
Mrugalla et al. Journal of Cheminformatics (2025) 17:72
https://doi.org/10.1186/s13321-025-00981-x

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cheminformatics

Generating diversity and securing
completeness in algorithmic retrosynthesis
Florian Mrugalla1*, Christopher Franz2, Yannic Alber1, Georg Mogk1, Martín Villalba3, Thomas Mrziglod1 and
Kevin Schewior4,5

Abstract Chemical synthesis planning has considerably benefited from advances in the field of machine
learning. Neural networks can reliably and accurately predict reactions leading to a given, possibly complex,
molecule. In this work we focus on algorithms for assembling such predictions to a full synthesis plan that, starting
from simple building blocks, produces a given target molecule, a procedure known as retrosynthesis. Objective
functions for this task are hard to define and context-specific. In order to generate a diverse set of synthesis plans
for chemists to select from, we capture the concept of diversity in a novel chemical diversity score (CDS). Our
experiments show that our algorithm outperforms the algorithm predominantly employed in this domain, Monte-
Carlo Tree Search, with respect to diversity in terms of our score as well as time efficiency.

Scientific Contribution: We adapt Depth-First Proof-Number Search (DFPN) (Please refer to https:// github. com/
Bayer- Group/ bayer- retro synth esis- search for the accompanying source code.) and its variants, which have been
applied to retrosynthesis before, to produce a set of solutions, with an explicit focus on diversity. We also make
progress on understanding DFPN in terms of completeness, i.e., the ability to find a solution whenever there exists
one. DFPN is known to be incomplete, for which we provide a much cleaner example, but we also show that it
is complete when reinforced with a threshold-controlling routine from the literature.

Keywords Computer-Assisted Synthesis Planning (CASP), Retrosynthesis, DFPN, Chemical diversity score

Introduction
In organic chemistry, one of the most important prob-
lems consists in constructing a synthesis plan for a given
molecule. Retrosynthesis constitutes a formal approach
to this problem: One recursively deconstructs the mol-
ecule into building blocks that are readily available for
purchase or easy to make. This reverse approach was

originally introduced by Corey et al. in the late 1960 s,
and it is by now a cornerstone technique in organic
chemistry [1–3]. Yet, applying this technique in prac-
tice is a highly complicated task due to a large number
of potentially relevant reactions as well as multiple con-
straints (building-block availability, functional-group
protection, safety regulations, green-chemistry consid-
erations), and it has traditionally required solid human
expertise. In the last decade, however, the field of Com-
puter-Assisted Synthesis Planning (CASP) underwent
significant improvements driven by the successful combi-
nation of advances in machine learning and the availabil-
ity of sufficient amounts of reaction data [4–11].

There are two predominant approaches for building a
CASP tool, template-based and template-free. Template-
based approaches encode reactions as the chemical land-
scape around a reaction center, which can be extracted

*Correspondence:
Florian Mrugalla
florian.mrugalla@bayer.com
1 Bayer AG, Leverkusen, Germany
2 Frankfurt, Germany
3 Cologne, Germany
4 Present Address: Department of Mathematics and Computer Science,
University of Cologne, Cologne, Germany
5 Department of Mathematics and Computer Science, University
of Southern Denmark, Odense, Denmark

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-025-00981-x&domain=pdf
https://github.com/Bayer-Group/bayer-retrosynthesis-search
https://github.com/Bayer-Group/bayer-retrosynthesis-search

Page 2 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

either manually by experts or with a data-driven
approach [5, 9]. These templates can be used during a
retrosynthetic search in a recursive fashion to derive
new intermediates and starting molecules of suitable
complexity and availability. Template-free approaches,
in contrast, do not rely on handcrafted or automati-
cally extracted transformation rules. Following tools and
approaches developed by the Natural Language Process-
ing (NLP) community, a set of SMILES (words, reactants)
is transformed into another set of SMILES (words, prod-
ucts) [12]. Coupling this one-step synthesis model with a
powerful search algorithm has been shown to yield simi-
lar performance as the aforementioned methods [10].

In 2018, Segler et al. [9] showed the viability of a data-
driven approach, using two neural networks: the first
one to predict which transformation templates should
be prioritized during the route search and the second
one to grade them according to their plausibility. These
advances were followed by copious research mostly
concerned with the quality of these neural networks and
how they ingest their input data, e.g., regarding the usage
of transformation templates [5, 6, 10, 12–14].

This work considers the overall quality of the found
synthesis plans more directly. The quality of a synthesis
plan depends on a large number of aspects such as
safety, yield, required level of expertise, and available
laboratory equipment, whose levels of relevance may
vastly differ depending on context. It is therefore
extremely difficult to capture this concept in a formal
definition. Our approach circumvents this issue and can
be summarized as quality through diversity. That is, we
aim to find not just a single synthesis plan but several of
them, maximizing the diversity—a concept we formally
define—in the set of plans that we generate. Chemists can
then pick a synthesis plan or recombine chemical ideas
present in the set of plans, to meet the criteria relevant in
the context at hand.

This diversity is possible thanks to more than 250
years of chemical research leading to multiple known
ways to synthesize a molecule, target compound, or
intermediate from commercially available building
blocks. Unfortunately, this also poses a selection problem
in each retrosynthesis step due to the overwhelmingly
large host of choices that has to be explored to find a
single solution, let alone a diverse set of them. Multiple
algorithms, many of them viewing retrosynthesis as a
two-player game, were proposed to solve this problem
[9, 15, 16]. The most commonly used one is Monte-Carlo
Tree Search [6, 9, 17]. While this algorithm can reliably
find multiple solutions, it is not clear whether this set of
solutions turns out diverse.

Instead of MCTS, we consider Depth-First Proof-
Number Search (DFPN) [18], a popular [19, 20] and more
efficient variant of Proof-Number Search (PNS) [21]. A
version of DFPN has also been successfully applied to
retrosynthesis [16], but PNS and its variants just stop
after finding the first solution. We introduce an adapta-
tion to this algorithm which can be applied essentially to
any version of PNS, whose output will be a set of solu-
tions, with explicit focus on diversity. In the experimental
part of our paper, we indeed find that our version, called
DFPN*, generally outperforms MCTS with respect to our
diversity score, but in fact also with respect to efficiently
finding the first synthesis plan.

To make a case for DFPN and its variants, we also solve
an open problem regarding it as a side result: It can be
shown that (plain) DFPN is not complete [22], i.e., it is
possible that there exists a solution, but DFPN runs into
an infinite loop rather than outputting the solution. (We
give a much smaller example showing that.) Refinements
of DFPN that have seemed to be complete in experiments
are df-pn(r) [23] and DFPN with the Threshold
Controlling Algorithm (TCA) [24], but no proofs of
completeness for such variants are known. We provide a
proof of completeness for DFPN with TCA.

Methods
In this section, we first discuss how to measure diversity,
then how to reduce retrosynthesis to solving two-player
games, then how to solve such games (especially through
DFPN), and finally how to adapt DFPN to find sets of
(diverse) solutions.

Measuring diversity in pathways
Practicing chemists have a good intuitive notion of
chemical diversity. However, it is challenging to formally
define the diversity of a set of synthesis pathways fitting
this intuition. Nonetheless, diversity is a key objective for
current, actively used CASP tools. A broadly applicable
metric is necessary to not rely on anecdotal observations
[25] alone to track algorithmic changes towards higher
diversity in said sets of synthesis pathways. Some efforts
towards this where made before. A natural approach
to the problem is to measure the diversity among the
molecules [26, 27] appearing in the routes or simply
count unique intermediates and building blocks. In
Table 4 and Fig. 12 in the appendix, we provide the
respective numbers for both algorithms studied here with
respect to the search times. Such metrics are, however,
not practical. Structural variations in reactants tend to be
overemphasized as they may not alter the chemical nature
of the reactions (e.g., different protection or leaving
groups fulfilling the same purpose). Another approach to

Page 3 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

compare routes with each other is to calculate their graph
edit distance or tree edit distance [28, 29]. A subsequent
clustering on the corresponding distance matrix can be
used to asses the diversity within a set of routes [30].
While the higher abstraction level allows for an increased
focus on relevant difference between routes and therefore
also improves the associated diversity metric, it also
comes with its own drawbacks. First, the metric can go
down by adding further routes to the set [31] which is,
from a theoretical point of view, plausible but goes beside
the point of gauging which set is more useful for lab
practitioners. Second, while being a very elegant way of
measuring distances between routes from a mathematical
point of view, the graph edit distance is indiscriminate
towards the importance of differences between routes
from a chemical perspective. A very strict way to tackle
the problem is to count only the number of routes with
no overlap, as proposed by Maziarz et al. [31]. In our
context, this is however too restrictive since potentially
important chemical solutions can go unrecognized by the
metric when paired with an already used reaction.

We have worked in close collaboration with several
lab chemists from multiple different fields such as
medicinal, agricultural, and process chemistry to
formalize our approach to measure route diversity.
The general understanding among lab chemists can be
summarized as the number of different chemical ideas
observed between the individual synthesis pathways.
Unfortunately, chemical ideas are a similarly vague
concept as diversity and therefore difficult to distinguish
and count objectively.

For this reason we propose a new metric, dubbed
Chemical Diversity Score CDS, based on the intuitive
idea of disconnections (bond breakages) which was
used in similar contexts before [10, 32]. The core idea
is to mimic the thought process involved in a manual
retrosynthesis analysis, making it quantifiable.

By identifying which bonds of a molecule get broken
from the retrosynthesis point of view (i.e. formed in
forward direction) in any given pathway, we keep track
of the synthesis approaches present in a set of routes.
We choose to focus on the final result of the route
search (sets of full routes) over focusing on the diversity
coming from the individual parts (like the reaction
prediction model) of a given CASP tool. Model metrics
do not necessarily have much bearing on the route search
results (as demonstrated in Fig. 10 and Table 3) and gains
achieved here might easily be overwritten by other parts
of the pipeline like filtering mechanisms or the search
algorithm itself. Figure 10 and Table 3 of Appendix D.5
lend support to our choice. Similar observations were
made by Genheden and Bjerrum [29] and Maziarz et al.
[31].

As a result, the higher chemical concept is still
recognized while avoiding an artificially high diversity.
For example, a famous and often used reaction type is
the Suzuki-coupling [33]. There are about 20 variants of
this technique to create the same carbon-carbon bond,
which can lead to different synthesis routes, but which
are all based on the same chemical idea. Based on our
discussions with lab chemists, we consider the level of
abstraction provided by the disconnections ideal, as they
do not discriminate between different named reactions
forming the same bond, but are still capturing different
synthesis strategies.

To compute the CDS , all bonds formed in the proposed
synthesis pathway get identified and labeled. From
the resulting sets we select those which cannot be
represented by another, smaller set of bonds found in
all the pathways for the target molecule. This way, we
eliminate miscellaneous reactions that do not contribute
to the chemical diversity in a meaningful way, forming
the set CM . The final score is then obtained by calculating
the mean over the all-to-all Jaccard distance matrix
expressed by

The CDS can be interpreted as the number of different
chemical ideas present in a given set of synthesis
pathways. Higher CDS values are considered better,
as they indicate a higher diversity between them. A
more detailed mathematical formulation and further
explanations can be found in Appendix 4.1.

Game‑theoretical approaches to the retrosynthesis
problem
Viewing retrosynthetic planning as games on a simple
directed graph is a standard approach (e.g., [9, 16]). In
the two-player game which we focus on in this paper,
there is a node for every molecule and a node for every
reaction. We will call one player molecule player and
the other reaction player. The game starts at the node
corresponding to the target molecule. It is the molecule
(reaction) player’s turn whenever the game is at a
molecule (reaction) node. The next node can be chosen
according to the following directed edges: From a
molecule node, the edges lead to all nodes corresponding
to reactions having the molecule corresponding to
the current node as product. From a reaction node,
the edges lead to all nodes corresponding to reactants
required for the reaction corresponding to the current
node. The molecule player wins if a node corresponding
to a building block is reached, and the reaction player
wins if a dead end (i.e., a molecule that can neither be

CDS := 1+
1

|CM |

∑

T∈CM

∑

T ′∈CM

dJ (T̂ , T̂ ′).

Page 4 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

synthesized nor bought) is reached or a node is visited
for the second time. This way, a winning strategy for the
molecule player represents a synthesis plan for the target
molecule. Conversely, if there exists a winning strategy
for the reaction player, the target molecule cannot be
synthesized with the reactions represented in the graph.
For this emerging two-player game, PNS was first used in
its regular form [15], whereas DFPN was first applied as
part of the DFPN-E algorithm [16] and later within the
CompRet tool [8]. In the next chapter, we will explain the
(DF)PNS in more detail.

In what can be interpreted as a one-player game, a
node usually corresponds to a set of molecules and each
edge to a reaction. Monte-Carlo Tree-Search [9, 34]
operates iteratively on such games, where each iteration
consists of four steps: The first one is selection, where
the most promising node gets selected. The second
one is expansion, where the previously selected node
gets expanded by creating one or more nodes. After
that the simulation happens, where starting with these
nodes a game to end nodes gets simulated, and lastly
the backpropagation, where the result of these games is
propagated back in the tree. Already visited nodes get
penalized such that, when running for a long period of
time, it can also find a set of different synthesis plans.

Very recently, Tripp et al. [35] use a type of greedy
algorithm specifically designed for the task of creating
multiple synthesis plans with a high probability that at
least one of them is feasible, and called it Retro-fallback.
Their heuristic can be summarized as simply expanding
the molecule that is expected to have the highest increase
of their so-called successful synthesis probability (SSP).
For a given synthesis plan T, the SSP depends not only on
the probability that T is successful, but also incorporates
the probability of any of the previously found synthesis
plans and whether T can significantly increase it. Other
promising results were obtained using variations of A*
search [4, 25].

Depth‑first proof number search and variants
To find winning strategies, Proof-Number Search (PNS)
[21] explores the graph from the start node by iteratively
expanding nodes that were previously not expanded.
By doing so, PNS learns if the node is winning for one
of the players (and if so, which) and explores its out-
neighbors. A node is called proved if a winning strategy
for the molecule player can be inferred from the explored
part of G; if a winning strategy for the reaction player can
be inferred, the node is called disproved. A node that is
neither proved nor disproved is said to be unproved.

The (dis)proof number of an explored node v is defined
to be the minimum number of explored unproved nodes
that have to be (dis)proved for v to be (dis)proved. The

precise numbers are NP-hard to compute [36]. PNS
instead efficiently maintains estimates of these numbers,
pn(v) and dn(v) for each node v; pn(v) = dn(v) = 1 for
unexpanded nodes v such as v0 in the beginning. PNS
uses pn(·) and dn(·) to determine the most promising
node, the next node to expand: Starting from v0 , it
iteratively selects the out-neighbor with the minimum
proof number from a molecule-player node and with
a minimum disproof number from a reaction-player
node, until reaching a non-expanded node, which then is
expanded. PNS then backtracks to v0 , updating pn(·) for
a molecule-player node to be the minimum pn value of
an out-neighbor and for a reaction-player node to be the
sum of these pn values (vice versa for dn). If the graph
is an out-tree, PNS exactly determines the proof and
disproof numbers in this way.

Depth-First Proof-Number Search (DFPN) [18] does
not start the search for the most promising node from v0
in each iteration, making it more efficient. Instead, when
node v is currently selected, it tries to use thresholds
thpn(·) and thdn(·) to decide whether the path taken from
v0 to v is part of a path that PNS would take. In particular,
if pn(v) < thpn(v) and dn(v) < thdn(v) , then it continues
the search like PNS would, and otherwise it backtracks
one step. The values of pn and dn are only recomputed at
the node that DFPN is currently considering. If v only has
a single neighbor, the thresholds are simply passed on.
Otherwise, if v is a molecule-player node, the thpn value
of the chosen child becomes the minimum of the thpn
value of v and the increment of the proof number of the
second-best child. If v is a reaction-player node, the thpn
value of the chosen child becomes the surplus between
pn(v) and its threshold plus the pn value of the chosen
child. For dn , the operations are again analogous. As
before, this is exact for out-trees, but DFPN is incomplete
on general graphs [22].

As pointed out in [37], DFPN and PNS as stated above
are not necessarily correct on graphs that contain cycles:
A proof or a disproof of some node v that is found when v
is visited through some path P cannot certainly be reused
when v is visited through some path P′ �= P . This is called
the Graph History Interaction Problem. As a general
solution [23, 38], one can, upon (dis)proving a node when
visiting it through P, save the (dis)proof only with respect
to P. When visiting v again through P′ , it can be verified
if the previously found proof is still valid. For further
details, we refer the reader to the aforementioned works.

To break infinite loops, the Threshold Controlling
Algorithm (TCA) [24] maintains a value md(v) for
every node v. It represents the (minimum) distance
between v0 and v in the explored part of G. Whenever
a node v is visited that has an unproved old child c, i.e.,
md(c) ≤ md(v) , TCA adjusts thpn(v) and thdn(v) such

Page 5 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

that DFPN does not backtrack. In particular, it sets
thpn(v) and thdn(v) to values so that pn(v) < thpn(v) and
dn(v) < thdn(v) are definitely satisfied. The fact that the
thresholds have been increased is passed to subsequent
recursive calls of the algorithm, prompting these calls to
also increase the corresponding thresholds, until a node
is expanded or a cycle is closed (i.e., progress is made).

We give a more formal description of the entire
algorithm in a general context in Appendix A.

Completeness of DFPN with TCA
We start this section with (re-)justifying variants of
DFPN by giving a counter example to the completeness
of DFPN that is significantly simpler than the known
counter example [22]. In the second subsection we will
then prove completeness of DFPN with TCA.

Simpler counter example without TCA
We consider the graph shown in Fig. 1. In that graph,
DFPN visits v3 and v4 alternating from v0 via v2 and
v1 , respectively, in an infinite loop. In particular, it
never expands v5 . When W0 = {v6} and W1 = ∅ , DFPN
therefore never discovers the only winning strategy for
the molecule player from v0 , which includes v6 . In this
example the TCA would upon visiting v3 increase its
threshold, since the minimal distance from its child v2 to
the root md(v2) is smaller than its md(v3) . Therefore the
algorithm would expand v5 and find the winning strategy
in v6 . In comparison to the known counterexample, this
one only consists of 7 instead of 17 nodes and is much
more symmetrical.

Proof of completeness with TCA
We show that DFPN with TCA is complete, that is,
whenever there exists a winning strategy for the starting
player, DFPN with TCA eventually finds such a strategy.
In the overall structure, our proof resembles the proof
that DFPN is complete on directed acyclic graphs [22].
In particular, we assume towards a contradiction that
the algorithm gets into an infinite loop and consider
the subgraph L of the entire graph that is relevant for
the infinite loop. It can be seen that the infinite loop is
due to inconsistencies of the pn/dn values of the nodes

in L. We manage to show that, as long as the algorithm
stays in the infinite loop, the pn/dn values become “less
inconsistent” over time. Therefore, after finitely many
steps, the algorithm will break the infinite loop.

We quantify inconsistency in the same way as
Kishimoto and Müller [22], that is, by counting the
number of inconsistent nodes in the different layers of
L (defined according to the length of the longest path
from the root) separately and collecting the counts in an
inconsistency tuple. We show that, after finitely many
steps, the inconsistency tuple decreases in a lexicographic
sense.

The main additional technical ingredient is a
fundamental property of L that is needed to prove the
previous statement. Specifically, we consider a situation
in which some node nc is searched, but the algorithm
eventually backtracks because the threshold condition
is not met any more. We show that, for any other node
m at which the threshold condition has been violated in
the meantime as well, there is no path from any higher-
level node to m. This property helps us in controlling how
inconsistencies can develop in L.

Adaptation of DFPN to multiple solutions
Since the algorithm is deterministic, running it multiple
times would only lead to the same solution each time. To
find multiple solutions, we modify PNS and its variants.
We change the values of pn and dn for some nodes in
such a way that the found solution becomes invalid. We
need to be careful about this for two reasons. First, the
choice of nodes controls the type of diversity we obtain
for the set of solutions we find when iterating this
idea. Second, since we might end up at a node through
different paths, we do not want to completely neglect any
nodes. Instead, we keep track of the path we used to get
to any node and store it. If we encounter the same node
again, we check if the path that was used to reach it was
stored. If so, the node will stay disproved, otherwise we
can use it again.

To further control the diversity of the solutions, the
algorithm penalizes every node used by a found winning
strategy. This happens by adding a penalty£ preac to the
values of pn for every reaction-player node v in a path
to a node selected by the above diversity controlling
strategy: pn(v) := pn(v)+ preac . Adding a penalty
pmol to the values of pn for all molecule-player nodes v
represents an additional approach. Afterwards the values
of pn and dn of all previous nodes get updated according
to (1) and (2) in Appendix A. The penalties are adjustable.
Higher penalties lead to more diverse routes but longer
computation times.

To obtain our algorithm DFPN* for restrosynthesis, we
use the DFPN-E algorithm by Kishimoto et al. [16] as a

Fig. 1 The graph G that shows that DFPN is not complete.The
molecule nodes and the reaction nodes are depicted as squares
and circles, respectively

Page 6 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

baseline. This algorithm uses a heuristic function that
evaluates the cost of using a certain edge from a molecule
to its child (i.e., reaction). We then apply a diversity-
controlling strategy to it. More specifically, the single
node we choose to disprove as part of our diversity-
controlling strategy is a deepest reaction in the found
route, i.e., a reaction reached through a longest path from
the target molecule. By doing so, we force the algorithm
to find shorter routes without destroying too many
possible routes. The reason we choose a reaction rather
than a molecule to disprove is that disproving a molecule
leads to a disproof of a reaction anyway. For the same
reason, we set pmol = 0.

Results & discussion
In the wider CASP literature the number of solved
molecules is often used as proxy to compare the quality
of different CASP tools [9, 30, 39]. This metric is highly
dependent on the underlying size and make-up of
the catalog of (assumed) buyable building blocks and
thus not easily comparable between publications.
Additionally, the number of solved molecules can vary a
lot between different sets of molecules and thus we limit
our comparison to the algorithms tested here. Looking
at the smaller search times between 60 s and 300 s our
DFPN* implementation solves more molecules than the

MCTS implementation we used (see Table 1 and Fig. 11
in Appendix D.5). The MCTS implementation is taken
from [34, 40], adding minor modifications to adapt it for
our use. For search times of 600 s to 1200 s we do not see
a difference between our DFPN* implementation and the
MCTS regarding the number of solved molecules with
both algorithms converging to a maximum of 94%.

The second and main aspect we are focusing on is the
chemical diversity of the generated routes. We do so by
applying the chemical diversity score introduced above
on the sets of routes from both approaches. Looking at
Fig. 2a we see that for our MCTS implementation the
median CDS, across all our tested search times, is never
significantly higher than 2. According to our definition of
the CDS this means that the median number of chemical
ideas present in a given set of routes, irrespective
of search time, is 2 for the MCTS. For our DFPN*
implementation (see Fig. 2a) the median CDS for the
smallest search time (60 s) starts at 2 and increases with
search time significantly until 600 s where it tapers of
into a plateau at 3.8 for 1200 s. We do not expect either of
the two algorithms to reach significantly higher median
CDS with even longer search times. Looking beyond
the median CDS values we see that with our DFPN*
implementation we can reach CDS around 9 compared
to a CDS of 6 for the MCTS (top whisker corresponds

0

2

4

6

8

10

60 120 300 600 900 1200
computation time [s]

C
D
S

search algorithm: DFPN* MCTS

0

2

4

6

8

10

60 120 300 600 900 1200
computation time [s]

[#
 re

ac
tio

ns
]

search algorithm: DFPN* MCTS

(a) (b)
Fig. 2 Comparison between DFPN* and MCTS: a Chemical diversity score (CDS) for DFPN* and MCTS routes for different search times. DFPN*
routes show significantly higher diversity score throughout all data points (Asymptotic Wilcoxon-Mann-Whitney Test, significance level $\
alpha=0.01$, colored boxes correspond to the IQR between the first and third quantile, whiskers go up-to/down-to 1.5 times of the upper/
lower bound of the IQR). b For smaller search times (60 s/120 s) the mean number of used reaction over all routes and solved molecules by our
DFPN* implementation is 3.5/3.9 vs. 2.6/3.5 for the MCTS implementation. For longer search times this trend reverses and the highest median
number of used reactions seen for the DFPN* implementation is 5.1 vs 7.3 for the MCTS implementation (colored boxes correspond to the IQR
between the first and third quantile, whiskers go up-to/down-to 1.5 times of the upper/lower bound of the IQR)

Page 7 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

to 1.5 times upper bound of IQR). The lower bound of
the IQR of the DFPN* is always above the respective
median MCTS CDS, and this gap becomes even more
pronounced for search times of 900 s and 1200 s. The
MCTS seems to iterate on the same chemical ideas with
prolonged search times. This is further corroborated
by the mean number of synthesis routes found (see
Table 1). For the longer search times (starting with 300 s)
the MCTS is able to find significantly more synthesis
routes, but this is not translated into a set of more diverse
routes (see Fig. 2a). This behavior coincides with our
practical experience when working with routes found by
our MCTS implementation and the results depicted in
Fig. 2b further strengthen this interpretation.

Finally, we want to move our attention to metrics
describing the found pathways themselves. In Fig. 2b
the mean number of reactions used in all pathways
over all solved molecules is plotted against the search
time for our MCTS and DFPN* implementation. For
our smallest search time (60 s) DFPN* needs a median
of 3.5 reactions to reach the target molecule. This rises
slightly for search times of 600 s, where it then reaches
a plateau for both of our highest search times 900 s and
1200 s. The standard deviation of the distribution for
the DFPN* stays fairly constant over all search times
and we see some outliers that need up to 11 reactions
to reach the target. In comparison to that the MCTS
needs, on average, less reactions for smaller search
times (60 s and 120 s) i.e. 2.6 vs 3.5 reactions but then
already surpasses the DFPN* with with a mean of 5.4
vs. 4.4 reactions at 300 s. We want to stress here that,
while the mean number increases, there are still shorter
routes present in the route sets stemming from longer
search times. The trend observed in Fig. 2b comes from
an increased length of those routes found additionally
while the search progresses. The much slower increase
of the mean number of reactions used by the DFPN*
algorithm indicates that also in later stages of the search
short routes are found, while the MCTS seemingly tends
to further explore and deepen paths which already lead
to presumably commercially available starting materials.
This interpretation is also in line with the stagnation
in the CDS of route sets produced by MCTS. The here
reported results indicate that the MCTS implementation
prioritizes shorter solutions early on, but is then
modifying those only slightly at later stages of the search.
The DFPN* algorithm does not have such a bias, yielding
a mix of various route length from the beginning. But
there are also algorithmically independent reasons for an
increase in the mean number of reactions, true for both
algorithms. One is of stochastic nature, as the number of
possible solutions increases with each additional level of
node depth in the search graph considered. Once most of

the shorter and viable routes are found, increased search
times for already solved molecules will naturally yield
longer routes. Another reason for the observed trend lies
in the increased number of solved molecules at longer
search times. A reasonable assumption is that such
molecules cannot be solved by short routes and require
a more thorough exploration of the search graph, caused
by the explosion of possible choices at deeper node
levels. Since the number of additionally solved target
molecules is low due to a high success rate early on and
that such molecules also tend to have a smaller route set,
their influence on the mean could be small. Therefore,
the second effect might be less pronounced than the first.

0.0

0.2

0.4

0.6

0.8

1.0

60 120 300 600 900 1200
computation time [s]

[m
ea

n
vi

ab
ilit

y
fil

te
r s

co
re

]

search algorithm: DFPN* MCTS

Fig. 3 Mean multiplicative viability score for DFPN* and MCTS
routes for different search times. The viability scores for each reaction
of a route are multiplied with each other to give the estimated route
viability. The respective mean score from each target molecule
is given here. Higher values can be associated with a higher
likelihood that the particular route will work in the lab. (Colored boxes
correspond to the IQR between the first and third quantile, whiskers
go up-to/down-to 1.5 times of the upper/lower bound of the IQR)

Table 1 Fraction of molecules for which the individual algorithm
was able to find at least one viable synthesis route and mean
number of routes found for a given search time

Search time [s] DFPN* MCTS DFPN* MCTS
Solved molecules [%] Mean # of routes

60 83 76 34.84 13.87

120 87 84 64.84 57.16

300 90 89 138.92 266.66

600 92 92 216.3 396.45

900 93 93 257.67 435.04

1200 94 94 284.21 445.04

Page 8 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

Routes can also be evaluated by the route viability. For
this, we multiply the scores of our viability model for each
reaction of a route with each other. The resulting score
can be interpreted as the probability of the route working
in the lab. This metric depends heavily on the predictions
of said viability model. This is however not without
caveats. The model is a binary classifier, discriminating
between working and non-working reactions. But since
there are only very few non-working reactions reported
in literature, true negative data is very limited and is
dwarfed by the bulk of true positive data. To overcome
this imbalance, synthetically generated negative data
is used [9]. Tested on proprietary in-house true and
synthetic negative data, we found a large discrepancy
between model performances, ∼ 65% vs ∼ 95% accuracy.
Given also an unknown error to the in-house negative
data (e.g., the reason why a reaction failed is often not
known) we advice to be cautious when dealing with such
scores in general. Despite its limitations, we nonetheless
think that it can give valuable insights. In Fig. 3, the
mean route viability is given for the DFPN* and MCTS
algorithms. For shorter search times, the MCTS yields
routes with an on average higher viability. At 300 s, the
two implementations show very similar distributions and
at search times beyond that, the DFPN* implementation
yields higher viability scores. We attribute this, in parts,
to the route-length distribution discussed above. Longer
routes will often have lower viability scores due to the
additional sub-one factors. This effect shows in the lower
scores for our DFPN* implementation for shorter search
times and also for the MCTS for longer ones. Another
factor is the tendency of the MCTS to favor reactions
with a high score assigned by the reaction prediction
model. This steers it towards high-viability routes, but
prevents it from creating meaningful diversity, as also
shown above. The strategy for generating multiple
solutions in our DFPN* implementation is designed to
also pursue pathways with lower reaction prediction
model scores. This is a conscious choice, using machine-
learning models to search efficiently but not trusting
them blindly. We believe the trade-off between estimated
viability and diversity worthwhile.

Conclusion
In this work, we adapted DFPN to find multiple solutions
in the context of chemical retrosynthesis. In designing
our changes to the algorithm, we made chemical diversity

a priority, following the principle quality through diver-
sity. We dubbed this new variant DFPN*. To quantify
the diversity generated by DFPN*, we introduced a new
chemical diversity score (CDS) that captures the number
of unique chemical synthesis ideas present in a set of syn-
thesis pathways. We compared DFPN* with MCTS on a
diverse set of 1000 molecules extracted from the DUD-E
database. Our DFPN* implementation shows compara-
ble to slightly better performance regarding the number
of solved molecules for all search time budgets. We also
show that our DFPN* implementation is superior to the
MCTS with regards to chemical diversity as well as to
synthesis effort, measured by the mean number of reac-
tions, at medium and long search time budgets.

Our approach tackles two major challenges in current
CASP tools simultaneously. Currently available reaction
data does not allow for near-error-free solutions and
optimality in synthesis strategy is defined differently by
the various branches of chemistry. The arguably best
solution to both challenges is to provide a diverse set
of pathways. From these, the users may choose those
pathways that suit their needs best. We think that the
DFPN* algorithm gives access to more user-oriented,
higher quality CASP tools by proposing highly diverse
synthesis pathways without compromising their
individual quality.

The advancements in this work also give rise to further
exploitation of the diversity principle. For example, from
a set of pathways, calculated for a compound library, it is
possible to search and select those that have the highest
overlap in reactions, intermediates, and building blocks.
Obviously, a high chemical diversity is critical to be
able to find such a set. This approach would, on the one
hand, give rise to a new compound selection criterion for
experimental screening candidates and secondly could
reduce the synthesis effort for the selected compounds
significantly. Furthermore, computation is currently lim-
ited to a single core, and for single-target use cases no
trivial parallelization scheme can be deployed, dictating
wait times for users. Utilizing the multi-core design of
modern processors would allow for a smoother integra-
tion in lab routines by shortening the time-to-solution.

Page 9 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

Appendix
A depth‑first proof‑number search and variants: formal
description
Basic Definitions. The input graph is a directed graph
G = (V ,E) where v0 ∈ V is the start node. Further, V is
partitioned into V0 and V1 , the sets of nodes of Player 0
and Player 1 (corresponding to the molecule and reaction
player, respectively), also referred to as AND and OR
nodes, respectively. The sets W0 and W1 , the sets of
winning nodes of Player 0 and Player 1, respectively,
are disjoint subsets of V. Without loss of generality, we
assume that

• all neighbors of nodes in V0 are in V1 and vice versa.
• for all v ∈ V it holds that δoutG (v) = ∅ if and only if

v ∈ W0 ∪W1.

A play P is a sequence of v0, v1, . . . , vk such that for all
i ∈ {0, . . . , k − 1} , we have vi+1 ∈ N out

G (vi) . If P is a path
in G, i.e., it contains each node at most once, we say P is
winning for Player i ∈ {0, 1} if vk ∈ Wi . If v0, . . . , vk−1 is a
path and vk ∈ {v0, . . . , vk−1} (the last move closes a cycle),
we assume the play is winning for either of the players,
e.g., Player 0 wins or the Player i with vk−1 /∈ Vi wins [38].

A strategy for Player i ∈ {0, 1} is a function σ : Vi → V
such that σ(v) ∈ N out

G (v) for all v ∈ Vi . A pair of
strategies for both players naturally induces a play (that
stops the first time it is winning for one of the players).
For i ∈ {0, 1} , we say that a strategy σi for Player 1 is a
winning strategy if σi and each strategy σ1−i for Player
1− i induces a play that is winning for Player i.

Proof‑Number Search. Proof-Number Search (PNS) [21]
explores G starting from v0 , i.e., initially v0 is explored, and
all other nodes are not explored. No edges are explored
at that time. PNS iteratively expands nodes v that were
previously not expanded. This way, PNS learns if v ∈ Wi
for i ∈ {0, 1} , and all edges in δoutG (v) as well as v’s children
N out
G (v) are explored. Note that, since G is not necessarily a

tree, such endpoints have possibly been explored prior to
the expansion of v.

A node v is called proved if a winning strategy for Player
0 can be inferred from the explored part of G; if a winning
strategy for Player 1 can be inferred, it is called disproved.
A node that is neither proved nor disproved is said to be
unproved.

The (dis)proof number of an explored node v is defined to
be the minimum number of explored unproved nodes that
have to be (dis)proved for v to be (dis)proved. Clearly, the
(dis)proof number of a (dis)proved node is 0; by convention
the proof number of a disproved node and the disproof
number of a proved node is defined to be ∞.

For any explored node v, PNS maintains estimates pn(v)
and dn(v) for the proof and disproof numbers, respectively,

of v. For any unexpanded node v ∈ V (in particular, v0
at initialization), PNS sets pn(v) = 1 and dn(v) = 1 in
accordance with the definition of the actual proof and
disproof numbers.

In each iteration, PNS selects a most promising node to
expand. To do so, it first selects v0 . If the currently selected
node v has already been expanded, PNS distinguishes
two cases. If v ∈ V0 , PNS next selects a node c in N out(v)
minimizing pn(c) . Otherwise, i.e., if v ∈ V1 , it selects a node
c in N out

G (v) minimizing dn(c) . Once PNS has selected an
unexpanded node, it expands this node.

After expanding a node, PNS first sets pn(v) = 1 and
dn(v) = 1 for the newly explored nodes v (as described
above). Then it updates pn(v) and dn(v) for all the nodes
v selected between the expansion that just happened and
the expansion before that, in reverse order of selecting.
In particular, in case of the just expanded node, PNS may
have learned that v ∈ Wi for i ∈ {0, 1} , or a cycle has just
been closed. In accordance with the definition of the actual
proof and disproof numbers, upon learning Player 0 wins,
it sets pn(v) = 0 and dn(v) = ∞ ; upon learning that Player
1 wins, it sets pn(v) = ∞ and dn(v) = 0 . In all other cases,
for v ∈ V0 it sets

and for v ∈ V1 it sets

If G is an out-tree, it is easy to see that pn(v) and dn(v)
reflect the actual (dis)proof numbers. In a general graph,
however, as can be seen, e.g., in the graph shown in Fig. 1,
this is not necessarily the case.

Depth‑First Proof‑Number Search. Depth-First
Proof-Number Search (DFPN) [18] does noFigat start
the search for the most promising node from v0 in each
iteration. Instead, when node v is currently selected,
it tries to use thresholds thpn(v) and thdn(v) to decide
whether the path taken from v0 to v is part of a path
that PNS would take. In particular, if

then it continues the search like PNS would, and other-
wise it backtracks one step. The values of pn and dn are
only recomputed at the node that DFPN is currently
considering.

The thresholds are determined as follows. Initially,
thpn(v0) := ∞ and thdn(v0) := ∞ . Suppose from node
v, node c1 is selected next, i.e., if v ∈ V0 (v ∈ V1), c1

(1)

pn(v) := min
c∈Nout

G (v)
pn(c); dn(v) :=

∑

c∈Nout
G (v)

dn(c),

(2)

pn(v) :=
∑

c∈Nout
G (v)

pn(c); dn(v) := min
c∈Nout

G (v)
dn(c).

(3)pn(v) < thpn(v); dn(v) < thdn(v),

Page 10 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

has the smallest value of pn (dn) among N out(v) . If
|N out(v)| = 1 , the thresholds for c1 are taken over from
v. Otherwise, let c2 be a node that has the smallest value
of pn (dn) among N out(v)\{c1} . If v ∈ V0,

and if v ∈ V1,

We give the full algorithm, including the Threshold
Controlling Algorithm, in Algorithm 1.

Algorithm 1 search (DFPN with TCA)

(4)
thpn(c1) := min{thpn(v), pn(c2)+ 1},

thdn(c1) := thdn(v)− dn(v)+ dn(c1),

(5)
thpn(c1) := thpn(v)− pn(v)+ pn(c1),

thdn(c1) := min{thdn(v), dn(c2)+ 1}.

B Missing material from Subsection Simpler counter
example without TCA
In Fig. 4, we first repeat the graph from Simpler counter
example without TCA section in the more common
vertical orientation.

Recall that, in DFPN, initially only v0 is explored.
As a first step, this node is expanded. This leads to
the explored part of the graph along with (dis)proof
numbers and thresholds depicted in Fig. 5.

At that point, DFPN is indifferent between expanding
v1 or v2 first. Suppose w.l.o.g. DFPN expands v1 first.

Note that, thpn(v1) will remain ∞ while thdn(v1) is set
to 2. Since v1 has only one child, its values of pn and

Page 11 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

dn will remain 1 even after its expansion, and the
thresholds remain the same, implying that DFPN
continues expanding at along this path to v3 . Since
v3 ∈ V0 has, however, two children, thdn(v3) = dn(v3)
after the expansion of v3 . Hence, DFPN will backtrack
back to v0 . The resulting explored part of G is shown in
Fig. 6.

Now there is no indifference anymore and DFPN
explores the nodes v2 , v4 in a similar manner,
eventually backtracking to v0 . The result is shown in

Fig. 7. Subsequently, DFPN will again visits v1 , v3 and
backtrack to v0 ; the result is shown in Fig. 8.

It is easy to see that this behavior will continue and
DFPN will run into an infinite loop. Running DFPN
with TCA on this example will probably help the
reader’s understanding of DFPN with TCA and the fact
that it might not have the same issue.

C full proof of completeness of DFPN with TCA
The purpose of this section is to prove the following
theorem.

Theorem 1 DFPN with TCA is complete.

In the proof, we assume towards a contradiction that
DFPN with TCA runs into an infinite loop. First, we
remove all the parts of G that are irrelevant during the
infinite loop, obtaining a new graph L = (V ′,E′) . More

Fig. 4 The graph G from Simpler counter example
without TCA section in vertical orientation. Recall that the nodes
in V0 and V1 are depicted as squares and circles, respectively,
and that W0 = {v6},W1 = ∅

Fig. 5 The explored part of G right after the expansion of v0

Fig. 6 The explored part of G at the second visit to v0

Fig. 7 The explored part of G at the third visit to v0

Fig. 8 The explored part of G at the fourth visit to v0

Page 12 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

precisely, let P⋆ := v0, . . . , v
⋆ be the largest path that is a

prefix of P throughout the infinite loop. Then

• V ′ contains all vertices in P⋆ , all vertices visited
during the loop, and all their children;

• E′ contains all edges in P⋆ and outgoing edges from
vertices visited during the loop.

For instance, for the loop considered in Subsection Sim-
pler counter example without TCA , L would consist of all
nodes but v9 and all edges but the one leading to v9.

For a node, v ∈ V ′ , we now define its level ℓ(v) to be
the length of the longest v0-v path in L. Note that in the
proof for DFPN on directed acyclic graphs [22], levels
are also used but defined on G rather than L. Let ℓmax
be the maximal level of any node in L. The fundamental
property of L is the following.

Consider a call during the infinite loop at some
node nc that eventually returns because the threshold
condition is not met anymore, i.e., pn(nc) ≥ thpn(nc)
or dn(nc) ≥ thdn(nc) . Denote by M the set of nodes
(including nc) at which the threshold condition had been
violated in the meantime.

Lemma 1 Consider some m ∈ M . There is no node
o ∈ V ′ \ {m} with ℓ(o) ≥ ℓ(m) such that there exists a
path from o to m in L.

Note that the statement is trivially true in acyclic
graphs, in which an v0-o path can always be extended by
an o-m path to a longer path, but not in cyclic graphs. We
provide a proof.

Proof of Lemma 1 Suppose such a node o exists, and
denote by P′ the o-m path in L. First note that o must
be visited during the infinite loop. The reason is that
otherwise

• either o is part of P⋆ , in which case the only v0-o path
in L (a prefix of P⋆) could be extended by an o-m path
in L, contradicting ℓ(o) ≥ ℓ(m);

• or o is a child of a node visited during the loop with
N out
L (o) = ∅ , contradicting the fact that P′ exists.

Next, note that for any node p in P′ (in particular m)
it must hold that md(o) < md(p) during the loop. This
is because otherwise there must exist a node p′ on P′
with successor p′′ on P′ such that md(p′) ≥ md(p′′) .
Upon visiting p′ , TCA would then increase the
thresholds. This already contradicts the assumption
that DFPN with TCA is in an infinite loop because it

would eventually make progress by either expanding an
unexpanded node or finding a new cycle.

Now consider the v0-o path P′′ of length ℓ(o) in L. Since
ℓ(o) ≥ ℓ(m) , P′′ cannot be extended to a v0-m path by P′ .
The reason for that must be that P′′ intersects P′ at some
node p0 . By the same argument as above, applied to the
p0-o subpath of P′′ , it holds that md(p0) < md(o).

Hence, md(o) < md(p0) < md(o) ; a contradiction.
 �

The remaining part of the proof is quite similar to
the proof of completeness of directed acyclic graphs
[22]. Indeed, we call a node v ∈ V ′ consistent if it ful-
fills (1) and (2) (as equations rather than assign-
ments) and inconsistent otherwise. We also define
the inconsistency tuple to be (Nℓmax ,Nℓmax−1, . . . ,N0)
where, for i ∈ {ℓmax, . . . , 0} , Ni is the number of incon-
sistent nodes at level i of L. We call L i-consistent if
Nℓmax = Nℓmax−1 = · · · = Ni = 0.

Using Lemma 1, the proofs of the following two
lemmata are now quite similar to the completeness
proof on acyclic graphs [22].

Lemma 2 Let n ∈ V ′ , suppose L is ℓ(n)-consistent, and
pn(n) < thpn(n) as well as dn(n) < thdn(n) holds. If the
algorithm now searches n, it will expand a node or find a
new cycle before the call returns.

Proof We first show that the algorithm will select a
child nc of n for which the condition pn(nc) < thpn(nc) as
well as dn(nc) < thdn(nc) will hold. If n has a single child,
this is clear. Assuming n ∈ V0 and letting cd be the second
best child (called c2 in (4) and (5))), we can compute

and

using that the threshold criterion is met at n and that n is
consistent. The argument in case n ∈ V1 is analogous.

We now claim that ℓ(nc) ≥ ℓ(n)+ 1 . The reason is
the following: Otherwise, n must be part of a v0-nc path
(because then that path cannot be extended by n). In
particular, then there must exist an n-nc path in L. But
then, on the emerging cycle, there must be a node p′
with successor p′′ such that md(p′) ≥ md(p′′) , prompting
TCA to increase the thresholds upon visiting p′ and
eventually make progress.

thpn(nc) :=min{thpn(n), pn(nd)+ 1}

>min(pn(n), pn(nc)) = pn(nc)

thdn(nc) := thdn(n)− dn(n)+ dn(nc) > dn(nc),

Page 13 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

The claim now follows because the algorithm
successively selects nodes with higher levels, eventually
expanding a node. �

For the next lemma, recall that a tuple (a1, a2, . . . , ak)
is lexicographically smaller than a tuple (b1, b2, . . . , bk) ,
denoted (a1, a2, . . . , ak) <lex (b1, b2, . . . , bk) , if for
some i, it holds that a1 = b1, a2 = b2, . . . , ai = bi and
ai+1 < bi+1.

Lemma 3 Suppose not all nodes in L are consistent.
Denote by T and U the inconsistency tuples right before
nc is searched and right after the call has returned,
respectively. Then U <lex T .

Proof Let T = (tℓmax , tℓmax−1, . . . , t0) and
U = (uℓmax ,uℓmax−1, . . . ,u0) . We define m⋆ to be a node
from M with maximum level. First note that, since by
Lemma 1, for all nodes o with ℓ(o) ≥ ℓ(m⋆) and m ∈ M ,
there is no o-m path in L. Hence, such nodes o cannot
become inconsistent by a visit to a node in M. For all
i > ℓmax , this implies ui = ti . Further, when pn(m⋆)
and dn(m⋆) are recomputed, by Lemma 2, the formerly
inconsistent node m⋆ becomes consistent, meaning
tℓ(m⋆) > uℓ(m⋆) . �

These lemmata allow us to prove the Theorem.

Proof of Theorem 1 Recall that P⋆ = v0, . . . , v
⋆ is the

largest prefix that is part of P throughout the infinite
loop. Consider some time during the infinite loop. If L is
not yet ℓ(v⋆)-consistent at that time, Lemma 3 guarantees
that it will be ℓ(v⋆)-consistent after finite time. At that
time, Lemma 2 implies that the next time the algorithm
searches v⋆ it will expand a node or find a new cycle
before it returns, thereby making progress. That is a
contradiction to the fact that the algorithm is in an
infinite loop. �

D Methods
D.1 Target compound selection
All of our experiments are based on a subset of the
DUD-E data set, a target data set designed to help
benchmark molecular docking programs by providing
challenging decoys [41]. Out of 22805 initial molecules,
we extracted the subset of active molecules and calculated
all-to-all RDKit-fingerprint Tanimoto similarities with
the RDkit package [42] and discarded those molecules
with a similarity greater than 50% for a total of 2580
molecules. We built our final set of molecules from 1000
randomly selected molecules having between 19 and 33
heavy atoms.

D.2 Synthesis pathway calculations
We calculated all synthesis pathways using our
own DFPN* implementation and a modified MCTS
implementation based on the ASKCOS code. For all
searches we used the same set of template prioritization
and reaction viability models (described in Appendix
D.4). The reaction viability inclusion threshold was set
to > 0.5 , the maximum search depth was limited to 7
reaction steps from the target, and search was terminated
prematurely if 500 routes were found. We set σ = 3 and
preac = 10 in our DFPN* calculations and we set the
exploration constant of MCTS to 2 and its maximum
branching factor to 50. All calculations used the same set
of building blocks (see Appendix D.3). For comparison
and further analysis we searched for 60 s, 120 s, 300 s,
600 s, 900 s, and 1200 s respectively.

D.3 Template creation/extraction and building block
molecules
The retrosynthetic reactions, selected by the respective
algorithm during route search, are applied to the target
molecule as well as to all intermediates as reaction
templates in form of reaction SMARTS. These templates
are extracted from known chemical reactions (as
reactions SMILES), in our case taken from the Reaxys®1
database and in-house lab journal data. The extracted
reactions are first standardized with the Pipeline Pilot
Node [43] “Standardize Molecule”, removing all stereo
chemistry information from the SMILES, single atom
fragments, and standardizing all charges while keeping
the original charges of acids. In a second step the
reactions were filtered for maximum molecule size of 128
heavy atoms and single product reactions (a limitation
of both search algorithms) or more than 3 reactants.
The latter was checked with RDKit [42] which thereby
also doubles as a filter for SMILES interpretability.
As building-block molecules we used a version of
Bayer’s internal catalogs. To align those compounds
with our templates, the corresponding molecules were
standardized in the same way, omitting the filtering step
on heavy atoms.

The filtered and standardized reaction where than atom
mapped with first the Namerxn software by Nextmove
[44] and those reactions which could not be mapped that
way where treated in Pipeline Pilot with the “Add Reac-
tion Mapping” with a maximum MCSS search time of
600 s and maximum time per mapping of 1800 s. The
extraction of SMARTS patterns from the atom mapped

1 https://www.reaxys.com/

Page 14 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

reactions was done with the open source Python package
RDChiral [45].

In total, there were 11,960,851 transformations
extracted from the combined data sets, which were then
grouped into 2,819,644 classes of identical SMARTS.
Consequently, the largest transformation classes are
encoding the most abundant reaction classes. In an effort
to filter out transformations containing errors from
the atom-mapping step and the SMARTS extraction
process as well as to exclude questionable, and therefore
seldom publicized chemistry, a cutoff of at least five class
members was applied, yielding a final data set containing
about 270,605 classes and 8,616,236 million samples.

The distribution of class sizes as well as the cumulative
proportion of the total data set is given as a Pareto
diagram in Fig. 9. As indicated by dashed lines, only 20%
of all transformation classes cover already about 80% of
the full data set and, shown in the inset, the biggest class
is composed of about 100,000 members while the 100th
already only contains mere 6,000 samples, dropping
fast in the two-digit numbers range. This testifies to the
extreme imbalanced nature of the here employed data set
used for training the one-step-retro model.

D.4 Single‑step retrosynthesis (template prioritization +
reaction viability)
When choosing which single reaction is the most
appropriate for a single retrosynthetic step, we follow
previous approaches for the prioritization and application
of templates [9, 46].

During the exploration phase, the DFPN* algorithm
often needs to further expand a node before determin-
ing whether it can be proved. In chemistry terms, this
means that the selected molecule is neither a building
block nor well known enough to be considered a build-
ing block. When this occurs, a reaction prediction model
generates a list of k possible retrosynthetic transforma-
tions that could be applied to the current molecule. This
neural network model is trained as classifier from litera-
ture (extracted from the Reaxys® (https://www.reaxys.
com/) database), and in our case from internal labora-
tory journals extracted transformation classes with the
reaction product as input [47, 48]. In this publication
we are using two models trained on the same data and
with the same architecture but one with modified class
weights in training and one without. The purpose of
the reweighting is to counteract the severe imbalance
between class sized in the training set. To do so, the
weights are calculated by dividing the maximum class
size by the individual class sizes, giving smaller classes
a higher weight in comparison to larger ones. In the fol-
lowing, the model trained without the class-size depend-
ent reweighting scheme is marked with a dagger symbol
as template prioritization model† or TP-model† while the
one with is simply referred to as TP-model. However, in
the training of both models at least one class-reweighting
scheme was applied which gave reactions from the in-
house lab journals more emphasis. This was also done
class-wise by using a factor of 10 for such reactions and
assigning the mean weighting-factor over all contribut-
ing reactions to the individual classes. In the case of the
TP-model both weights were multiplied. The architecture
of both variants was the same, a MLP neural network
with two hidden layers of size 1024, using ELU activa-
tion functions. As input the binary Morgan fingerprint
(length = 216 , radius = 2) of the product molecule was
used. Before feeding the input to the model, a variance
filter was applied to unify the fingerprints [9], resulting
in an input dimension of 214 . The according thresholds
were established based on an analysis over the training-
set and can be found as part of the supporting informa-
tion. The output layer had a size equal to the number
of transformation classes (270,605) with a softmax acti-
vation function. The training was performed over 100
epochs (the final model was chosen based on validation
loss from those 100 epochs) using the Adam optimiza-
tion algorithm on a sparse categorical cross-entropy loss
with a learning rate of 1 · 10−5 and a batch size of 512. A
dropout rate of 0.1 was sufficient to minimize overfitting.

Every transformation candidate generated by one of
the TP-models is further tested in a forward direction. If
the reaction prediction model determines that the target
molecule R can be split into sub-molecules R1 and R2 via

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Fraction of transformation classes [%]

Fr
ac

tio
n

of
 #

 R
ea

ct
io

ns
 [%

]

Fig. 9 Fraction of the cumulative number of samples relative
to the full data set (red)

Page 15 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

transformation T, a fast-filter model determines whether
a transformation involving molecules R1 and R2 is likely
to succeed. This fast filter model is a fully-connected,
single-layer neural network with ReLu activation and
Sigmoid output. Its inputs are the concatenation of the
binary ECFP fingerprints (radius=2, features=8192) of

molecules R1 and R2 . This model is trained as a binary
classifier for the task of deciding whether a transforma-
tion involving its input molecules is likely to be success-
ful. For training the in Tensorflow 1.9.0 implemented
Adam optimizer was used with a learning rate of 1 · 10−4 .
This model is trained with a set of 8 M working reactions
taken from from the Reaxys® database and our internal
laboratory journals [47, 48]. We used 136k negative and
608k working reactions from our internal laboratory
journals and 12.8M generated algorithmically following
the general approach by Segler et al. [9].

D.5 Single‑step retrosynthesis model quality
A key element in the route search with the here used
implementations of the MCTS and DFPN* search
algorithms is the proposition of suitable chemical
retrosynthetic transformations. Consequently, the quality
of the deep learning model providing those is central for
the capabilities of the algorithm to solve molecules and to
find a diverse set of synthesis pathways.

The measured accuracy for the model trained on
re-weighted class importance is significantly worse than
the one trained without, as shown in Fig. 10. The larger
gap in accuracy for smaller k between both approaches is

0%

25%

50%

75%

100%

100 101 102 103

Top k

Ac
cu

ra
cy

/A
pp

lic
ab

ilit
y

Applicability

Accuracy (reweighted)

Accuracy

Applicability (reweighted)

Fig. 10 Top k accuracy and applicability for models trained
on transformation classes reweighted according to their size,
resulting in the same importance of all classes, and without such
reweighting. Reactions found in in-house lab journals are stronger
weighted in both cases and for the Applicability metric reactions
were checked with our fast filter model

0%

25%

50%

75%

100%

60120 300 600 900 1200
calculation time [s]

R
at

io
 o

f s
ol

ve
d

ta
rg

et
 m

ol
ec

ul
es

search algorithm: DFPN* MCTS

Fig. 11 Percentage of solved molecules for the DFPN* and MCTS
algorithms respectively. Shorter search times favor the DFPN*
algorithm

0

200

400

600

800

1000

60 120 300 600 900 1200
computation time [s]

[#
 u

ni
qu

e
m

ol
ec

ul
es

]

search algorithm: dfpne MCTS

Fig. 12 Number of unique molecules per Route. The differences
of the medians for DFPN* and MCTS are statistically significant
for all computing times (Asymptotic Wilcoxon-Mann–Whitney
Test, significance level α = 0.01). We believe the much broader
IQRs in the data generated by the DFPN* are a result of the higher
diversity in said data. We assume a superlinear relation between CDS
and the number of unique molecules, yielding wider IQRs than those
found in the CDS analysis. Due to its mechanism of finding multiple
routes via penalizing nodes on the search graph, the DFPN*
algorithm is forced to explore a wider variety of molecules. (Colored
boxes correspond to the IQR between the first and third quantile,
whiskers go up-to/down-to 1.5 times of the upper/lower bound
of the IQR, dots represent outliers.)

Page 16 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

qualitatively expected and a consequence of the effective
removal of the heavy class sizes imbalance in the data set
(see Appendix D.3) for the TP-model. For it the statistical
advantage of predicting the largest classes is eliminated
which subsequently leads to a smaller success rate.
However, not predicting the associated label for a given
molecule does not necessarily mean a bad prediction in
the context of a retrosynthesis tool as the one used in
this paper. For most molecules there are usually more
than one way to synthesize it. This is most obvious for
the de-protection reactions, which are the largest classes,

as they are only a subsequent step in most cases and are
not meant to build the actual chemical structure. The fact
that the gap in accuracy between the two models closes
with larger k, can therefore be interpreted as a result of
an alternative transformation prioritization. Although
the model assigns the given label in the dataset a lower
importance, it is still capable of finding it (in light of
the total number of transformation classes of roughly
270,000, finding the assigned label within the first 1000
highest ranked classes is still a significant enrichment.
Furthermore, even those can still be used in pathways in
our implementations).

A similar argument can be made for the applicability
of the transformations, where the best ranked
transformations of the model trained on re-weighted
classes show a slightly worse performance. With the
statistical advantage of the bigger (and more general)
classes removed, more specific transformations get
predicted with a higher probability, leading to a drop in
applicability (Figs. 11, 12, and 13) (Tables 2, 3, 4, and 5).

0.0

0.2

0.4

0.6

0.8

1.0

60 120 300 600 900 1200
computation time [s]

[m
in

. v
ia

bi
lit

y
fil

te
r s

co
re

]

search algorithm: DFPN* MCTS

0.0

0.2

0.4

0.6

0.8

1.0

60 120 300 600 900 1200
computation time [s]

[m
ax

. v
ia

bi
lit

y
fil

te
r s

co
re

]

search algorithm: DFPN* MCTS

Fig. 13 Comparison between DFPN* and MCTS with respect to the minimum and maximum route viability: (left) Minimum multiplicative viability
score for DFPN* and MCTS routes for different search times. The viability scores for each reaction of a route are multiplied with each other to give
the estimated route viability. The respective minimum score from each target molecule (i.e. the assumably worst route found) is distributed
around lower values for the DFPN* than for the MCTS implementation for search times 60 and 120 s. For longer search times both algorithms
converge to the approximately same level. (Colored boxes correspond to the IQR between the first and third quantile, whiskers go up-to/down-to
1.5 times of the upper/lower bound of the IQR). (right) Maximum multiplicative viability score for DFPN* and MCTS routes for different search times.
The viability scores for each reaction of a route are multiplied with each other to give the estimated route viability. The respective maximum score
from each target molecule (i.e. the assumably best route found) is distributed around lower values for the DFPN* than for the MCTS implementation
for search times 60, 120, and 300 s. At 600 s the distribution is very similar, while for 900 and 1200~s the trend reverses. (Colored boxes correspond
to the IQR between the first and third quantile, whiskers go up-to/down-to 1.5 times of the upper/lower bound of the IQR)

Table 2 Fraction of molecules in the test set for which the
individual algorithms were able to find at least one synthesis
route. The dagger symbol denotes experiments conducted with
the transformation prediction model trained without the class
size correcting weights on the loss function

Search time [s] DFPN* DFPN*† MCTS MCTS†

Solved molecules [%]

60 83 84 76 78

120 87 87 84 84

300 90 90 89 89

600 92 93 92 91

900 93 94 93 93

1200 94 95 94 94

Page 17 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

The objectively worse performance of the TP-model in
accuracy and applicability is not reflected in the number
of solved molecules, as shown in Table 1, nor in the mean
reactions per route (Table 5) or the CDS (Table 3). In
fact, the opposite is the case, as the said model leads to
slightly better results in both algorithms. These results
attest to the limited expressiveness of the usually used
metrics to evaluate reaction prediction models used in
similar context. Although much more computationally
expensive, testing the models as integrated parts of
retrosynthetic route search algorithms seems to us as the
only conclusive approach.

D. 6 In‑depth explanation of the Chemical Diversity Score
We now formalize the idea behind the CDS and give a
descriptive explanation of our design choices. To do so,
we take a target molecule R and a set M of n synthesis
pathways S1, ..., Sn to synthesize R, so M = {S1, ..., Sn} . To
calculate the diversity of chemical ideas in M we propose
the following procedure:

(1) First, all bonds of R, which get formed in the differ-
ent pathways, are identified. The set Ŝi contains all
indices of bonds from R created during the synthe-
sis with pathway Si.

Table 3 Median/Maximal Chemical Diversity Scores over all solved molecules: The DFPN* algorithm generates significantly higher
CDSs than the MCTS could achieve. Additionally the data shows a slight advantage of the TP-model over the regular TP-model† in both
algorithms

Search time [s] DFPN* DFPN*† MCTS MCTS†

q25 Median q75 q25 Median q75 q25 Median q75 q25 Median q75

60 1.3 2.0 3.1 1.0 2.0 3.0 1.0 1.0 2.0 1.0 1.0 2.0

120 1.7 2.5 3.7 1.5 2.3 3.7 1.0 1.7 2.5 1.0 1.5 2.0

300 2.0 3.0 4.6 1.8 2.9 4.2 1.0 2.0 3.0 1.0 1.8 2.8

600 2.1 3.4 5.1 2.0 3.2 4.7 1.0 2.0 3.0 1.0 1.8 2.6

900 2.4 3.7 5.4 2.0 3.4 4.9 1.0 2.0 2.9 1.0 1.7 2.5

1200 2.5 3.8 5.6 2.2 3.5 5.0 1.0 1.8 2.8 1.0 1.7 2.5

Table 4 Median/Maximal number of unique molecules used per Route: DFPN* clearly uses more unique molecules during route
search, which is an indication that the found routes are more diverse

Search time [s] DFPN* DFPN*† MCTS MCTS†

q25 Median q75 q25 Median q75 q25 Median q75 q25 Median q75

60 26.0 46.0 79.0 26.0 49.0 83.0 13.0 20.0 28.0 14.0 21.0 29.0

120 42.0 78.5 138.0 40.0 83.0 146.5 25.0 39.0 52.0 23.0 38.0 50.0

300 75.0 164.0 292.3 73.0 165.0 318.0 53.0 77.0 100.0 48.0 68.0 92.8

600 116.0 278.0 474.0 109.0 287.5 446.8 69.3 94.0 127.0 61.0 86.0 112.0

900 158.3 390.0 522.0 150.0 379.5 508.0 79.0 107.0 144.8 68.0 95.0 125.5

1200 188.8 448.0 550.5 184.0 425.5 531.8 85.0 116.0 154.0 77.0 103.0 135.0

Table 5 Median/Maximum of the mean number of reactions used for a set of routes per molecule: For shorter search times DFPN*
uses more reactions to reach the target, than the MCTS. Around 300 s search time the picture reverses and the DFPN* uses less
reactions to reach a target than the MCTS

Search time [s] DFPN* DFPN*† MCTS MCTS†

q25 Median q75 q25 Median q75 q25 Median q75 q25 Median q75

60 3.0 3.5 4.3 3.0 3.7 4.5 1.9 2.6 3.5 1.9 2.7 3.9

120 3.3 3.9 4.7 3.4 4.0 4.9 2.7 3.5 4.6 2.7 3.6 5.1

300 3.9 4.4 5.2 4.0 4.6 5.4 4.3 5.4 6.6 4.5 6.0 7.1

600 4.2 4.8 5.5 4.3 5.0 5.7 5.8 6.7 7.3 6.1 7.1 7.5

900 4.3 5.0 5.7 4.4 5.1 5.9 6.3 7.1 7.6 6.7 7.3 7.7

1200 4.4 5.1 5.9 4.5 5.2 6.0 6.7 7.3 7.6 7.0 7.4 7.7

Page 18 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

(2) We denote a pathway T ∈ M as parent of pathway
S ∈ M if T̂ ⊂ Ŝ . Furthermore, pathways of M which
do not have a parent in M are denoted as core
pathways and the set of all core pathways of M we
denote with CM ⊂ M . In the case of T̂ = Ŝ only one
of the both is in CM.

(3) Finally, with the Jaccard distance
dJ (T̂ , T̂ ′) := 1− |T̂∩T̂ ′|

|T̂∪T̂ ′|
 for two sets T, T ′ and for

M = ∅ , the Chemical Diversity Score CDS is defined
as

The CDS can be interpreted as the number of different
chemical ideas present in a given set of synthesis path-
ways. Higher CDS values are considered better, as they
indicate a higher diversity between them.

To perform step (1), all bonds present in the target
molecules are indexed. In our case this is done with the
RDKit on a SMILES-basis without explicit hydrogen.
To identify the formed bonds in a pathway, the set of all
bonds in R is compared to those present in the for this
pathway used building blocks.

In step (2) pathways are selected, which cannot be
represented by another, shorter one in the set. They
represent the core of a chemical synthesis idea. The
pathways that are not a member of CM can be seen as
variations of them and contain additional, often unnec-
essary, steps for the synthesis of the target molecule R.
In our understanding, those pathways do not contrib-
ute to the overall chemical diversity in a meaningful
way.

In step (3) we compare the core pathways to each other,
virtually building an all-to-all distance matrix using the
Jaccard distance. The individual contribution of any path-
way to the overall diversity and also to the CDS can be
obtained by the mean distances to all other pathways.
The total CDS is calculated by summing over those val-
ues for all pathways. Adding 1 sets the minimum value
for the CDS , bringing it in line with the interpretation of
the score as a measure of the number of chemical ideas in
a set of synthesis pathways, which must be at least one,
even if there is just a single pathway. The Jaccard distance
is a value between 0 and 1. Pathways that create exactly
the same bonds have Jaccard distance of 0, so they do not
contribute to the overall diversity. For pathways that pro-
duce completely different bonds, we have T̂ ∩ T̂ ′ = ∅ and
therefore J (T̂ , T̂ ′) = 1.

If we now obtain different sets of synthesis pathways
M and N for the same molecule R, e.g., from two
different algorithms, we can now compare them in

CDS := 1+
1

|CM |

∑

T∈CM

∑

T ′∈CM

dJ (T̂ , T̂ ′)

terms of diversity by calculating CDSM and CDSN . This
is possible since the CDS is intrinsically independent
of the cardinality of the sets M and N themselves and
focuses only on CM and CN .

Acknowledgements
This work was supported by Bayer AG. We thank H. Briem, A. Gromov, M.
Wollenhaupt, T. Wolf, S. Schaper, and M. Schimeczek for comments and
assistance during the work on this paper.

Author contributions
G.M. and T.M. conceived the project. F.M. and Y.A. contributed to the diversity
score. C.F. and K.S. made the theoretical contributions regarding DFPN. F.M.,
C.F., Y.A., and M.V. implemented the software. F.M. and Y.A. designed and
conducted the experiments. G.M., T.M., and K.S. supervised the project. All
authors co-wrote the manuscript and were involved in discussions.

Funding
K.S. was supported in part by the Independent Research Fund Denmark,
Natural Sciences, grant DFF-0135-00018B.

Availability of data and materials
The dataset that was used for the analysis presented in this paper is available
as supplemental material

Declarations

 Competing interests
The authors declare no competing financial interest. Bayer AG was part of the
MIT-led MLPDS consortium in the years 2018–2022.

Received: 2 October 2024 Accepted: 2 March 2025

References
 1. Corey EJ, Long AK, Rubenstein SD (1985) Computer-assisted analysis in

organic synthesis. Science 228(4698):408–418
 2. Corey EJ (1967) General methods for the construction of complex

molecules. Pure Appl Chem 14(1):19–38
 3. Corey EJ, Wipke WT (1969) Computer-assisted design of complex

organic syntheses: pathways for molecular synthesis can be devised
with a computer and equipment for graphical communication. Science
166(3902):178–192

 4. Chen B, Li C, Dai H, Song L. Retro* (2020) Learning retrosynthetic
planning with neural guided A* search. In International Conference on
Machine Learning (ICML), 1608–1616

 5. Coley CW, Rogers L, Green WH, Jensen KF (2017) Computer-
assisted retrosynthesis based on molecular similarity. ACS Cent Sci
3(12):1237–1245

 6. Genheden Samuel, Thakkar Amol, Chadimová Veronika, Reymond Jean-
Louis, Engkvist Ola, Bjerrum Esben (2020) Aizynthfinder: a fast, robust and
flexible open-source software for retrosynthetic planning. J Cheminform
12(1):1–9

 7. ...Struble TJ, Alvarez JC, Brown SP, Chytil M, Cisar J, DesJarlais RL, Engkvist
O, Frank SA, Greve DR, Griffin DJ, Hou X, Johannes JW, Kreatsoulas C,
Lahue B, Mathea M, Mogk G, Nicolaou CA, Palmer AD, Price DJ, Robinson
RI, Salentin S, Xing L, Jaakkola T, Green WH, Barzilay R, Coley CW, Jensen
KF (2020) Current and future roles of artificial intelligence in medicinal
chemistry synthesis. J Med Chem 63(16):8667–8682

 8. Shibukawa R, Ishida S, Yoshizoe K, Wasa K, Takasu K, Okuno Y, Terayama K,
Tsuda K (2020) CompRet: a comprehensive recommendation framework
for chemical synthesis planning with algorithmic enumeration. J
Cheminform 12:52

 9. Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses with
deep neural networks and symbolic AI. Nature 555(7698):604–610

Page 19 of 19Mrugalla et al. Journal of Cheminformatics (2025) 17:72

 10. Schwaller P, Petraglia R, Zullo V, Nair VH, Haeuselmann RA, Pisoni R, Bekas
C, Iuliano A, Laino T (2020) Predicting retrosynthetic pathways using
transformer-based models and a hyper-graph exploration strategy. Chem
Sci 11(12):3316–3325

 11. Thakkar A, Kogej T, Reymond J-L, Engkvist O, Bjerrum EJ (2020) Datasets
and their influence on the development of computer assisted synthesis
planning tools in the pharmaceutical domain. Chem Sci 11(1):154–168

 12. Schwaller P, Laino T, Gaudin T, Bolgar P, Hunter CA, Bekas C, Lee AA (2019)
Molecular transformer: a model for uncertainty-calibrated chemical
reaction prediction. ACS Cent Sci 5(9):1572–1583

 13. Yao L, Guo W, Wang Z, Xiang S, Liu W, Ke G (2024) Node-aligned graph-to-
graph: elevating template-free deep learning approaches in single-step
retrosynthesis. JACS Au 4(3):992–1003

 14. Zhang K, Mann V, Venkatasubramanian V (2024) G-matt: single-step
retrosynthesis prediction using molecular grammar tree transformer.
AIChE J 70(1):e18244

 15. Heifets A, Jurisica I (2012) Construction of new medicines via game
proof search. In AAAI Conference on Artificial Intelligence (AAAI),
1564–1570

 16. Kishimoto A, Buesser B, Chen B, Botea A (2019) Depth-first proof-
number search with heuristic edge cost and application to chemical
synthesis planning. In Advances in Neural Information Processing
Systems (NeurIPS), 7224–7234

 17. Browne Cameron, Powley Edward Jack, Lucas Simon M, Cowling Peter I,
Rohlfshagen Philipp, Tavener Stephen, Liebana Diego Perez, Samothrakis
Spyridon, Colton Simon (2012) A survey of monte carlo tree search
methods. IEEE Trans Comput Intell AI Games 4(1):1–43

 18. Nagai A (2002) Df-pn algorithm for searching AND/OR trees and its
applications. PhD thesis, Department of Information Science, University
of Tokyo

 19. Kishimoto A, Müller M (2004) Df-pn in go: an application to the one-eye
problem. In: Herik HJ, Iida H, Heinz EA (eds) Advances in computer games
(ACG). Springer, Boston, pp 125–141

 20. Schaeffer J, Björnsson Y, Burch N, Kishimoto A, Müller M, Lake R, Lu P,
Sutphen S (2005) Solving checkers. In International Joint Conference on
Artificial Intelligence (IJCAI). 292–297

 21. Allis LV, van der Meulen Maarten, Jaap van den Herik H (1994) Proof-
number search. Artif Intell 66(1):91–124

 22. Kishimoto A, Müller M (2008) About the completeness of depth-first
proof-number search. In: van den Herik HJ, Xu X, Ma Z, Winands MHM
(eds) Computers and games. Springer, Berlin, pp 146–156

 23. Kishimoto A (2005) Correct and efficient search algorithms in the
presence of repetitions. PhD thesis, Department of Computing Science,
University of Alberta

 24. Kishimoto A (2010) Dealing with infinite loops, underestimation, and
overestimation of depth-first proof-number search. In AAAI Conference
on Artificial Intelligence (AAAI). 108–113

 25. Badowski Tomasz, Molga Karol, Grzybowski Bartosz A (2019) Selection
of cost-effective yet chemically diverse pathways from the networks of
computer-generated retrosynthetic plans. Chem Sci 10:4640–4651

 26. Mo Y, Guan Y, Verma P, Guo J, Fortunato ME, Zhaohong L, Coley CW,
Jensen KF (2021) Evaluating and clustering retrosynthesis pathways with
learned strategy. Chem Sci 12:1469–1478

 27. Xie Y, Xu Z, Ma J, Mei Q (2023) How much space has been explored?
measuring the chemical space covered by databases and machine-
generated molecules

 28. Genheden Samuel, Engkvist Ola, Bjerrum Esben (2021) Clustering
of synthetic routes using tree edit distance. J Chem Inf Model
61(8):3899–3907

 29. Genheden Samuel, Engkvist Ola, Bjerrum Esben (2022) Fast prediction of
distances between synthetic routes with deep learning. Mach Learn Sci
Technol 3(1):015018

 30. Samuel Genheden and Esben Bjerrum (2022) Paroutes: towards a
framework for benchmarking retrosynthesis route predictions. Digit
Discov 1:527–539

 31. Maziarz K, Tripp A, Liu G, Stanley M, Xie S, Gaiński P, Seidl P, Segler MHS
(2025) Re-evaluating retrosynthesis algorithms with syntheseus. Faraday
Discuss 256:568–586

 32. Toniato A, Vaucher AC, Schwaller P, Laino T (2023) Enhancing diversity
in language based models for single-step retrosynthesis. Digit Discov
2:489–501

 33. Suzuki A, Miyaura N (1995) Palladium-catalyzed cross-coupling reactions
of organoboron compounds. Chem Rev 95:2457–2483

 34. MLPDS (2020) Askcos: Software tools for organic synthesis. https:// askcos.
mit. edu/. Accessed 23 Nov 2021

 35. Tripp A, Maziarz K, Lewis S, Segler M, Hernández-Lobato JM (2024) Retro-
fallback: retrosynthetic planning in an uncertain world. In The Twelfth
International Conference on Learning Representations

 36. Gao C (2021) On computation complexity of true proof number search.
arXiv/cs.CC, arXiv: abs/ 2102. 04907

 37. Palay AJ (1983) Searching with probabilities. PhD thesis, Department of
Computer Science, Carnegie Mellon University

 38. Kishimoto A, Müller M (2004). A general solution to the graph history
interaction problem. In AAAI Conference on Artificial Intelligence (AAAI).
644–649

 39. Genheden S, Thakkar A, Chadimová V, Reymond J-L, Engkvist O, Bjerrum E
(2020) AiZynthFinder: a fast, robust and flexible open-source software for
retrosynthetic planning. J Cheminform 12(1):70

 40. Coley Connor W, Green William H, Jensen Klavs F (2018) Machine learning
in computer-aided synthesis planning. Acc Chem Res 51(5):1281–1289

 41. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of
useful decoys, enhanced (dud-e): better ligands and decoys for better
benchmarking. J Med Chem 55(14):6582–6594

 42. Landrum G, Tosco P, Kelley B, sriniker, gedeck, Schneider N, Vianello
R, Ric, Dalke A, Cole B, Savelyev A, Swain M, Turk S, Dan N, Vaucher A,
Kawashima E, Wójcikowski M, Probst D, Godin G, Cosgrove D, Pahl A, J P,
Berenger F, strets123, JL Varjo, O’Boyle N, Fuller P, Jensen JH, Sforna G,
Gavid D. RDKit: Open-source cheminformatics. https:// www. rdkit. org

 43. Biovia, dassault systèmes (2022) biovia pipeline pilot, 5, san diego:
Dassault systèmes,

 44. Nextmove software: Namerxn
 45. Coley Connor W, Green William H, Jensen Klavs F (2019) Rdchiral: an

rdkit wrapper for handling stereochemistry in retrosynthetic template
extraction and application. J Chem Inf Model 59(6):2529–2537

 46. Coley Connor W, Barzilay Regina, Jaakkola Tommi S, Green William H,
Jensen Klavs F (2017) Prediction of organic reaction outcomes using
machine learning. ACS Central Sci 3(5):434–443

 47. Goodman J (2009) Computer software review: Reaxys. J Chem Inf Model
49(12):2897–2898

 48. Lawson AJ, Swienty-Busch J, Géoui T, Evans D (2014) The making of
reaxys-towards unobstructed access to relevant chemistry information.
In: McEwen LR, Buntrock RE (eds) The future of the history of chemical
information. ACS Publications, Washington, D.C., pp 127–148

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://askcos.mit.edu/
https://askcos.mit.edu/
http://arxiv.org/2102.04907
https://www.rdkit.org

	Generating diversity and securing completeness in algorithmic retrosynthesis
	Abstract
	Scientific Contribution:
	Introduction
	Methods
	Measuring diversity in pathways
	Game-theoretical approaches to the retrosynthesis problem
	Depth-first proof number search and variants
	Completeness of DFPN with TCA
	Simpler counter example without TCA
	Proof of completeness with TCA

	Adaptation of DFPN to multiple solutions

	Results & discussion
	Conclusion
	Appendix
	A depth-first proof-number search and variants: formal description
	B Missing material from Subsection Simpler counter example without TCA
	C full proof of completeness of DFPN with TCA
	D Methods
	D.1 Target compound selection
	D.2 Synthesis pathway calculations
	D.3 Template creationextraction and building block molecules
	D.4 Single-step retrosynthesis (template prioritization + reaction viability)
	D.5 Single-step retrosynthesis model quality

	D. 6 In-depth explanation of the Chemical Diversity Score

	Acknowledgements
	References

