degree matrix of 
Â . With this rule, in each layer, the atom features Hl ( 
Hl ∈ R

n×d ), undergo successive iterations of graph con-
volution, leading to the generation of an updated feature 
set:

with the LeakyReLU defined as:

W ∈ R
n×n is the weight matrix, and d denotes the 

dimension of the hidden state. To enhance the perfor-
mance of feature extraction, we seamlessly incorporate 
the gating mechanism into the network. The gated graph 

(2)f (H (l)
,A) = σ

(
D− 1

2 ÂD− 1
2H (l)W (l)

)
,

(3)H (l+1) = LeakyReLU
(
WAHl

)
.

(4)Leaky ReLU(x) =
{
0.01 x, for x < 0

x, for x ≥ 0



Page 5 of 13Zhang et al. Journal of Cheminformatics           (2025) 17:35 	

layer is characterized by a linear combination of H (l) and 
H (l+1):

with

Wgate ∈ R
n×d should be the learnable weight matrix 

and B ∈ R
n×d be the bias matrix. σ(·) is the sigmoid acti-

vation . The gate connection would be added to the first 
layer and produce the final outputHout

gated_gcn ∈ R
n×d:

During this step, each atom within the graph assimi-
lates local information from its adjacent atoms and 
bonds, leading to the updating of its features. By aggre-
gating the information from all atoms, global features 
could be obtained, and the total molecular energy could 
be calculated from the energy contributions of all indi-
vidual atomic vectors in the generated feature vectors. 
Consequently, we obtained feature vectors for both the 
wild-type and mutant protein–protein complexes. To 
quantify the impact of mutations, we subtracted the 
characteristic vector of the mutant complex from that of 
the wild type, yielding a contrasting feature vector. The 

(5)Hgate = GH (l) + (1− G)H (l+1),

(6)G = σ
(
Wgate

[
H (l),H (l+1)

]
+ B

)
.

(7)Hout
gated_gcn = H1 +Hgate.

final change in binding free energy (ΔΔG) is subsequently 
computed utilizing this contrasting vector, elucidat-
ing the energetic distinctions between the two complex 
states.

The present gated GNN sub-module has already exhib-
ited an ability to acquire salient features and attributes 
inherent in the structure itself. Despite its proficiency, 
the gated GNN, similar to other GNNs, is heavily reliant 
on the links and adjacent features present in the graph. 
However, the determinants implicated in the protein 
complex mutations can be diverse and intricate, and 
even when the focus is solely on the mutated regions, it 
is imperative for the model to capture distant dependen-
cies. This leads us to the transformer [25], which is built 
on the attention mechanism that transcends sequential 
relations and is unconstrained by links, consequently 
facilitating global inference capabilities.

In this work, we incorporate the widely adopted frame-
work proposed by GraphTrans [26] in order to enhance 
the layer stacks of a single gated GNN and assist in 
representing long-range contextual relationships. The 
transformer sub-network employs herein functions as 
a distinctive readout module for the preceding gated 
GNN, facilitating pairwise interactions between learning 
graph nodes and subsequently amalgamating them into 
unique token embeddings. Specifically, after obtaining 
the final per-node GNN encodings, these representations 

Fig. 1  Overview of the GES_PPI Model Architecture. The GES_PPI model combines structural and evolutionary insights for predicting ΔΔG. 
Initially, the protein complexes are trimmed and processed by a gated GNN to capture local structural information. Subsequently, a Graph 
Transformer refines this representation by learning long-range relationships. With additional features derived from the pre-trained ESM model, 
the comprehensive feature set is used to predict the ΔΔG, indicating the difference in stability between the wild-type and mutant protein 
complexes
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are forwarded to the Transformer sub-network, which 
initially performs a linear projection of the per-node 
encodings into the Transformer dimension and subse-
quently conducts layer normalization to normalize the 
embeddings

where LN (·) is the layer normalization function and 
Wproj ∈ R

dtf ×dtf  is a learnable matrix. A transformer 
operation is performed on the projected embeddings and 
the embedding of each node is updated with

αl+1
vw  is the attention value between node v and w , and 

WV
l ∈ R

dtf ×dtf  is the value matrix. The calculation of the 
attention matrix Attnl+1 ∈ R

N×N between all pairwise 
nodes is performed as follows:

where WQ
l+1

 , WK
l+1

∈ R
dtf ×dtf  denote the query and key 

matrices and softmax(·) is the softmax function.
The representation of the protein–protein complex 

derived from the graph transformer is obtained through 
a pooling operation. This resulting representation is then 
concatenated with the output of the evolutionary scale 
protein language model (ESM) model. This concatena-
tion leads to the generation of the final representations 
denoted as Fwild_type and Fmutant , corresponding to the 
wild type complex and the mutant complex, respectively.

In order to further enhance the predictive efficacy of 
the proposed model, the integration of additional fea-
tures derived from a pre-trained model are taken into 
consideration. In our approach, we harness the ESM, as 
shown in Fig.  1. The ESM is an unsupervised language 
model which is specifically designed to comprehend 
the evolutionary signals imprinted in protein sequences 
over vast timescales, yielding insights into the relation-
ships between sequence, structure, and function [27, 28]. 
Trained by extensive sequence information available in 
protein databases, it is capable of extracting high-level 
features from protein sequences.

A protein language model operates by capturing 
intricate patterns and dependencies within protein 
sequences, enabling it to discern meaningful representa-
tions from amino acid sequences [14]. By incorporating 
ESM’s global features into our model architecture, we 
enhance its ability to encapsulate nuanced information 
encompassing a protein’s evolutionary context. These 
augmented features, synergistically combined with the 

(8)H0
tf = LN

(
WprojHout

gatedgcn

)
,

(9)hl+1
v =

∑
w∈V αl+1

vw WV
l hlw .

(10)Attnl+1 = softmax

((
W

Q
l+1

Hl
)T(

WK
l+1

Hl
)

√
dtf

)
,

localized features extracted through graph convolutions, 
enable a comprehensive representation of the protein–
protein complexes. This integration empowers our model 
to capture both intricate local interactions and broader 
evolutionary trends, resulting in more accurate predic-
tions of binding affinity changes. Through this innova-
tive fusion of techniques, our approach underscores the 
significance of holistic feature extraction in advancing 
predictive modeling within the domain of protein–pro-
tein binding affinity prediction. Notably, by fusing the 
global features extracted from the ESM with the features 
obtained in this study after pooling them separately, 
more favorable results are obtained in the testing phase.

Model training
This study involves the development of a deep learn-
ing model designed to predict the changes in binding 
affinity stemming from mutations on protein–protein 
complexes. The model is developed using a supervised 
learning approach, where the input data consists of a set 
of protein–protein complexes, each with a known wild-
type and mutant state, and the output consists of the pre-
dicted binding affinity changes due to the mutations.

To train the model, the input data is split into two sets: 
a training set and a test set, in an 8:2 ratio. We also per-
formed model selection through a tenfold cross-valida-
tion (CV) on the training set. The training set is used to 
iteratively update the model parameters by minimizing 
the mean squared error between the predicted and actual 
binding affinity changes.

The tenfold CV is used to evaluate model performance 
during training and mitigate the risk of overfitting. The 
model is stopped after a fixed number of epochs, which is 
determined by monitoring the performance of the model 
during the cross-validation. The model architecture con-
sists of a gated Graph Neural Network submodule, with 
a vertex vector dimension of 120, fully connected layers 
with a dimension of 1024, and Leaky ReLU as the activa-
tion function. The training process involves a batch size 
of 32, a dropout rate of 0.5, a learning rate of 0.001, and 
the Adam optimizer. The final model is then evaluated on 
an independent test set to assess its ability to generalize 
unseen data.

Model evaluation and baseline models
The present study is executed utilizing an Nvidia 
Geforce GTX 3070 Ti GPU, and the model is developed 
through the implementation in Pytorch. The primary 
criteria employed for assessing the accuracy of the pre-
dictions are the Pearson correlation coefficient (Rp) and 
the Root Mean Square Error (RMSE) of the experimen-
tal and predicted ΔΔG values.
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The Rp, ranging from -1 to 1, qualifies both the inten-
sity and direction of the relationship between two 
variables. When one variable changes, the other vari-
able also changes in concordance with that direction. 
The RMSE is the difference between values predicted 
by the model and actual values, and it is calculated as 
the square root of the mean of the squared differences 
between the predicted ΔΔG values and actual ΔΔG val-
ues. The formula for RMSE is as follows:

where n is the total number of samples, ypred(i) is the 
predicted ΔΔG value for the i-th sample, and ytrue(i) is 
the actual ΔΔG value for the i-th sample.

We perform comparative evaluations of GES_PPI 
against 4 baseline methods. These include two state-of-
the-art geometric approaches: (1) a supervised gated_
GNN with an input trimming strategy (ProS_GNN 
(20)); (2) a gradient boosting tree wherein the input 
graph is generated by a self-supervised perturbation-
based geometric encoder (GeoPPI (10)). Besides, we 
compare our model with other two well-known studies 
in similar topic: a random forest method (MutaBind2 
(7)) and a topology-based GBT architecture (TopGBT 
(5)), to demonstrate the power of our proposed 
approach.

The training dataset is utilized to iteratively update the 
model parameters by minimizing the RMSE between 
predicted and actual binding affinity changes. We test 
the model and its baselines in its entirety and without 
the inclusion of the ESM pre-trained model on each of 
the five test datasets. Finally, there are independent test 
sets to evaluate the model’s ability to generalize to unseen 
data.

Ablation analysis
In addition to the effects of the previously mentioned 
ESM components on the expressiveness of the model, 
to investigate the contribution of the pre-trained model, 
pruning strategy, and transformer framework respec-
tively in our proposed method, we conduct ablation 
analysis experiments on the S2648 [17] dataset. We 
sequentially remove each significant component from the 
model and evaluate its performance on the prediction of 
ΔΔG. First, we remove the graph transformer component 
and only use the gated GNN to process the atomic fea-
tures of the pruned region. We then evaluate the impact 

(11)RMSE =

√
1
n

n∑
i=1

(
ypred(i)− ytrue(i)

)2
,

of the "pruning" step by using the whole graph of the pro-
tein complex.

Case study
In this section, we assess the realistic utility of our 
framework employing SARS-CoV-2 as an illustrative 
case study [29]. We seek to investigate our model’s 
applicability in capturing the effect of antibody (Abs) 
mutations on SARS-CoV-2 binding affinity [30, 31]. For 
this evaluation, we use a test dataset containing potent 
Abs to SARS-CoV-2 S protein complexes [10, 29], pri-
marily identified from recovering patients affected 
by SARS-CoV-2. For each Ab, we identified templates 
with high sequence homology and used the "compara-
tive modeling" feature in Rosetta3 to generate possible 
structures. The structure with the highest score was 
then selected.

The performance of GES_PPI is rigorously assessed 
by measuring the disparity between the predicted and 
experimental binding affinity changes of each pair of 
structurally similar antibodies to SARS-CoV-2. This 
investigation provides valuable insights into the effec-
tiveness of GES_PPI in accurately predicting the impact 
of antibody mutations on the binding affinity to SARS-
CoV-2, further extending its potential applications in 
addressing critical challenges posed by the ongoing 
pandemic.

Results
Model performance
The proposed model was first evaluated on three sin-
gle-mutation datasets. As shown in Table  2, GES_PPI 
garnered the highest correlation coefficients and the 
lowest RMSEs across all these three datasets. Further-
more, it also exhibited good performance on the two 
datasets containing multi-point mutations, with high-
est correlation coefficients on M1101 and lowest RMSE 
on M1707. It is worth noting that GES_PPI outper-
formed the baseline model, ProS_GNN, by improving 
the correlation by 6% on M1101, which contains both 
single-point and multi-point mutations.

To demonstrate the ability of the proposed method 
itself to extract and analyze features, we removed the 
ESM module for a complete test. As illustrated in 
Table  2, the model (called gnn_PPI) could still exhibit 
higher correlation coefficients than benchmarks on 
both the S2648 [17] and S3421 datasets, as well as lower 
RMSE on the S3421 and S4169 [18] datasets. When 
tested with the S3421 dataset, the proposed method 
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achieved Rp = 0.717 and RMSE = 1.641 (Fig. 2a). These 
findings suggest that the proposed method performs 
competitively on datasets of different sizes. In addition, 
the test results on multi-point mutation datasets dem-
onstrated that the proposed model achieved the highest 
correlation coefficients and the lowest RMSEs on both 
datasets. When tested with the M1707 [7] dataset, the 
proposed model achieved Rp = 0.754 and RMSE = 2.142 
(Fig. 2b).

To further evaluate the robustness of the high corre-
lation of our proposed models, we calculated the stand-
ard deviation of the correlation values based on tenfold 
cross-validation in the training set, which is shown in 
Table  3. Overall, we can see the correlation values are 
relatively stable, and their standard deviations are rela-
tively small.

What is more, computational efficiency is also an 
important consideration in the development of this 
predictive model, especially in the context of high-
throughput screening and drug discovery. In this study, 
we compared the inference time of the five benchmark 
models, as illustrated in Fig.  3, in order to assess the 
computational speed and efficiency of our proposed 
approach. The results indicate that the proposed GES_
PPI model exhibits significantly faster prediction times 
compared to most of the benchmarks, with an average 
time of 16  s for predicting the binding affinity change 
of a single mutant. Although the computational time 
for the proposed model’s prediction is one second 
slower than that of ProS_GNN [20], the experimen-
tal results presented above show that GES_PPI exhib-
its better predictive performance. This is noteworthy 
considering that the original purpose of selecting 

Table 2  Comparison of the proposed method with pre-trained protein language model for the single and multi-point mutations in 
terms of RP and RMSE

The bold values represent the best results within each column, corresponding to the specific dataset and evaluation metric

-: the dash sign indicates the results of the corresponding methods are not available

*: gnn_PPI represents the method without the ESM pre-trained model

Method Single Mutation Multi-Point Mutation

S2648 S3421 S4169 M1101 M1707

Rp RMSE Rp RMSE Rp RMSE Rp RMSE Rp RMSE

GES_PPI 0.649 1.132 0.717 1.641 0.689 1.563 0.569 1.762 0.754 2.142
gnn_PPI* 0.627 1.220 0.673 1.694 0.625 1.570 0.543 1.761 0.740 2.176

ProS_GNN 0.608 1.207 0.663 1.724 0.657 1.619 0.510 2.024 0.694 2.343

GeoPPI 0.584 1.188 0.682 1.701 0.592 1.588 0.562 1.885 0.727 2.235

MutaBind2 0.532 1.228 0.690 1.695 0.628 1.596 0.529 1.794 0.712 2.256

TopGBT 0.451 1.352 0.543 1.846 0.409 1.628 – – – –

Fig. 2  Predicting ΔΔG for mutations in S3421 and M1701 datasets respectively
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automated methods is to enable time-saving and effi-
cient prediction.

Ablation analysis
The results of the ablation analysis experiments are pre-
sented in Table 4, indicating that the performance of the 

model was noticeably affected by removing any part of 
the model. The performance is represented by mean ± 
standard deviation of the evaluation metric across ten-
fold CV. The results emphasize the importance of tar-
geted training and the graph transformer. Without either 
of these two components, the prediction error of the 
model rises. The performance of the model also dropped 
from GES_PPI to gnn_PPI, indicating that the features 
from large-scale pre-trained model are essential compo-
nents for accurate ΔΔG prediction. In general, the abla-
tion analysis results demonstrate that each component 
of our proposed method plays a crucial role in predicting 
ΔΔG.

This gives the test results of model with different 
components.

Case study
The Abs dataset, with an average number of mutations 
around 11, is more complex than the multi-point muta-
tion dataset, M1707 [6] (with an average number of 
mutations around 3), used for training and consequently 
poses a significant prediction difficulty. It is noteworthy 
that in such a case, GES_PPI still achieved a correlation 
result of 0.63, a significant advantage over Mutabind2 
(0.29 correlation) (Fig.  4), which was also tested using 
this Abs dataset. This suggests that GES_PPI, while pri-
marily designed for general PPIs, has the potential to 
extend its applicability to more specialized and challeng-
ing contexts.

Interpretability
Beyond the evaluation of a model’s performance, it 
holds significance to delve into the identification of 
specific subcomponents within the complex structure 
that exert a more pronounced influence on predictions. 
The attention mechanism employed in Transformers 
facilitates the identification of potential biomarkers 
or critical regions within the protein structure, which 
represents an insight into the contribution of different 
substructures of the protein structure by visualizing its 
attentional weight in this part of the network., and thus 

Table 3  The results of the RP and RMSE with standard deviation 
of the proposed models (GES_PPI and gnn_PPI)

*: gnn_PPI represents the method without the ESM pre-trained model

Method Dataset Rp RMSE

GES_PPI S2648 0.6491 ± 0.0108 1.1324 ± 0.0114

S3421 0.7166 ± 0.1022 1.6413 ± 0.0840

S4169 0.6892 ± 0.0126 1.5633 ± 0.0143

M1101 0.5679 ± 0.0221 1.7622 ± 0.1421

M1707 0.7538 ± 0.1097 2.1421 ± 0.0988

gnn_PPI* S2648 0.6272 ± 0.0441 1.2197 ± 0.0308

S3421 0.6725 ± 0.1320 1.6944 ± 0.0806

S4169 0.6254 ± 0.1052 1.5697 ± 0.1231

M1101 0.5433 ± 0.2597 1.7607 ± 0.2080

M1707 0.7397 ± 0.1956 2.1756 ± 0.1427

Fig. 3  The computational time (second/variant) needed 
for the prediction of individual methods

Table 4  Results of ablation analysis experiments

The bold values highlight the RMSE or Rp values themselves, distinguishing them from the standard deviation values after the ± symbol

Components Performance

Pruning Gated_GCN Transformer ESM RMSE Rp

√ √ √ √
1.1324 ± 0.0114 0.6491 ± 0.0108

√ √ √
1.2197 ± 0.0308 0.6272 ± 0.0441

√ √
1.2305 ± 0.0327 0.5818 ± 0.0319

√
1.2516 ± 0.0454 0.4997 ± 0.0336
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plays a crucial role in enhancing the interpretability of 
our model’s predictions.

We took the reduced form of DsbA from Escherichia 
coli, the 1A23 protein, as an example, for which the wild-
type structure is shown in Fig. 5a. We selected the amino 
acid at position 31, where the mutation occurs from His-
tidine (H) to Tyrosine (Y). We extracted the attention 
weights in the Graph Transformer sub-network and drew 
the attention matrix, as shown in Fig. 5b. Following this, 
we correlated the extrated attention weights with the 
initial feature matrix for wild-type data and colored the 
selected wild-type structure in the figure. As shown in 
Fig. 5a, the brighter areas indicate that, in the upcoming 

mutation, will contribute more in the calculation of 
energy change. Although the mutation occurs from one 
type of amino acid to another type, the change in side-
chain composition and structure affects how the amino 
acid interacts with other molecules, and may therefore 
be captured as different contributions, which are the 
weights, in model learning.

By enabling the model to focus on relevant features and 
interactions within the input data, we can gain valuable 
insights into the influential regions of the protein struc-
ture for the prediction task. This interpretability analysis 
empowers researchers and domain experts to identify 
key molecular interactions and structural elements that 
significantly contribute to changes in binding affinity.

Discussion
The results of this study are subject to certain limitations 
and potential sources of bias that are likely to impact 
their validity. Specifically, one such limitation arises from 
the scarcity of thermodynamic measurements of proteins 
in the current databases, which may restrict the model’s 
applicability to larger and more diverse datasets. The 
accuracy of binding affinity predictions may be sensitive 
to the quality of the 3D structures used, and variations 
in ΔΔG values among individual datasets due to diverse 
experimental conditions may further impact the assess-
ment and veracity of the predicted results [33–35].

The limitations in the diversity of mutations across 
existing real datasets might also pose challenges in 
extending the model to datasets with greater variation, 

Fig. 4  Case study on potent Abs to SARS-CoV-2 S protein complexes. 
The plot shows pairwise prediction performance between structurally 
similar Abs

Fig. 5  Visualization of attention weights for the wild-type structure of the 31st amino acid in the 1A23 protein chain. a Visualization of the wild-type 
structure of the 1A23 protein at position 31, highlighting the atom significance using attention weights. b Attention matrix showing 
the significance of atoms when a mutation occurs in the wild-type structure
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potentially impacting its practical utility [33]. Alanine 
scanning, for example, involves the systematic substitu-
tion of amino acids with alanine to determine their role 
in protein function and interactions. While this approach 
is useful for identifying key residues, it may introduce 
biases as it primarily features alanine substitutions. This 
limited diversity may not reflect the full range of amino 
acid substitutions that may occur in the natural environ-
ment. Furthermore, potential similarities within the data-
sets may impact prediction results.

We evaluated the similarity between training and test 
datasets by aligning protein sequences using Protein 
BLAST, focusing on the mutated residue and its adjacent 
residues (See Supplementary Materials for details). Simi-
larity distributions for both pruned and full sequences 
are shown in Figures S1 and S2. To assess the impact of 
sequence similarity on prediction, we applied thresholds 
(1%, 5%, 10%) and iteratively removed test samples with 
high similarity to the training set. The effect of this filter-
ing on dataset size and prediction performance is sum-
marized in Tables S1 and S2. Although removing highly 
similar sequences slightly reduced accuracy, the model’s 
performance, as indicated by the Pearson correlation 
coefficient (Rp), remained comparable to or better than 
baseline methods (Table  2). However, analyzing protein 
similarity is inherently complex, as some protein com-
plexes may exhibit significant differences in sequence 
or structure while maintaining functional similarities, 
often due to remote homology. Addressing these com-
plexities will require advanced methodologies capable 
of capturing the intricate dynamics of protein–protein 
interactions (PPIs), as well as the development of more 
comprehensive and diverse datasets.

Protein–protein interactions are inherently complex 
processes that encompass a diverse array of causes, con-
sequences, and impacts. Our proposed model aims to 
predict the changes in free energy associated with pro-
tein mutations and their significant effects on PPIs. How-
ever, it may not comprehensively capture the full range 
of PPI dynamics. The limitations in publicly available wet 
lab data make it challenging to create large-scale, system-
atic pre-training models that could fully address these 
complexities. Future advancements will require extensive 
datasets and improved methodologies to better under-
stand the intricate relationships within PPIs.

Despite these limitations, the results of this study high-
light the model’s strong generalizability, as evidenced by 
its robust performance on both single-point mutation 
datasets and multi-point mutation datasets. These find-
ings have significant implications for protein engineer-
ing and drug discovery, and the proposed model holds 
promise for diverse settings and applications in the field 
of protein–protein binding affinity prediction. While 

careful consideration of the limitations is warranted, 
the study’s outcomes can provide valuable insights and 
contribute to advancing research in the field of protein–
protein interactions. Moreover, through the analysis 
of attention weights, we can highlight specific residues, 
binding sites, or interaction patterns that exert a strong 
influence on the model’s predictions [25]. This interpret-
ability aspect not only enhances our understanding of 
the underlying mechanisms governing protein–protein 
interactions but also provides essential insights for guid-
ing further investigations and experimental validations. 
The attention mechanism highlights the specific regions 
and interactions driving the model’s predictions, making 
it a valuable tool for unraveling the complexities of pro-
tein–protein interactions. This will continue contribut-
ing to the interpretability and transparency of this kind of 
model, both in this work and future studies.

In terms of future work, we may expand our focus to 
the whole protein structure to pinpoint every amino acid 
or specific atom within the protein that are influential in 
determining the binding affinity change, not only improv-
ing the calculation accuracy. Moreover, the test results 
show room for further improvement in predicting the 
effects of multi-point mutations, suggesting that further 
development may lead to better accuracy in these com-
plex scenarios. Additionally, the proposed model could 
be improved by incorporating larger and more diverse 
datasets or utilizing a variety of data sources, which can 
potentially enhance its performance. Exploring different 
types of features and models is also a potential way for 
optimizing the performance. It is also recommended to 
explore other graph representation learning techniques 
to discover more efficient methods for automation.

Conclusions
The present study develops a large language model-
driven graph neural network model to predict the effect 
of mutation on protein–protein interaction binding affin-
ity. To streamline the training process and emphasize the 
characteristics of the mutant component, the mutant 
segment of the protein complex was initially extracted. 
This model incorporates a gated graph neural network 
to capture atomic-level features and a graph transformer 
for embedding projection, ultimately resulting in the pre-
diction of ΔΔG. The efficacy of the model was subjected 
to comprehensive experimental evaluation, with results 
demonstrating its robust competitiveness on baseline 
models using five datasets. This novel approach to the 
study of protein stability alterations through the imple-
mentation of GNNs carries significant implications for 
future stability prediction endeavors.
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