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Abstract 

Skin irritation is a significant adverse effect associated with chemicals and drug substances. Quantitative structure-activity 
relationship (QSAR) is an alternative method bypassing in vivo assay for filling data gaps in chemical risk assessment. In this 
study, we developed QSAR models based on recurrent neural networks (RNNs) to classify skin irritation caused by chemical 
compounds. We utilized chemical language notation, molecular substructures, molecular descriptors, and a combination 
of these features named conjoint fingerprints for model construction. A simple RNN, long short-term memory (LSTM), 
bidirectional long short-term memory (BiLSTM), gated recurrent units (GRU), and bidirectional gated recurrent units (BiGRU) 
architectures were used to build the QSAR models. We found that the LSTM and a combination of molecular fingerprints 
and descriptors outperformed the other models significantly with 80% accuracy, 60% MCC, and 85% AUC for the external 
test set evaluation. Thereby, we selected this model for generalizability testing with other test sets beyond our study, 
ensuring that the model can be used with other data sets. Furthermore, the applicability domain of the purposed model 
was developed, enabling a trustable prediction will be made for a test compound. This model was developed based 
on OECD guidelines for skin irritation assessment and QSAR model development, assuring compliance with all required 
standards. The models and source codes developed in this study are publicly available, facilitating chemical design and safety 
evaluation, particularly for assessing the skin irritation potential of chemicals. 

Scientific contribution 

This study advances the field by developing RNNs-based QSAR models through the innovative integration of chemi-
cal language notations with conjoint molecular features for skin irritation prediction. This approach surpasses existing 
methods in terms of predictive performance and generalization, achieving a more robust and accurate predictive 
model. The public availability of models and source codes promotes reproducibility and facilitates safer chemical 
evaluation, distinguishing this work from prior studies.
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Introduction
Skin irritation poses significant challenges in derma-
tology and pharmaceutical innovation, impacting both 
patient safety and treatment effectiveness. Skin irrita-
tion test data are integral to regulatory compliance in 
the United States (U.S.), as chemical regulatory bodies 
require these assessments to inform product hazard 
labeling and to evaluate potential risks associated with 
exposure to skin-irritating substances [1]. Tradition-
ally, acute dermal irritation testing has relied on ani-
mal models in accordance with the guidelines from the 
Organisation for Economic Co-operation and Devel-
opment (OECD TG 404) [2] and the Environmental 
Protection Agency (EPA OPPTS 870.2500) [3]. How-
ever, ethical concerns surrounding animal welfare have 
spurred significant advancements and advocacy in the 
development of alternative, non-animal methods for 
toxicity evaluation.

The Interagency Coordinating Committee on the 
Validation of Alternative Methods (ICCVAM), a coali-
tion of U.S. Federal regulatory and research entities, is 
dedicated to validating and advancing alternative test-
ing approaches with the principal goal of “reduce, refine, 
or replace the use of animals in testing where feasi-
ble” [4]. To enhance scientific reliability and improve 
the relevance of these alternative methods to human 
health, ICCVAM has developed a strategic roadmap that 
emphasizes the adoption of innovative methodologies for 
assessing the safety of chemicals and medical products 
[1]. In silico computational approaches are increasingly 
recognized as viable alternatives to conventional experi-
mental procedures, addressing key knowledge gaps, 
strengthening regulatory decision-making frameworks, 
and facilitating more ethical and efficient evaluation pro-
cesses. Furthermore, the U.S. Food and Drug Adminis-
tration’s (FDA) current regulatory policies encourage the 
integration of new alternative methods, including in silico 
models, thereby fostering confidence in their applicability 
for safety evaluations and regulatory acceptance [5].

Within in silico predictive methodologies, quantita-
tive structure-activity relationship (QSAR) modeling 
stands as one of the most widely applied mathemati-
cal modeling approaches for assessing the potential 
bioactivities of chemicals using available data from 
the literature [6–9]. This method also benefits toxicity 
assessments in various toxicity endpoints as demon-
strated in the previous quantitative structure-toxicity 
relationship (QSTR) studies [10–12]. With the high 
availability of existing experimental data, the OECD 
organization has created a detailed guidance document 
on the validation of QSAR models [13]. This guideline 
outlines fundamental principles and provides a system-
atic framework for the exhaustive validation of QSAR 

methods for various applications, thus enhancing the 
trustworthiness and acceptance of these models in both 
regulatory and research contexts.

In recent years, machine learning (ML) techniques 
have emerged as promising alternatives to traditional 
QSAR methods, offering improved predictive capabili-
ties through the analysis of complex biological data and 
chemical fingerprints [14, 15]. Additionally, advance-
ments in deep learning (DL), particularly in recurrent 
neural networks (RNNs), have shown promise in enhanc-
ing the accuracy of QSAR models [16, 17]. Neural net-
work architectures such as long short-term memory 
(LSTM) networks [18], bidirectional long short-term 
memory (BiLSTM) networks [19], gated recurrent 
unit (GRU) [20], and bidirectional gated recurrent unit 
(BiGRU) [20] have demonstrated remarkable perfor-
mance in computer-aided disease diagnosis and treat-
ment [21]. LSTM networks effectively learn long-range 
dependencies in sequential data by utilizing specialized 
memory cells to mitigate the vanishing gradient problem 
of simple RNN. BiLSTM networks enhance this mem-
ory cell further by processing data in both forward and 
backward directions, capturing context from both past 
and future sequences [22]. GRU networks streamline the 
LSTM architectures by combining the forget and input 
gates into a single update gate, resulting in faster train-
ing times while maintaining competitive performance. 
Similarly, BiGRU architectures leverage bidirectional 
processing to enhance learning from both the forward 
and backword directions of the input sequences. These 
five architectures process and store information through 
distinct pathways [23], making them vulnerable to be test 
for QSAR modeling.

In this paper, we aim to explore the application of 
simple  RNN, LSTM, BiLSTM, GRU, and BiGRU mod-
els in predicting skin irritation. By integrating advanced 
DL techniques with QSAR principles and employ-
ing both individual and conjoint features, we aspire 
to improve the accuracy and efficiency of skin irri-
tation assessments, ultimately contributing to safer 
pharmaceutical formulations and better patient out-
comes. Notably, incorporating conjoint features into 
QSAR models is vital for enhancing predictive accu-
racy. Individual features represent specific molecular 
characteristics, such as atomic environment or func-
tional groups, while conjoint features capture chemi-
cal representations from both individual features and 
demonstrate the interactions between these individual 
attributes. By utilizing these features, QSAR models 
may better understand the complexities of skin irrita-
tion responses, thereby leading to more reliable predic-
tion outcomes. The schematic workflow of the models 
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construction is illustrated in Fig.  1A. Noteworthy, the 
major contributions of this paper are as follows: 

1.	 We engineered 55 innovative predictive models 
employing RNN-based algorithms specifically tailored 
for the skin irritation endpoint. These models leverage 

six individual molecular features alongside five conjoint 
molecular features, capturing a comprehensive array 
of physicochemical descriptors, atomic environments, 
predefined substructures, topological properties, and 
character-level tokenization of SMILES strings.
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2.	 We established robust classification models dedi-
cated to accurately assessing skin irritation toxicity, 
ensuring reliability through rigorous evaluation met-
rics.

3.	 We defined a well-founded applicability domain 
(AD) for our most promising model by calculating 
the Euclidean distance between new predictors and 
a k-subset of the training data, thereby enhancing the 
model’s trustability.

4.	 We evaluated feature importance influencing model 
performance using the permutation feature impor-
tance technique, yielding critical insights into the 
molecular characteristics that drive toxicity predic-
tions and informing the design of safer chemical 
compounds.

5.	 We tested the top promising model for its perfor-
mance and generalization across various skin irri-
tation test sets. We demonstrate that our method 
outperformed existing models, securing very high 
performance and generalizability.

Methods
Data set preparation
The data set employed in this study was sourced from a 
prior investigation and has undergone a rigorous selec-
tion and curation process from well-established data-
bases [24]. This rigorous approach ensures a globally 
representative data set, wherein chemical compounds 
were systematically classified according to the Globally 
Harmonized System (GHS) into three categories: Class 
1 (corrosive), Class 2 (irritant), and NC (non-classified). 
In our study, only Class 2 and NC compounds were kept 
and assigned a binary label of 1 and 0, respectively. As a 
result, 2,488 records were obtained including the Austral-
ian Hazardous Chemical Information System (AU HCIS) 
(140 records) [25], the European Registered Substances 
Factsheets (EU REACH) (1149 records) [26], the Japa-
nese Chemical Risk Information Platform (JP CHRIP) 
(369 records) [27], the Korean National Chemicals Infor-
mation System (KR NCIS) (25 records) [28], the New 
Zealand Chemical Classification and Information Data-
base (NZ CCID) (580 records) [29], the Hazardous Sub-
stances Data Bank (US HSDB) (45 records) [30], the EU 
CLP Harmonized Classification (144 records) [31], and 
ChemSkin (36 records) [32]. Moreover, we have observed 
that the three major databases (namely AU HCIS, EU 
REACH, and JP CHRIP) have undergone meticulous 
preprocessing to ensure data integrity and analytical reli-
ability. Of the 2,488 extracted records, 1,338 were tested 
on rabbits following OECD Guideline Test No. 404, while 
1,150 records were based on in vivo data obtained using 
other guidelines.

All compounds were appended with SMILES strings, 
which are utilized for subsequent data preprocessing. 
Subsequently, we transformed the SMILES strings into 
Canonical SMILES. Then, a total of 552 duplicate com-
pounds were systematically removed from the data set. 
Additionally, no inorganic compounds or mixtures were 
identified [33]. Following the data preprocessing phase, 
a total of 1,936 compounds were acquired and finally 
divided into training and test sets at a 9:1 ratio.

Molecular feature encoding
Individual molecular descriptors
To capture a comprehensive range of chemical features, 
we employed an extensive sets of molecular descriptors 
comprising five distinct types of fingerprints: extended-
connectivity fingerprints (ECFP) using a radius of 10 and 
a bit length of 4,096, MACCS keys using 167 bits, RDKit 
fingerprints using 2,048 bits, SMILES-based token repre-
sentations, and a broad array of physicochemical descrip-
tors. The physicochemical descriptors covered molecular 
weight (MolWt), partition coefficient (LogP), hydrogen 
bond donors (NumHDonors) and acceptors (NumHAc-
ceptors), topological polar surface area (TPSA), number 
of rotatable bonds (NumRotatableBonds), count of aro-
matic rings (NumAromaticRings), count of saturated 
rings (NumSaturatedRings), heteroatom count (Num-
Heteroatoms), total ring count (RingCount), heavy atom 
count (HeavyAtomCount), and aliphatic ring count 
(NumAliphaticRings). We computed all of these features 
by using RDKit Python package (v.2024.9.4) [34].

Conjoint molecular descriptors
The conjoint fingerprints were constructed by selecting 
the most effective individual fingerprint to enhance pre-
dictive performance of the QSAR models (see Result). 
Specifically, we combined the ECFP, MACCS keys, 
RDKit fingerprints, and physicochemical descriptors to 
yield six distinct conjoint fingerprint sets: MACCS keys 
with physicochemical descriptors (MACCS_Phychem), 
MACCS keys with RDKit (MACCS_RDKit), RDKit with 
physicochemical descriptors (RDKit_Phychem), ECFP 
with physicochemical descriptors (ECFP_Phychem), 
ECFP with MACCS keys (ECFP_MACCS), and ECFP 
with RDKit (ECFP_RDKit) (Fig.  1B). Notably, SMILES 
tokens were excluded from the conjoint feature genera-
tion due to their incomprehensive predictive correlation 
with experiment values. The selection of conjoint features 
enabled the construction of a refined and highly effective 
feature sets for our predictive models.

Simple RNN models
The simple RNN models were constructed with a sin-
gle RNN layer comprising input, hidden, and output 
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components (Fig.  1C). The hidden layer consisted of 64 
units, while the output layer contained a single neuron 
utilizing a sigmoid activation function with a classifica-
tion threshold of 0.5. Model training was conducted 
with a learning rate of 0.001. A binary cross-entropy was 
used as a loss function for error feedback optimization. 
The data set was partitioned into training and valida-
tion subsets with a 70:30 ratio to ensure a robust model 
optimization. The Adaptive Moment Estimation (Adam) 
optimizer was implemented to facilitate efficient gradi-
ent descent. The models were trained over 50 epochs to 
achieve optimal performance.

GRU and LSTM models
The GRU and LSTM networks were designed with two 
sequential stacking layers of GRU or LSTM networks, 
where the first recurrent layer comprised 64 cell units, 
followed by a second layer of 32 cell units. After the 
recurrent layers, a fully connected dense layer with 100 
neurons was implemented with a ReLU activation func-
tion. The output layer, containing a single neuron, applied 
a sigmoid activation function, was set with a threshold of 
0.5 for binary classification output. We used a learning 
rate of 0.001 and binary cross-entropy as the loss func-
tion. The data set was also divided into training and vali-
dation subsets with a 7:3 ratio to support a robust model 
optimization. Gradient descent was optimized using the 
Adam optimizer, and the models were trained over 50 
epochs to achieve reliable prediction outcomes.

BiGRU and BiLSTM models
The BiGRU and BiLSTM architectures were similarly 
developed with two sequential BiGRU or BiLSTM lay-
ers, where the initial layer contained 64 cell units and the 
subsequent layer contained 32 cell units like the GRU and 
LSTM models. Following these layers, a fully connected 
layer with 100 neurons applied the ReLU activation func-
tion and a output layer consisted of a single neuron uti-
lizing a sigmoid activation function with a 0.5 threshold 
were used for model construction. The training was opti-
mized using ADAM function with a learning rate of 0.001 
and binary cross entropy. The training data was parti-
tioned into training and validation subsets with a 7:3 split 
ratio. These models were trained over 50 epochs similar 
to the previous RNN models. We used TensorFlow [35] 
(v2.17.0), Scikit-Learn [36] (v1.5.2), NumPy [37] (v.1.26.4) 
for model development.

ML models
This study utilized two conventional ML models, random 
forest (RF) and light gradient boosting machine (Light-
GBM), as benchmarks to evaluate predictive perfor-
mance against the optimal model identified in this study. 

The RF classifier was employed for predictive modeling 
using the scikit-learn library (v1.5.2). RF algorithm is an 
ensemble learning method that constructs multiple deci-
sion trees during training. In this study, the classifier was 
initialized with 100 decision trees (n_estimators=100), 
which provides a balance between computational effi-
ciency and predictive performance. To ensure repro-
ducibility, a fixed random seed (random_state=42) was 
applied, controlling the randomness involved in the tree-
building process.

LightGBM is a highly efficient, gradient-boosting 
framework designed for fast training and low memory 
consumption, particularly effective for handling large 
data sets with high-dimensional features. In this study, 
the classifier was configured with 31 leaves and 100 esti-
mators, optimizing the balance between model complex-
ity and generalization performance. Additionally, a fixed 
random seed (random_state=42) was applied to ensure 
reproducibility.

Model evaluation
In this study, the classification outcomes are delineated 
into four categories: true positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN). These 
metrics serve as foundational elements for a comprehen-
sive evaluation of the model’s performance, employing 
five critical assessment metrics: accuracy, specificity, sen-
sitivity, Matthews correlation coefficient (MCC), and area 
under the curve (AUC). Each of these metrics is com-
puted based on the formulations presented in eqs  1- 4, 
except the AUC value that was calculated based on the 
area under the curve between sensitivity and 1-specificity 
values.

In this study, the established acceptance criterion was 
set with a threshold of MCC value greater than 0.5, with 
an ideal target nearing 1, signifying a strong correlation 
between predicted and actual experimental outcomes 
[38]. Nevertheless, the accuracy, sensitivity, specificity, 
and AUC were also used to evaluate the overall accuracy, 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)

MCC =
(TP · TN − FP · FN )

√
(TP + FP) · (TP + FN ) · (TN + FP) · (TN + FN )

(3)Sensitivity =
TP

TP + FN

(4)Specificity =
TN

TN + FP
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sensitivity, specificity, and the ability to discriminate the 
positive and negative values, respectively.

Applicability domain
We implemented an Euclidean distance-based k-nearest 
neighbors (kNN) algorithm to accurately delineate the 
applicability domain (AD). This approach delineated the 
proximity between a target compound and its k nearest 
compounds in the training set [39], facilitating reliable 
classification of both in-domain and out-of-domain com-
pounds. The AD criteria are articulated through eqs   5 
and  6, where the Di quantifies the average Euclidean dis-
tance between a new prediction and its k nearest train-
ing data, serving as an indicator of similarity. An average 
Euclidean distances was calculated between each train-
ing sample and its k closest neighbors, yielding a clear 
demarcation that enhances the reliability of predictions 
and defines the operational boundaries of the model [40]. 
Within the training set, Dk and σ denote the mean and 
standard deviation of these distances among the training 
data, respectively. The Z-score governs the significance 
level of the AD model, with a threshold of 0.5.

For Within-Domain:

For Out-of-Domain:

Permutation feature importance
Permutation feature importance is a powerful technique 
that significantly enhances the interpretability of predic-
tive models by elucidating the individual contributions 
of features to overall model performance. This method 
operates by systematically disrupting the relationship 
between features and their corresponding outcomes 
through the random permutation of feature values. By 
evaluating the subsequent decline in model performance, 
we can compute the importance score that reflects the 
predictive efficacy of each feature as defined in eq  7. This 
score is derived using accuracy of original model minus 
the accuracy of permutation model, providing critical 
insights into the model’s decision-making process [39].

Statistical analysis
An in-depth examination was performed to evaluate the 
differences in metrics across different models, facilitat-
ing the identification of the most productive model for 
the toxicity endpoint. This thorough statistical method 

(5)Di < Dk + σ × Z

(6)Di ≥ Dk + σ × Z

(7)
Importance score = Accuracy (original)− Accuracy (permuted)

guaranteed a strong assessment of model efficiency 
across the toxicity endpoints. The first step consisted of 
assessing the normality of the data with the Shapiro-Wilk 
test, and subsequently, evaluating the homogeneity of 
variance using Levene’s test. Following this, the Kruskal-
Wallis test, which is a non-parametric statistical method, 
was utilized to assess if there were statistically significant 
differences in the physicochemical properties or perfor-
mance metrics of the QSAR models. To delve deeper into 
particular group differences, Dunn’s test was utilized as 
a post-hoc analysis for comprehensive pairwise compari-
sons. The p-value lower than 0.05 was considered statisti-
cally significant.

Results
Chemical space of irritants and non‑irritants
We started by evaluate the physicochemical properties 
of the irritants (n=889) and non-irritant (n=1047) com-
pounds as depicted in the Fig2A. The results show that 
irritants consistently have significantly lower molecular 
weights (median: 179.0 vs 268.7), number of heavy atoms 
(median: 11.0 vs 18.0), and topological polar surface areas 
(median: 28.7 vs 50.7) compared to non-irritants (p < 
0.05), as showed in Fig2B-D. This pattern highlighted the 
important distinctions in physicochemical characteristics 
that could be vital for classifying the irritation potentials 
of these compounds.

We further utilized the unsupervised t-distributed 
stochastic neighbor embedding (t-SNE) algorithm to 
visualize the chemical distribution with different molec-
ular fingerprints and descriptors as shown in Fig3. Our 
analysis revealed that ECFP shows a small degree of 
discrimination between the irritants and non-irritants 
(Fig3A). However, MACCS, RDKit and physicochemical 
properties demonstrate a higher degree of discrimina-
tion between the irritants and non-irritants as observed 
in Fig. 3B-D, showcasing their potential predictive capa-
bilities. In contrast, the representation of compounds 
using SMILES tokens exhibited a less distinct separation 
between these classifications (Fig3E). This observation 
prompted a deeper investigation into the influence of 
molecular fingerprints on the effectiveness of our predic-
tive models, underscoring their critical role in skin toxic-
ity assessment.

Non-linear techniques such as t-SNE and uniform man-
ifold approximation and projection (UMAP), along with 
the linear method principal component analysis (PCA), 
are widely employed for the visualization of chemical 
spaces [41–43]. In this research, the t-SNE algorithm was 
selected for its superior ability to capture local structure 
and uncover intricate patterns within high-dimensional 
chemical space. This is crucial for accurately visualizing 
molecular relationships. While PCA effectively reduces 
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dimensionality by preserving global variance, it may fail 
to distinctly separate complex and non-linear molecular 
interactions. From a different perspective, PCA optimizes 
the global variance in the data set, which often leads to 
poor preservation of local structures-such as clusters of 
structurally or functionally similar molecules-making it 
less effective for tasks like molecular similarity analysis 
[44, 45].

Alternatively, UMAP offers the optimal balance 
between preserving both the local and global struc-
ture of the data set, a capability that t-SNE lacks [41]. 
This method is increasingly recognized as an effective 
dimensionality reduction technique, capable of accu-
rately preserving the data structure in the projected 
components [46]. However, it may face challenges in 
capturing subtle local relationships essential in chemi-
cal space, particularly for structurally similar compounds 

with minor variations. In some cases, UMAP may not 
fully capture the density variations in the data, leading 
to potential misrepresentations of local relationships 
[47]. In addition, some studies have shown that among 
the evaluated dimensionality reduction algorithms, all 
non-linear methods were effective in preserving neigh-
borhood structures, outperforming PCA. Notably, t-SNE 
demonstrated superior performance in maintaining the 
closest neighbors [48]. Therefore, t-SNE is preferable 
when capturing highly localized molecular relationships 
and distinct chemical clusters is the priority, thereby 
facilitating the visual identification of meaningful molec-
ular groupings.

RNN models performance on the test set
We further evaluate the classification performance of 
the RNN-based models with individual fingerprints as 

Fig. 2  Chemical distribution between irritants and non-irritants used in this study. A Class distribution between irritants and non-irritants. B 
Molecular weight (MolWt) distribution between irritants and non-irritants. C Non-hydrogen atoms (HeavyAtomCount) distribution between irritants 
and non-irritants. D Topological Polar Surface Area (TPSA) distribution between irritants and non-irritants
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illustrated in Fig.4A. The individual fingerprints demon-
strated varying levels of performance metrics, including 
accuracy, MCC, sensitivity, AUC, and specificity, across 
the 25 predictive models. The metrics ranged from 0.600 
to 0.788 for accuracy, 0.193 to 0.578 for MCC, 0.376 to 
0.702 for sensitivity, 0.653 to 0.841 for AUC, and 0.771 
to 0.892 for specificity. Notably, the GRU model utiliz-
ing MACCS key fingerprints exhibited the superior per-
formance, attaining an accuracy of 0.788, an MCC of 
0.578, and a sensitivity of 0.702 compared to the other 
models. These findings indicate the model’s robust capac-
ity to accurately predict both irritants and non-irritants, 

resulting in an overall accuracy of 78.8% and an impres-
sive irritant identification rate of 70.2%. The highest 
MCC value of this model reflected favorable outcomes 
across all four categories of the confusion matrix, indicat-
ing a strong correlation between the predicted and actual 
classifications [49]. Furthermore, a specificity value of 
0.865 highlighted the model’s efficacy in detecting non-
irritation compounds with a predictive rate of 86.5%. The 
model’s ability to differentiate between positive and nega-
tive instances was further substantiated by an AUC value 
of 0.835, underscoring its predictive reliability.

Fig. 3  Molecular features distribution of the data set using A Extended circular fingerprints (ECFP), B MACCS keys fingerprints, C RDKit fingerprints, 
D Physicochemical descriptors, and E SMILES tokens. Red arrows indicate the unique non-overlap island of chemicals in each group
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Among the individual molecular fingerprints, we iden-
tified and selected additional molecular fingerprints suit-
able for generating combined features based on their 
performance. Notably, models utilizing SMILES token-
based representations yielded the lowest evaluation met-
rics with particular deficits in MCC values compared to 
other models. This observation aligned with the find-
ings in chemical space (Fig3E), where SMILES tokens 
failed to provide effective differentiation between irritant 
and non-irritant chemicals. Consequently, only ECFP, 
MACCS keys, RDKit fingerprints, and physicochemi-
cal descriptors were chosen to construct the conjoint 
fingerprints.

The performance of the predictive models were sig-
nificantly enhanced by developing 30 distinct models 
based on conjoint fingerprints (Fig4B). This approach 
yielded remarkable improvements in predictive per-
formance compared to individual fingerprints, with 
accuracy, MCC, sensitivity, AUC, and specificity scores 
ranging from 0.650 to 0.801, 0.302 to 0.602, 0.380 to 
0.761, 0.660 to 0.858, and 0.736 to 0.941, respectively. 
Integrating conjoint features enhances evaluation met-
rics of RNN-based models, achieving improvements of 
+3.5%, +13.1%, +2.6%, +3.0%, and +4.0% in average 
values of accuracy, MCC, sensitivity, AUC, and speci-
ficity, respectively. Importantly, the LSTM model utiliz-
ing MACCS keys in combination with physicochemical 
descriptors (referred to as MACCS_Phychem) dem-
onstrated superior performance, achieving maximum 

values of 0.801 for accuracy, 0.602 for MCC, and 0.761 
for sensitivity. Additionally, the AUC and specificity 
scores were commendable, reaching 0.849 and 0.837, 
respectively compared to the other models. We also 
found that the performance of LSTM with MACCS_
Phychem was significantly higher than the LSTM with 
individual physicochemical descriptors (p < 0.05), indi-
cating the higher performance of the conjoint features 
compared to the individual molecular features. As a 
result, the LSTM model employing MACCS_Phychem 
will be further utilized in subsequent experiments to 
validate its predictive performance.

Furthermore, Fig.  5 presents a comparative analysis 
of the performance of LSTM, RF, and LightGBM mod-
els on the same test data set. Additionally, it displays 
the corresponding confusion matrices for these models, 
utilizing both MACCS and physicochemical descrip-
tor-based feature representations.

Fig.  5A demonstrates that the LSTM model exhibits 
higher overall accuracy, MCC, and sensitivity compared 
to the RF and LightGBM models. The AUC and speci-
ficity values demonstrate robust model performance, 
though they are slightly inferior to those obtained by 
the other two models. The LSTM, RF, and LightGBM 
models correctly predicted 74.12%, 67.06%, and 67.06% 
of irritants and achieved a prediction rate of 93.75%, 
89.58%, and 94.79% for non-irritants, respectively. The 
LSTM model achieves accuracy per-class ranging from 
74% to 93%, confirming its robust overall performance 

BA

Fig. 4  Predictive performance of RNN models for skin irritation: A individual features and B conjoint features. All metrics were retrieved 
from the mean of three separate experiments
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in effectively distinguishing between irritant and non-
irritant chemicals. We also can accurately trust the model 
on irritants prediction with 74.12% per-class accuracy, 
which is notably superior to the two baseline models. The 
corresponding results are illustrated in Fig5B–D.

Additionally, the area under the receiver operating 
characteristic (ROC_AUC) graph of the best-performing 
model, LSTM with the MACCS_Phychem conjoint fea-
ture, as illustrated in Fig6. The model exhibited robust 
and reliable performance in ranking between positive 
and negative classes across both the training and test 
data sets, achieving an AUC of 0.98 on the training set 
and 0.87 on the test set, respectively. The consistency of 
performance metrics across training and test data sets 
indicates that the risk of overfitting was effectively mini-
mized. This may be due to the careful tuning of batch size 
and learning rate to achieve a balance between training 
stability and generalization, as mentioned in the Methods 
section.

B

C D

A

Fig. 5  A Comparative performance analysis of the LSTM model against RF and LightGBM on the same data set. B Confusion matrix of the LSTM 
model with MACCS_Phychem conjoint features. C Confusion matrix of the RF model with MACCS_Phychem conjoint features. D Confusion matrix 
of the LightGBM model with MACCS_Phychem conjoint features. These experiments were performed with test set (n=181)

Fig. 6  ROC-AUC plots for training and test sets of the best model
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AD analysis
The model’s AD was thoroughly examined by system-
atically increasing k parameter from two to ten. The 
Euclidean distance-based k nearest neighbors techniques 
calculated the distance between each prediction and its k 
nearest training data points to refine AD assessment. This 
process effectively segregated out-of-domain chemicals 
from the independent test set, retaining only in-domain 
compounds for further analysis. Subsequently, our LSTM 
model was employed to predict outcomes for this opti-
mized data set, allowing us to compare the refined per-
formance metrics against the original values. The k value 
that yielded the most favorable evaluation metrics was 
identified as optimal. Fig7A illustrates the results of the 
AD assessment concerning skin irritation across various 
k-values.

The results derived from the model utilizing various 
k values are presented in Fig7B. The model employing 
a k value of four demonstrated the most robust predic-
tive performance, attaining an accuracy of 0.814, a MCC 
of 0.639, a sensitivity of 0.768, an AUC of 0.858, and a 
specificity of 0.931. These performance metrics signifi-
cantly outperformed those derived from other k values. 
At this optimal k setting, 33 out-of-domain chemicals-
accounting for 18% of the test set-were excluded, lead-
ing to notable modifications in the performance metrics: 
an 1.6%, 6.1%, 1%, 1%, 11.2% improvement in accuracy, 
MCC, sensitivity, AUC, and specificity, respectively. The 
enhanced sensitivity and specificity underscore the mod-
el’s proficiency in accurately distinguishing between irri-
tants and non-irritants. Furthermore, all adjusted metrics 

derived from the fine-tuned test set remained within the 
acceptable thresholds, thereby reinforcing the robustness 
of the model’s predictive performance.

Key molecular structure related to skin irritation
The model-agnostic nature of permutation importance 
enables its application across diverse predictive models 
without the need for insight into or alteration of their 
internal components [50]. Consequently, it functioned as 

BA

Fig. 7  Performance evaluation of the LSTM model using within applicability domain compounds from the test set. A Number of removed 
compounds. B Evaluation metrics with various k-values

Fig. 8  Feature importance for skin irritation prediction
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an effective tool for assessing the significance of features 
in our predictive model, specifically a LSTM network, 
utilizing conjoint features derived from MACCS keys and 
physicochemical descriptors.

In our analysis, we identified five physicochemical 
descriptors and five MACCS keys fingerprints as the 
top ten most importance features (Fig8). The key phys-
icochemical descriptors included molecular weight 
(MolWt), topological polar surface area (TPSA), heavy 
atom count, number of rotatable bonds, and number of 
heteroatoms, ranking as the first, second, seventh, ninth, 
and tenth most important molecular features, respec-
tively. For the MACCS fingerprints, the critical bits were 
87, 84, 161, 154, and 158, corresponding to the third, 
fourth, fifth, sixth, and eighth most important features, 
respectively. Notably, the molecular weight emerged 
as the most influential, exerting the greatest impact on 
model performance and highlighting its significant role 
in predictive accuracy against skin irritation ability. Nev-
ertheless, these results demonstrates that the model suc-
cessfully utilized the structural insights from MACCS 
keys along with the broader molecular characteristics 
to improve its predictive capabilities. This interplay 
highlights the complex relationships presented in the 
data, demonstrating how various feature types worked 
together to enhance the model’s performance to predict 
outcomes accurately. Interpretations of the most impor-
tant features are shown in the Table  1.

Molecular weight is widely regarded as a basic descrip-
tor in predictive modeling, as it directly reflects molec-
ular size, influencing essential properties like skin 
permeability [51]. Compounds with lower molecular 
weights are more likely to penetrate the skin’s protec-
tive barrier and reach deeper layers, intensifying their 
potential as chemical hazards [52]. Once absorbed, these 
substances can elicit a range of adverse effects, including 
skin irritation, sensitization, and systemic toxicity [53]. 

Low molecular weight organic chemicals can disrupt 
the integrity of the plasma membrane lipids, leading to 
the defatting and disintegration of the skin. This disrup-
tion results in skin irritation through the alteration of 
the skin’s barrier function and subsequent inflammatory 
responses [54]. Furthermore, the significant influence 
of molecular weight suggested that the model was iden-
tifying broad patterns related to molecular size instead 
of exploring complex chemical interactions. This obser-
vation indicated that more straightforward models or 
descriptors might provide similar insights, depending on 
the specific objectives of the study.

Among the substructural features represented by the 
MACCS fingerprints, MACCS87 demonstrated the most 
significant influence, which is associated with the pres-
ence of halogen-containing substituents in the chemical 
structure [55]. Moreover, MACCS84, MACCS161, and 
MACCS158, corresponding to amine, nitrogen atom, 
and carbon attached to nitrogen atom, are also impor-
tance and correlated to the number of heavy atom and 
heteroatoms in the top ten importance features. Addi-
tionally, the MACCS154, which corresponding to the 
carbonyl group, is also importance for skin irritation 
classification. These results indicate that the presence 
of substituents containing halogen (MACCS87), oxygen 
(MACCS154), and nitrogen (MACCS84, MACCS161, 
and MACCS158) significantly impacts the performance 
of the predictive model. Interestingly, the electrophilic 
functional groups, which typically include atoms such 
as nitrogens, oxygens, or halogens bonded to a carbon 
atom, can generate a partial positive charge on the adja-
cent carbon atom. This alteration enhances the carbon 
atom’s reactivity toward electron-rich sites within pep-
tides and proteins. Such increased reactivity may result 
in skin irritation by facilitating covalent interactions with 
skin proteins and disrupting the lipid components of the 
stratum corneum [54]. Particularly, Fig9 illustrates the 
example within-domain test compounds that contain sig-
nificant substructures influencing the LSTM model for 
skin irritation prediction. Compounds (1-3) are identified 
as irritants, whereas compounds (4-11) are identified as 
non-irritants.

Generalization performance of LSTM model based 
on other data sets
We further examine the model’s generalizability using 
another external compounds that not included in the 
training and the test sets. In this experiment, we sourced 
another external test molecules from several reputable 
databases, including the Australian Hazardous Chemical 
Information System, the European Registered Substances 
Factsheets, the New Zealand Chemical Classification 
and Information Database, the EU CLP Harmonized 

Table 1  Feature importance for skin irritation prediction

Feature importance Description SMARTS pattern

MolWt Molecular weight –

TPSA Topological polar surface area –

MACCS87 X!A$A [F,Cl,Br,I]!@*@*

MACCS84 NH2 [NH2]

MACCS161 N [#7]

MACCS154 C=O [#6]=[#8]

HeavyAtomCount Number of non-hydrogen 
atoms

–

MACCS158 C-N [#6]-[#7]

NumRotatableBonds Number of rotatable bonds –

NumHeteroatoms Number of heteroatoms –
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Classification, and ChemSkin. We ensured that these test 
molecules are not present in either the training or the test 
sets. Subsequently, we employed our LSTM model, uti-
lizing conjoint features to predict the skin irritation risk 
associated with these compounds. The details of the com-
pounds, including their names, CAS numbers, and pre-
diction outcomes, are presented in Table  2. Furthermore, 

the predictive performance metrics obtained from this 
experiment are compiled in Table  3.

The model demonstrated impressive predictive capa-
bilities, achieving an accuracy of 85.7%, successfully 
classifying 12 out of 14 compounds. The measurement 
of sensitivity stood at 71.4%, reflecting the model’s 
ability to accurately identify true positive cases, suc-
cessfully recognizing 5 out of 7 irritation compounds. 

Fig. 9  Compounds within the domain containing key substructures. Compounds (1-3) are identified as irritants, whereas compounds (4-11) are 
identified as non-irritants
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The specificity achieved was 100%, showcasing the 
model’s effectiveness in identifying true negatives 
without any false positives, as illustrated by the cor-
rect classification of all 7 non-irritation compounds. 
Furthermore, the MCC and AUC values, recorded at 
74.5% and 93.9%, respectively, provided additional 
evidence of the model’s remarkable discrimination 
capability.

Performance comparison with existing models using their 
test sets
We further tested our model’s performance using exter-
nal test sets from other methods. This experiment can 
demonstrate how well our model generalizes to differ-
ent data sets. Moreover, it can elucidate our model’s 
performance compared to existing methods. In this 
experiment, we obtained test data sets from previous 
appropriate research and then applied the LSTM model 
to predict skin irritation. The data sets from STopTox, 
XGBoost, and the AttentiveSkin models were screened to 
exclude compounds present in the LSTM model training 
set prior to conducting the comparison. Table   4 expli-
cates the effectiveness of the LSTM model compared to 
other predictive models [24, 56, 57].

We found that the LSTM model exhibited superior per-
formance compared to the STopTox model [56], achiev-
ing an accuracy of 85.2% and correct classification rate 
(CCR) of 79.2%, significantly outperforming STopTox 
model, which recorded a CCR of only 72.0%. In this con-
text, CCR is defined as the arithmetic mean of sensitivity 
and specificity. The AUC metric also favored the LSTM 
model, which attained an impressive score of 87.2%, com-
pared to the lack of AUC data from the STopTox model. 
The AUC represents the probability that a randomly cho-
sen positive instance is ranked higher than a randomly 
chosen negative instance by the model. Although the 
LSTM model demonstrated marginally lower sensitivity 
compared to StopTox (72.5% vs. 77.0%, respectively), it 
exhibited substantially higher specificity, achieving 85.9% 
in contrast to the 66.0% specificity of the StopTox model. 

Table 2  Prediction outcomes for compounds beyond the 
training set of the LSTM model

CAS numbers Predicting 
proability

Predicted label Actual label

1000-78-8 0.9979 Irritant Irritant

100-11-8 0.6330 Irritant Irritant

100181-71-3 0.6038 Irritant Irritant

10031-82-0 0.0044 Non-irritant Irritant

100-38-9 0.9899 Irritant Irritant

100-39-0 0.9401 Irritant Irritant

100-40-3 0.0506 Non-irritant Irritant

1072957-71-1 0.0007 Non-irritant Non-irritant

1119-62-6 0.0191 Non-irritant Non-irritant

1184-10-7 0.0037 Non-irritant Non-irritant

118-82-1 0.0040 Non-irritant Non-irritant

1263184-87-7 0.0055 Non-irritant Non-irritant

139481-44-0 0.0008 Non-irritant Non-irritant

201419-80-9 0.0318 Non-irritant Non-irritant

Table 3  Predictive performance for external compounds 
beyond the LSTM model’s training and test sets

Accuracy (%) MCC (%) Sensitivity (%) AUC (%) Specificity (%)

85.7 74.5 71.4 93.9 100

Table 4  Performance comparison of LSTM model with other methods using their test sets

Models Accuracy (%) CCR (%) MCC (%) Sensitivity (%) AUC (%) Specificity (%) F1 score (%)

Our LSTM using the StopTox 85.2 79.2 35.0 72.5 87.2 85.9 34.7

The StopTox – 72.0 – 77.0 - 66.0 72.8

Our LSTM using the XGBoost test set 70.4 74.8 46.4 62.5 77.7 87.0 74.1

The XGBoost 73.4 66.9 – 82.1 - 51.6 81.5

Our LSTM using the AttentiveSkin test 
set

68.8 74.3 49.9 51.6 79.8 96.9 67.2

The AttentiveSkin 69.1 67.6 34.7 73.6 - 61.5 75.0

Table 5  The modified training data sets used to generate the 
comparative analysis

No Models Number of 
compounds

Irritants Non-irritants

1 StopTox 1449 619 830

2 XGBoost 1651 560 1091

3 AttentiveSkin 1741 638 1103
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This indicates the superior ability of the LSTM model 
to accurately identify true negative cases, highlighting 
its robustness in minimizing false positive predictions. 
Although the STopTox model yielded a higher F1 score 
of 72.8%, its overall metrics highlighted limitations in 
predictive power. The reported metrics were obtained 
following the removal of duplicate compounds from the 
LSTM model training data set. The refined training set 
comprises 1,449 unique entries, consisting of 619 classi-
fied as irritants and 830 as non-irritants (Table  5). Col-
lectively, these findings underscored the LSTM model’s 
robustness and reliability in predicting skin irritation, 
offering valuable insights for further research in this criti-
cal area of toxicology. It is important to note that StopTox 
serves as an alternative to traditional in vivo 6-pack tests, 
encompassing three topical and three systemic endpoints 
for assessing the toxicity hazard of small organic mol-
ecules. The LSTM outperforms the skin irritation pre-
diction within StopTox but there is no evidence that it 
surpasses all other endpoints in this framework.

When comparing the performance of our LSTM model 
with the XGBoost model [57], the LSTM model achieved 
a superior specificity of 87.0%, underscoring its capabil-
ity to accurately classify non-irritant compounds-a criti-
cal characteristic for toxicity screening applications, as 
it helps to prevent the misclassification of non-harmful 
substances as irritants. In contrast, the XBGBoost model 
only had a specificity of 51.6% (Table   4). Additionally, 
the CCR of the LSTM model is higher than that from 
XGBoosting, 74.8% and 66.9%, respectively. However, the 
XGBoost model attained an higher accuracy at 73.4% and 
sensitivity at 82.1%, indicating its effectiveness in mini-
mizing false negatives. The LSTM recorded the MCC 
of 46.4%, while the XGBoost model did not report this 
metric, which limited direct comparisons of their overall 
predictive performance. Furthermore, the LSTM model 
demonstrated a acceptable AUC of 77.7%, reflecting its 
effectiveness in ranking between irritant and non-irritant 
compounds, whereas the AUC for the XGBoost model 
was not available. An F1 score of 74.1% from the LSTM 
indicated the model is fairly good at predicting both posi-
tive and negative classes. However, its performance was 
lower than that of XGBoost, which attained an F1 score 
of 81.5%. These findings underscore the potential of the 
LSTM model to deliver reliable predictions regarding 
skin irritation, particularly in effectively identifying non-
irritating compounds. In this analysis, the modified train-
ing set consists of 1,651 records, comprising 560 irritant 
samples and 1,091 non-irritant samples (Table  5).

Subsequently, we conducted a comparison of the per-
formance between two models designed for skin irri-
tation: the LSTM and the AttentiveSkin model [24] 
(Table  4). The revised training set for the LSTM model 

is made up 1,741 entries, with 638 designated as irri-
tants and 1,103 categorized as non-irritants (Table   5). 
The LSTM model exhibits a marginally lower overall 
accuracy compared to the AttentiveSkin model, achiev-
ing 68.8% and 69.1%, respectively. However, in terms of 
CCR or balanced accuracy, the LSTM model demon-
strates a superior performance, attaining 74.3%, whereas 
the AttentiveSkin model achieves 67.6%. Balanced accu-
racy is a performance metric that quantifies classification 
effectiveness by computing the mean of sensitivity (true 
positive rate) and specificity (true negative rate), thereby 
ensuring equitable evaluation across both classes. Unlike 
conventional accuracy, balanced accuracy remains unaf-
fected by class distribution within the test set, making it 
particularly suitable for assessing QSAR models in cases 
of class imbalance [58]. Furthermore, the LSTM dem-
onstrated a superior MCC of 49.9%, indicating a more 
robust correlation between predicted and actual values, 
whereas the AttentiveSkin model reached an MCC of 
merely 34.7%. The LSTM model exhibited a sensitivity of 
51.6%, which was lower than the 73.6% achieved by the 
AttentiveSkin model. However, in terms of specificity, 
the LSTM outperformed AttentiveSkin, reaching 96.9% 
compared to 61.5%. This higher specificity highlights the 
LSTM model’s effectiveness in correctly identifying non-
toxic compounds, thereby reducing false positive rates. 
Such a characteristic is crucial in screening applications, 
as it minimizes the misclassification of safe compounds 
as toxic, ensuring greater reliability in toxicity assess-
ment. Additionally, the LSTM model achieved a nota-
ble AUC of approximately 80%, while the AUC for the 
AttentiveSkin model has not been reported. These results 
underscore the effectiveness of the LSTM model as a pre-
dictive instrument in toxicological evaluations, leading 
to improved assessments of chemical safety and refining 
the screening process for skin irritation risk in chemical 
substances.

Discussion
Contact dermatitis is one of the most prevalent occupa-
tional illnesses, representing approximately 90-95% of 
all occupational skin disorders in the United States [59]. 
Acute dermatitis is characterized by symptoms such 
as itching, pain, redness, swelling, and the formation of 
a rash, with the potential for chronic changes, includ-
ing altered pigmentation, skin thickening, and cracking 
due to repeated or prolonged exposure. Among its vari-
ous forms, skin irritation, or irritant contact dermatitis 
(ICD), is the most common type of occupational skin 
disease, accounting for 70-80% of occupational contact 
dermatitis cases. ICD results from exposure to external 
hazardous agents that damage the skin’s barrier through 
non-immunological mechanisms. It can be triggered 
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by acute exposure to highly irritating substances such 
as acids, bases, and oxidizing agents, or by cumulative 
chronic exposure to milder irritants like detergents and 
weak cleaning agents [60].

In the United States, the regulation of occupational 
skin exposure is governed by a comprehensive framework 
of at least 14 federal regulations, enforced by key agen-
cies such as the Environmental Protection Agency (EPA), 
the U.S. FDA, and the Occupational Safety and Health 
Administration (OSHA) [61]. Notably, the National Insti-
tute for Occupational Safety and Health (NIOSH) issued 
“Current Intelligence Bulletin (CIB) 61: A Strategy for 
Assigning New NIOSH Skin Notations” in 2009, which 
provides an updated strategy for assigning skin notations 
[62]. The NIOSH Skin Notation (SK) profile provides 
information about the dermal absorption, corrosive, irri-
tation, sensitization, and systemic toxicity of chemicals, 
are essential for determining the potential health hazards 
of substances resulting from skin exposure [63].

Additionally, cutaneous adverse drug reactions 
(CADRs) are a significant concern in drug research and 
development, as they encompass harmful skin effects 
triggered by drug use. These reactions can impact not 
only the skin but also its appendages, including nails, hair, 
and glands, highlighting the broad spectrum of potential 
adverse effects on the integumentary system. CADRs 
occur in 1-3% of adults and 2.5% of children treated 
with medications, impacting up to 10% of hospitalized 
patients. These skin reactions can be induced by any drug 
or regardless of administration route, whether over-the-
counter, natural products, home remedies, or transder-
mal medications [64] [65]. For instance, a review of seven 
Transdermal Therapeutic Systems showed that 20%-50% 
of users experienced skin irritation [66]. Given the sub-
stantial health risks associated with skin irritation, it is 
essential to develop predictive models for assessing the 
toxicity of chemical compounds. Such models are criti-
cal for enabling accurate prediction, safeguarding human 
health and safety, and advancing drug development.

For that reason, we created and carefully evaluated a 
LSTM model for the computational prediction of skin 
irritation within a QSAR framework. This approach 
demonstrated exceptional predictive performance across 
multiple evaluation metrics, complemented by an in-
depth examination of the model’s applicability domain. 
Furthermore, we conducted an comprehensive analysis 
of the molecular features that significantly influenced the 
model’s predictions, providing profound insights into the 
chemical properties that governed the potential for skin 
irritation.

The LSTM model that we developed, augmented 
with conjoint features including MACCS keys and 

physicochemical descriptors, exhibited strong predic-
tive performance across a variety of data sets. By tackling 
the vanishing gradient issue found in conventional RNN 
architectures, LSTM stands out as an effective frame-
work for handling sequential data, especially SMILES 
strings of chemical compounds. This adaptability high-
lights its potential for extensive practical applications in 
areas like natural product exploration, agricultural chem-
icals, and pharmaceutical development.

Feature importance quantifies the relative contribu-
tion of each predictor variable to the target outcome, 
serving as a fundamental tool for identifying data set 
characteristics and optimizing model performance. Fea-
ture importance analysis typically involves two primary 
methodologies: permutation importance [67] and SHAP 
(SHapley Additive Explanations) importance [68]. In 
this study, we adopted permutation feature importance 
due to its simplicity, model-agnostic nature, and ease of 
implementation. This method assesses feature relevance 
by measuring the reduction in model performance when 
a feature’s values are randomly shuffled, thereby break-
ing its association with the target variable. This approach 
aligns with our study’s objectives by providing an inter-
pretable and transparent assessment of feature contribu-
tions. Alternatively, SHAP analysis offers a more nuanced 
interpretation by considering feature interactions and 
providing theoretically grounded attributions based on 
cooperative game theory [68]. However, SHAP is com-
putationally expensive, particularly when applied to 
complex models such as our LSTM model, and may pose 
scalability challenges for large data sets. Given our focus 
on overall feature importance rather than instance-level 
explanations, permutation importance was the more 
practical choice. Despite this, we acknowledge the poten-
tial advantages of SHAP in offering deeper interpretabil-
ity and plan to integrate SHAP-based analyses in future 
research to further enhance our understanding of feature 
importance.

Limitations and future directions
This study contain some limitations that should be 
addressed in the further study. The primary limitation of 
our LSTM model is the extended training times and the 
restricted utilization of diverse molecular fingerprints, 
which hinder its capacity to thoroughly assess all molec-
ular attributes related to chemical compounds. Specifi-
cally, the molecular features that we used in this study 
are limited to five individual sets of features, which may 
not capture all similarities between chemical structure; 
future studies may include a wider variety of molecular 
features to represent other aspect of molecular similarity 
for QSAR modeling.  Secondly, we did not use a feature 
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scaling function to preprocess the conjoint fingerprints, 
which may result in imbalanced gradient optimization 
and lead to longer training times. In this study, explicit 
feature scaling or normalization was not applied to bal-
ance these descriptors. Instead, we relied on the inher-
ent adaptability of DL algorithms to automatically learn 
appropriate weights for each feature type during training. 
The RNN models, such as the GRU and LSTM archi-
tectures employed in this work, are armed to address 
differences in feature ranges through mechanisms like 
weight optimization during back-propagation, enabling 
the model to assign appropriate importance to both con-
tinuous and binary features without explicit scaling [69]. 
However, future work should explore feature scaling or 
weighting strategies to address potential imbalances bet-
ter and improve the robustness of applicability domain 
assessments.

Nevertheless, this approach still demonstrated signifi-
cant potential in predicting skin irritation, indicating sev-
eral promising avenues for future research. A primary 
opportunity involves expanding the model’s applicability 
domain by integrating diverse data sets, thereby enhancing 
generalizability and predictive performance and providing 
a more nuanced understanding of the mechanisms under-
lying skin irritation across various compounds. Further-
more, exploring hybrid models that combine the strengths 
of LSTM with advanced machine learning techniques, 
such as ensemble methods, holds considerable promise 
for refining predictions and improving both accuracy and 
interpretability. By leveraging the unique advantages of 
multiple methodologies, future research could establish 
a more robust and comprehensive framework for toxicity 
prediction, ultimately facilitating the development of safer 
products. Nevertheless, future research should employ 
SHAP analysis to attain a more comprehensive under-
standing of feature importance.

Conclusion
In conclusion, our LSTM model demonstrated strong 
predictive capabilities for skin irritation, characterized 
by high accuracy and a well-defined applicability domain. 
The identification of important features not only eluci-
dates potential mechanisms of action but also provides 
a foundation for further skin irritation  investigations. 
Given the increasing societal and regulatory emphasis 
on reducing reliance on animal testing, our model repre-
sents a significant advancement in the field of predictive 
toxicology. It provides a powerful alternative for early-
stage screening of chemical compounds, significantly 
contributing to safer drug development and chemical 
manufacturing.
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