
Mrugalla et al. Journal of Cheminformatics           (2025) 17:72  
https://doi.org/10.1186/s13321-025-00981-x

RESEARCH Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cheminformatics

Generating diversity and securing 
completeness in algorithmic retrosynthesis
Florian Mrugalla1*, Christopher Franz2, Yannic Alber1, Georg Mogk1, Martín Villalba3, Thomas Mrziglod1 and 
Kevin Schewior4,5 

Abstract Chemical synthesis planning has considerably benefited from advances in the field of machine 
learning. Neural networks can reliably and accurately predict reactions leading to a given, possibly complex, 
molecule. In this work we focus on algorithms for assembling such predictions to a full synthesis plan that, starting 
from simple building blocks, produces a given target molecule, a procedure known as retrosynthesis. Objective 
functions for this task are hard to define and context-specific. In order to generate a diverse set of synthesis plans 
for chemists to select from, we capture the concept of diversity in a novel chemical diversity score (CDS). Our 
experiments show that our algorithm outperforms the algorithm predominantly employed in this domain, Monte-
Carlo Tree Search, with respect to diversity in terms of our score as well as time efficiency.

Scientific Contribution: We adapt Depth-First Proof-Number Search (DFPN) (Please refer to https:// github. com/ 
Bayer- Group/ bayer- retro synth esis- search for the accompanying source code.) and its variants, which have been 
applied to retrosynthesis before, to produce a set of solutions, with an explicit focus on diversity. We also make 
progress on understanding DFPN in terms of completeness, i.e., the ability to find a solution whenever there exists 
one. DFPN is known to be incomplete, for which we provide a much cleaner example, but we also show that it 
is complete when reinforced with a threshold-controlling routine from the literature.
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Introduction
In organic chemistry, one of the most important prob-
lems consists in constructing a synthesis plan for a given 
molecule. Retrosynthesis constitutes a formal approach 
to this problem: One recursively deconstructs the mol-
ecule into building blocks that are readily available for 
purchase or easy to make. This reverse approach was 

originally introduced by Corey et  al. in the late 1960  s, 
and it is by now a cornerstone technique in organic 
chemistry [1–3]. Yet, applying this technique in prac-
tice is a highly complicated task due to a large number 
of potentially relevant reactions as well as multiple con-
straints (building-block availability, functional-group 
protection, safety regulations, green-chemistry consid-
erations), and it has traditionally required solid human 
expertise. In the last decade, however, the field of Com-
puter-Assisted Synthesis Planning (CASP) underwent 
significant improvements driven by the successful combi-
nation of advances in machine learning and the availabil-
ity of sufficient amounts of reaction data [4–11].

There are two predominant approaches for building a 
CASP tool, template-based and template-free. Template-
based approaches encode reactions as the chemical land-
scape around a reaction center, which can be extracted 
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either manually by experts or with a data-driven 
approach [5, 9]. These templates can be used during a 
retrosynthetic search in a recursive fashion to derive 
new intermediates and starting molecules of suitable 
complexity and availability. Template-free approaches, 
in contrast, do not rely on handcrafted or automati-
cally extracted transformation rules. Following tools and 
approaches developed by the Natural Language Process-
ing (NLP) community, a set of SMILES (words, reactants) 
is transformed into another set of SMILES (words, prod-
ucts) [12]. Coupling this one-step synthesis model with a 
powerful search algorithm has been shown to yield simi-
lar performance as the aforementioned methods [10].

In 2018, Segler et al. [9] showed the viability of a data-
driven approach, using two neural networks: the first 
one to predict which transformation templates should 
be prioritized during the route search and the second 
one to grade them according to their plausibility. These 
advances were followed by copious research mostly 
concerned with the quality of these neural networks and 
how they ingest their input data, e.g., regarding the usage 
of transformation templates [5, 6, 10, 12–14].

This work considers the overall quality of the found 
synthesis plans more directly. The quality of a synthesis 
plan depends on a large number of aspects such as 
safety, yield, required level of expertise, and available 
laboratory equipment, whose levels of relevance may 
vastly differ depending on context. It is therefore 
extremely difficult to capture this concept in a formal 
definition. Our approach circumvents this issue and can 
be summarized as quality through diversity. That is, we 
aim to find not just a single synthesis plan but several of 
them, maximizing the diversity—a concept we formally 
define—in the set of plans that we generate. Chemists can 
then pick a synthesis plan or recombine chemical ideas 
present in the set of plans, to meet the criteria relevant in 
the context at hand.

This diversity is possible thanks to more than 250 
years of chemical research leading to multiple known 
ways to synthesize a molecule, target compound, or 
intermediate from commercially available building 
blocks. Unfortunately, this also poses a selection problem 
in each retrosynthesis step due to the overwhelmingly 
large host of choices that has to be explored to find a 
single solution, let alone a diverse set of them. Multiple 
algorithms, many of them viewing retrosynthesis as a 
two-player game, were proposed to solve this problem 
[9, 15, 16]. The most commonly used one is Monte-Carlo 
Tree Search [6, 9, 17]. While this algorithm can reliably 
find multiple solutions, it is not clear whether this set of 
solutions turns out diverse.

Instead of MCTS, we consider Depth-First Proof-
Number Search (DFPN) [18], a popular [19, 20] and more 
efficient variant of Proof-Number Search (PNS) [21]. A 
version of DFPN has also been successfully applied to 
retrosynthesis [16], but PNS and its variants just stop 
after finding the first solution. We introduce an adapta-
tion to this algorithm which can be applied essentially to 
any version of PNS, whose output will be a set of solu-
tions, with explicit focus on diversity. In the experimental 
part of our paper, we indeed find that our version, called 
DFPN*, generally outperforms MCTS with respect to our 
diversity score, but in fact also with respect to efficiently 
finding the first synthesis plan.

To make a case for DFPN and its variants, we also solve 
an open problem regarding it as a side result: It can be 
shown that (plain) DFPN is not complete [22], i.e., it is 
possible that there exists a solution, but DFPN runs into 
an infinite loop rather than outputting the solution. (We 
give a much smaller example showing that.) Refinements 
of DFPN that have seemed to be complete in experiments 
are df-pn(r) [23] and DFPN with the Threshold 
Controlling Algorithm (TCA) [24], but no proofs of 
completeness for such variants are known. We provide a 
proof of completeness for DFPN with TCA.

Methods
In this section, we first discuss how to measure diversity, 
then how to reduce retrosynthesis to solving two-player 
games, then how to solve such games (especially through 
DFPN), and finally how to adapt DFPN to find sets of 
(diverse) solutions.

Measuring diversity in pathways
Practicing chemists have a good intuitive notion of 
chemical diversity. However, it is challenging to formally 
define the diversity of a set of synthesis pathways fitting 
this intuition. Nonetheless, diversity is a key objective for 
current, actively used CASP tools. A broadly applicable 
metric is necessary to not rely on anecdotal observations 
[25] alone to track algorithmic changes towards higher 
diversity in said sets of synthesis pathways. Some efforts 
towards this where made before. A natural approach 
to the problem is to measure the diversity among the 
molecules [26, 27] appearing in the routes or simply 
count unique intermediates and building blocks. In 
Table  4 and Fig.  12 in the appendix, we provide the 
respective numbers for both algorithms studied here with 
respect to the search times. Such metrics are, however, 
not practical. Structural variations in reactants tend to be 
overemphasized as they may not alter the chemical nature 
of the reactions (e.g., different protection or leaving 
groups fulfilling the same purpose). Another approach to 
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compare routes with each other is to calculate their graph 
edit distance or tree edit distance [28, 29]. A subsequent 
clustering on the corresponding distance matrix can be 
used to asses the diversity within a set of routes [30]. 
While the higher abstraction level allows for an increased 
focus on relevant difference between routes and therefore 
also improves the associated diversity metric, it also 
comes with its own drawbacks. First, the metric can go 
down by adding further routes to the set [31] which is, 
from a theoretical point of view, plausible but goes beside 
the point of gauging which set is more useful for lab 
practitioners. Second, while being a very elegant way of 
measuring distances between routes from a mathematical 
point of view, the graph edit distance is indiscriminate 
towards the importance of differences between routes 
from a chemical perspective. A very strict way to tackle 
the problem is to count only the number of routes with 
no overlap, as proposed by Maziarz et  al. [31]. In our 
context, this is however too restrictive since potentially 
important chemical solutions can go unrecognized by the 
metric when paired with an already used reaction.

We have worked in close collaboration with several 
lab chemists from multiple different fields such as 
medicinal, agricultural, and process chemistry to 
formalize our approach to measure route diversity. 
The general understanding among lab chemists can be 
summarized as the number of different chemical ideas 
observed between the individual synthesis pathways. 
Unfortunately, chemical ideas are a similarly vague 
concept as diversity and therefore difficult to distinguish 
and count objectively.

For this reason we propose a new metric, dubbed 
Chemical Diversity Score CDS, based on the intuitive 
idea of disconnections (bond breakages) which was 
used in similar contexts before [10, 32]. The core idea 
is to mimic the thought process involved in a manual 
retrosynthesis analysis, making it quantifiable.

By identifying which bonds of a molecule get broken 
from the retrosynthesis point of view (i.e. formed in 
forward direction) in any given pathway, we keep track 
of the synthesis approaches present in a set of routes. 
We choose to focus on the final result of the route 
search (sets of full routes) over focusing on the diversity 
coming from the individual parts (like the reaction 
prediction model) of a given CASP tool. Model metrics 
do not necessarily have much bearing on the route search 
results (as demonstrated in Fig. 10 and Table 3) and gains 
achieved here might easily be overwritten by other parts 
of the pipeline like filtering mechanisms or the search 
algorithm itself. Figure  10 and Table  3 of Appendix D.5 
lend support to our choice. Similar observations were 
made by Genheden and Bjerrum [29] and Maziarz et al. 
[31].

As a result, the higher chemical concept is still 
recognized while avoiding an artificially high diversity. 
For example, a famous and often used reaction type is 
the Suzuki-coupling [33]. There are about 20 variants of 
this technique to create the same carbon-carbon bond, 
which can lead to different synthesis routes, but which 
are all based on the same chemical idea. Based on our 
discussions with lab chemists, we consider the level of 
abstraction provided by the disconnections ideal, as they 
do not discriminate between different named reactions 
forming the same bond, but are still capturing different 
synthesis strategies.

To compute the CDS , all bonds formed in the proposed 
synthesis pathway get identified and labeled. From 
the resulting sets we select those which cannot be 
represented by another, smaller set of bonds found in 
all the pathways for the target molecule. This way, we 
eliminate miscellaneous reactions that do not contribute 
to the chemical diversity in a meaningful way, forming 
the set CM . The final score is then obtained by calculating 
the mean over the all-to-all Jaccard distance matrix 
expressed by

The CDS can be interpreted as the number of different 
chemical ideas present in a given set of synthesis 
pathways. Higher CDS values are considered better, 
as they indicate a higher diversity between them. A 
more detailed mathematical formulation and further 
explanations can be found in Appendix 4.1.

Game‑theoretical approaches to the retrosynthesis 
problem
Viewing retrosynthetic planning as games on a simple 
directed graph is a standard approach (e.g., [9, 16]). In 
the two-player game which we focus on in this paper, 
there is a node for every molecule and a node for every 
reaction. We will call one player molecule player and 
the other reaction player. The game starts at the node 
corresponding to the target molecule. It is the molecule 
(reaction) player’s turn whenever the game is at a 
molecule (reaction) node. The next node can be chosen 
according to the following directed edges: From a 
molecule node, the edges lead to all nodes corresponding 
to reactions having the molecule corresponding to 
the current node as product. From a reaction node, 
the edges lead to all nodes corresponding to reactants 
required for the reaction corresponding to the current 
node. The molecule player wins if a node corresponding 
to a building block is reached, and the reaction player 
wins if a dead end (i.e., a molecule that can neither be 

CDS := 1+
1

|CM |

∑

T∈CM

∑

T ′∈CM

dJ (T̂ , T̂ ′).
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synthesized nor bought) is reached or a node is visited 
for the second time. This way, a winning strategy for the 
molecule player represents a synthesis plan for the target 
molecule. Conversely, if there exists a winning strategy 
for the reaction player, the target molecule cannot be 
synthesized with the reactions represented in the graph. 
For this emerging two-player game, PNS was first used in 
its regular form [15], whereas DFPN was first applied as 
part of the DFPN-E algorithm [16] and later within the 
CompRet tool [8]. In the next chapter, we will explain the 
(DF)PNS in more detail.

In what can be interpreted as a one-player game, a 
node usually corresponds to a set of molecules and each 
edge to a reaction. Monte-Carlo Tree-Search [9, 34] 
operates iteratively on such games, where each iteration 
consists of four steps: The first one is selection, where 
the most promising node gets selected. The second 
one is expansion, where the previously selected node 
gets expanded by creating one or more nodes. After 
that the simulation happens, where starting with these 
nodes a game to end nodes gets simulated, and lastly 
the backpropagation, where the result of these games is 
propagated back in the tree. Already visited nodes get 
penalized such that, when running for a long period of 
time, it can also find a set of different synthesis plans.

Very recently, Tripp et  al. [35] use a type of greedy 
algorithm specifically designed for the task of creating 
multiple synthesis plans with a high probability that at 
least one of them is feasible, and called it Retro-fallback. 
Their heuristic can be summarized as simply expanding 
the molecule that is expected to have the highest increase 
of their so-called successful synthesis probability (SSP). 
For a given synthesis plan T, the SSP depends not only on 
the probability that T is successful, but also incorporates 
the probability of any of the previously found synthesis 
plans and whether T can significantly increase it. Other 
promising results were obtained using variations of A* 
search [4, 25].

Depth‑first proof number search and variants
To find winning strategies, Proof-Number Search (PNS) 
[21] explores the graph from the start node by iteratively 
expanding nodes that were previously not expanded. 
By doing so, PNS learns if the node is winning for one 
of the players (and if so, which) and explores its out-
neighbors. A node is called proved if a winning strategy 
for the molecule player can be inferred from the explored 
part of G; if a winning strategy for the reaction player can 
be inferred, the node is called disproved. A node that is 
neither proved nor disproved is said to be unproved.

The (dis)proof number of an explored node v is defined 
to be the minimum number of explored unproved nodes 
that have to be (dis)proved for v to be (dis)proved. The 

precise numbers are NP-hard to compute [36]. PNS 
instead efficiently maintains estimates of these numbers, 
pn(v) and dn(v) for each node v; pn(v) = dn(v) = 1 for 
unexpanded nodes v such as v0 in the beginning. PNS 
uses pn(·) and dn(·) to determine the most promising 
node, the next node to expand: Starting from v0 , it 
iteratively selects the out-neighbor with the minimum 
proof number from a molecule-player node and with 
a minimum disproof number from a reaction-player 
node, until reaching a non-expanded node, which then is 
expanded. PNS then backtracks to v0 , updating pn(·) for 
a molecule-player node to be the minimum pn value of 
an out-neighbor and for a reaction-player node to be the 
sum of these pn values (vice versa for dn ). If the graph 
is an out-tree, PNS exactly determines the proof and 
disproof numbers in this way.

Depth-First Proof-Number Search (DFPN) [18] does 
not start the search for the most promising node from v0 
in each iteration, making it more efficient. Instead, when 
node v is currently selected, it tries to use thresholds 
thpn(·) and thdn(·) to decide whether the path taken from 
v0 to v is part of a path that PNS would take. In particular, 
if pn(v) < thpn(v) and dn(v) < thdn(v) , then it continues 
the search like PNS would, and otherwise it backtracks 
one step. The values of pn and dn are only recomputed at 
the node that DFPN is currently considering. If v only has 
a single neighbor, the thresholds are simply passed on. 
Otherwise, if v is a molecule-player node, the thpn value 
of the chosen child becomes the minimum of the thpn 
value of v and the increment of the proof number of the 
second-best child. If v is a reaction-player node, the thpn 
value of the chosen child becomes the surplus between 
pn(v) and its threshold plus the pn value of the chosen 
child. For dn , the operations are again analogous. As 
before, this is exact for out-trees, but DFPN is incomplete 
on general graphs [22].

As pointed out in [37], DFPN and PNS as stated above 
are not necessarily correct on graphs that contain cycles: 
A proof or a disproof of some node v that is found when v 
is visited through some path P cannot certainly be reused 
when v is visited through some path P′ �= P . This is called 
the Graph History Interaction Problem. As a general 
solution [23, 38], one can, upon (dis)proving a node when 
visiting it through P, save the (dis)proof only with respect 
to P. When visiting v again through P′ , it can be verified 
if the previously found proof is still valid. For further 
details, we refer the reader to the aforementioned works.

To break infinite loops, the Threshold Controlling 
Algorithm (TCA) [24] maintains a value md(v) for 
every node v. It represents the (minimum) distance 
between v0 and v in the explored part of G. Whenever 
a node v is visited that has an unproved old child c, i.e., 
md(c) ≤ md(v) , TCA adjusts thpn(v) and thdn(v) such 
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that DFPN does not backtrack. In particular, it sets 
thpn(v) and thdn(v) to values so that pn(v) < thpn(v) and 
dn(v) < thdn(v) are definitely satisfied. The fact that the 
thresholds have been increased is passed to subsequent 
recursive calls of the algorithm, prompting these calls to 
also increase the corresponding thresholds, until a node 
is expanded or a cycle is closed (i.e., progress is made).

We give a more formal description of the entire 
algorithm in a general context in Appendix A.

Completeness of DFPN with TCA 
We start this section with (re-)justifying variants of 
DFPN by giving a counter example to the completeness 
of DFPN that is significantly simpler than the known 
counter example [22]. In the second subsection we will 
then prove completeness of DFPN with TCA.

Simpler counter example without TCA 
We consider the graph shown in Fig.  1. In that graph, 
DFPN visits v3 and v4 alternating from v0 via v2 and 
v1 , respectively, in an infinite loop. In particular, it 
never expands v5 . When W0 = {v6} and W1 = ∅ , DFPN 
therefore never discovers the only winning strategy for 
the molecule player from v0 , which includes v6 . In this 
example the TCA would upon visiting v3 increase its 
threshold, since the minimal distance from its child v2 to 
the root md(v2) is smaller than its md(v3) . Therefore the 
algorithm would expand v5 and find the winning strategy 
in v6 . In comparison to the known counterexample, this 
one only consists of 7 instead of 17 nodes and is much 
more symmetrical.

Proof of completeness with TCA 
We show that DFPN with TCA is complete, that is, 
whenever there exists a winning strategy for the starting 
player, DFPN with TCA eventually finds such a strategy. 
In the overall structure, our proof resembles the proof 
that DFPN is complete on directed acyclic graphs [22]. 
In particular, we assume towards a contradiction that 
the algorithm gets into an infinite loop and consider 
the subgraph L of the entire graph that is relevant for 
the infinite loop. It can be seen that the infinite loop is 
due to inconsistencies of the pn/dn values of the nodes 

in L. We manage to show that, as long as the algorithm 
stays in the infinite loop, the pn/dn values become “less 
inconsistent” over time. Therefore, after finitely many 
steps, the algorithm will break the infinite loop.

We quantify inconsistency in the same way as 
Kishimoto and Müller [22], that is, by counting the 
number of inconsistent nodes in the different layers of 
L (defined according to the length of the longest path 
from the root) separately and collecting the counts in an 
inconsistency tuple. We show that, after finitely many 
steps, the inconsistency tuple decreases in a lexicographic 
sense.

The main additional technical ingredient is a 
fundamental property of L that is needed to prove the 
previous statement. Specifically, we consider a situation 
in which some node nc is searched, but the algorithm 
eventually backtracks because the threshold condition 
is not met any more. We show that, for any other node 
m at which the threshold condition has been violated in 
the meantime as well, there is no path from any higher-
level node to m. This property helps us in controlling how 
inconsistencies can develop in L.

Adaptation of DFPN to multiple solutions
Since the algorithm is deterministic, running it multiple 
times would only lead to the same solution each time. To 
find multiple solutions, we modify PNS and its variants. 
We change the values of pn and dn for some nodes in 
such a way that the found solution becomes invalid. We 
need to be careful about this for two reasons. First, the 
choice of nodes controls the type of diversity we obtain 
for the set of solutions we find when iterating this 
idea. Second, since we might end up at a node through 
different paths, we do not want to completely neglect any 
nodes. Instead, we keep track of the path we used to get 
to any node and store it. If we encounter the same node 
again, we check if the path that was used to reach it was 
stored. If so, the node will stay disproved, otherwise we 
can use it again.

To further control the diversity of the solutions, the 
algorithm penalizes every node used by a found winning 
strategy. This happens by adding a penalty£ preac to the 
values of pn for every reaction-player node v in a path 
to a node selected by the above diversity controlling 
strategy: pn(v) := pn(v)+ preac . Adding a penalty 
pmol to the values of pn for all molecule-player nodes v 
represents an additional approach. Afterwards the values 
of pn and dn of all previous nodes get updated according 
to (1) and (2) in Appendix A. The penalties are adjustable. 
Higher penalties lead to more diverse routes but longer 
computation times.

To obtain our algorithm DFPN* for restrosynthesis, we 
use the DFPN-E algorithm by Kishimoto et al. [16] as a 

Fig. 1 The graph G that shows that DFPN is not complete.The 
molecule nodes and the reaction nodes are depicted as squares 
and circles, respectively
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baseline. This algorithm uses a heuristic function that 
evaluates the cost of using a certain edge from a molecule 
to its child (i.e., reaction). We then apply a diversity-
controlling strategy to it. More specifically, the single 
node we choose to disprove as part of our diversity-
controlling strategy is a deepest reaction in the found 
route, i.e., a reaction reached through a longest path from 
the target molecule. By doing so, we force the algorithm 
to find shorter routes without destroying too many 
possible routes. The reason we choose a reaction rather 
than a molecule to disprove is that disproving a molecule 
leads to a disproof of a reaction anyway. For the same 
reason, we set pmol = 0.

Results & discussion
In the wider CASP literature the number of solved 
molecules is often used as proxy to compare the quality 
of different CASP tools [9, 30, 39]. This metric is highly 
dependent on the underlying size and make-up of 
the catalog of (assumed) buyable building blocks and 
thus not easily comparable between publications. 
Additionally, the number of solved molecules can vary a 
lot between different sets of molecules and thus we limit 
our comparison to the algorithms tested here. Looking 
at the smaller search times between 60  s and 300  s our 
DFPN* implementation solves more molecules than the 

MCTS implementation we used (see Table 1 and Fig. 11 
in Appendix D.5). The MCTS implementation is taken 
from [34, 40], adding minor modifications to adapt it for 
our use. For search times of 600 s to 1200 s we do not see 
a difference between our DFPN* implementation and the 
MCTS regarding the number of solved molecules with 
both algorithms converging to a maximum of 94%.

The second and main aspect we are focusing on is the 
chemical diversity of the generated routes. We do so by 
applying the chemical diversity score introduced above 
on the sets of routes from both approaches. Looking at 
Fig.  2a we see that for our MCTS implementation the 
median CDS, across all our tested search times, is never 
significantly higher than 2. According to our definition of 
the CDS this means that the median number of chemical 
ideas present in a given set of routes, irrespective 
of search time, is 2 for the MCTS. For our DFPN* 
implementation (see Fig.  2a) the median CDS for the 
smallest search time (60 s) starts at 2 and increases with 
search time significantly until 600  s where it tapers of 
into a plateau at 3.8 for 1200 s. We do not expect either of 
the two algorithms to reach significantly higher median 
CDS with even longer search times. Looking beyond 
the median CDS values we see that with our DFPN* 
implementation we can reach CDS around 9 compared 
to a CDS of 6 for the MCTS (top whisker corresponds 
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Fig. 2 Comparison between DFPN* and MCTS: a Chemical diversity score (CDS) for DFPN* and MCTS routes for different search times. DFPN* 
routes show significantly higher diversity score throughout all data points (Asymptotic Wilcoxon-Mann-Whitney Test, significance level $\
alpha=0.01$, colored boxes correspond to the IQR between the first and third quantile, whiskers go up-to/down-to 1.5 times of the upper/
lower bound of the IQR). b For smaller search times (60 s/120 s) the mean number of used reaction over all routes and solved molecules by our 
DFPN* implementation is 3.5/3.9 vs. 2.6/3.5 for the MCTS implementation. For longer search times this trend reverses and the highest median 
number of used reactions seen for the DFPN* implementation is 5.1 vs 7.3 for the MCTS implementation (colored boxes correspond to the IQR 
between the first and third quantile, whiskers go up-to/down-to 1.5 times of the upper/lower bound of the IQR)
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to 1.5 times upper bound of IQR). The lower bound of 
the IQR of the DFPN* is always above the respective 
median MCTS CDS, and this gap becomes even more 
pronounced for search times of 900  s and 1200  s. The 
MCTS seems to iterate on the same chemical ideas with 
prolonged search times. This is further corroborated 
by the mean number of synthesis routes found (see 
Table 1). For the longer search times (starting with 300 s) 
the MCTS is able to find significantly more synthesis 
routes, but this is not translated into a set of more diverse 
routes (see Fig.  2a). This behavior coincides with our 
practical experience when working with routes found by 
our MCTS implementation and the results depicted in   
Fig. 2b further strengthen this interpretation.

Finally, we want to move our attention to metrics 
describing the found pathways themselves. In Fig.  2b 
the mean number of reactions used in all pathways 
over all solved molecules is plotted against the search 
time for our MCTS and DFPN* implementation. For 
our smallest search time (60  s) DFPN* needs a median 
of 3.5 reactions to reach the target molecule. This rises 
slightly for search times of 600  s, where it then reaches 
a plateau for both of our highest search times 900 s and 
1200  s. The standard deviation of the distribution for 
the DFPN* stays fairly constant over all search times 
and we see some outliers that need up to 11 reactions 
to reach the target. In comparison to that the MCTS 
needs, on average, less reactions for smaller search 
times (60  s and 120  s) i.e. 2.6 vs 3.5 reactions but then 
already surpasses the DFPN* with with a mean of 5.4 
vs. 4.4 reactions at 300  s. We want to stress here that, 
while the mean number increases, there are still shorter 
routes present in the route sets stemming from longer 
search times. The trend observed in Fig. 2b comes from 
an increased length of those routes found additionally 
while the search progresses. The much slower increase 
of the mean number of reactions used by the DFPN* 
algorithm indicates that also in later stages of the search 
short routes are found, while the MCTS seemingly tends 
to further explore and deepen paths which already lead 
to presumably commercially available starting materials. 
This interpretation is also in line with the stagnation 
in the CDS of route sets produced by MCTS. The here 
reported results indicate that the MCTS implementation 
prioritizes shorter solutions early on, but is then 
modifying those only slightly at later stages of the search. 
The DFPN* algorithm does not have such a bias, yielding 
a mix of various route length from the beginning. But 
there are also algorithmically independent reasons for an 
increase in the mean number of reactions, true for both 
algorithms. One is of stochastic nature, as the number of 
possible solutions increases with each additional level of 
node depth in the search graph considered. Once most of 

the shorter and viable routes are found, increased search 
times for already solved molecules will naturally yield 
longer routes. Another reason for the observed trend lies 
in the increased number of solved molecules at longer 
search times. A reasonable assumption is that such 
molecules cannot be solved by short routes and require 
a more thorough exploration of the search graph, caused 
by the explosion of possible choices at deeper node 
levels. Since the number of additionally solved target 
molecules is low due to a high success rate early on and 
that such molecules also tend to have a smaller route set, 
their influence on the mean could be small. Therefore, 
the second effect might be less pronounced than the first.
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Fig. 3 Mean multiplicative viability score for DFPN* and MCTS 
routes for different search times. The viability scores for each reaction 
of a route are multiplied with each other to give the estimated route 
viability. The respective mean score from each target molecule 
is given here. Higher values can be associated with a higher 
likelihood that the particular route will work in the lab. (Colored boxes 
correspond to the IQR between the first and third quantile, whiskers 
go up-to/down-to 1.5 times of the upper/lower bound of the IQR)

Table 1 Fraction of molecules for which the individual algorithm 
was able to find at least one viable synthesis route and mean 
number of routes found for a given search time

Search time [s] DFPN* MCTS DFPN* MCTS
Solved molecules [%] Mean # of routes

60 83 76 34.84 13.87

120 87 84 64.84 57.16

300 90 89 138.92 266.66

600 92 92 216.3 396.45

900 93 93 257.67 435.04

1200 94 94 284.21 445.04
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Routes can also be evaluated by the route viability. For 
this, we multiply the scores of our viability model for each 
reaction of a route with each other. The resulting score 
can be interpreted as the probability of the route working 
in the lab. This metric depends heavily on the predictions 
of said viability model. This is however not without 
caveats. The model is a binary classifier, discriminating 
between working and non-working reactions. But since 
there are only very few non-working reactions reported 
in literature, true negative data is very limited and is 
dwarfed by the bulk of true positive data. To overcome 
this imbalance, synthetically generated negative data 
is used [9]. Tested on proprietary in-house true and 
synthetic negative data, we found a large discrepancy 
between model performances, ∼ 65% vs ∼ 95% accuracy. 
Given also an unknown error to the in-house negative 
data (e.g., the reason why a reaction failed is often not 
known) we advice to be cautious when dealing with such 
scores in general. Despite its limitations, we nonetheless 
think that it can give valuable insights. In Fig.  3, the 
mean route viability is given for the DFPN* and MCTS 
algorithms. For shorter search times, the MCTS yields 
routes with an on average higher viability. At 300  s, the 
two implementations show very similar distributions and 
at search times beyond that, the DFPN* implementation 
yields higher viability scores. We attribute this, in parts, 
to the route-length distribution discussed above. Longer 
routes will often have lower viability scores due to the 
additional sub-one factors. This effect shows in the lower 
scores for our DFPN* implementation for shorter search 
times and also for the MCTS for longer ones. Another 
factor is the tendency of the MCTS to favor reactions 
with a high score assigned by the reaction prediction 
model. This steers it towards high-viability routes, but 
prevents it from creating meaningful diversity, as also 
shown above. The strategy for generating multiple 
solutions in our DFPN* implementation is designed to 
also pursue pathways with lower reaction prediction 
model scores. This is a conscious choice, using machine-
learning models to search efficiently but not trusting 
them blindly. We believe the trade-off between estimated 
viability and diversity worthwhile. 

Conclusion
In this work, we adapted DFPN to find multiple solutions 
in the context of chemical retrosynthesis. In designing 
our changes to the algorithm, we made chemical diversity 

a priority, following the principle quality through diver-
sity. We dubbed this new variant DFPN*. To quantify 
the diversity generated by DFPN*, we introduced a new 
chemical diversity score (CDS) that captures the number 
of unique chemical synthesis ideas present in a set of syn-
thesis pathways. We compared DFPN* with MCTS on a 
diverse set of 1000 molecules extracted from the DUD-E 
database. Our DFPN* implementation shows compara-
ble to slightly better performance regarding the number 
of solved molecules for all search time budgets. We also 
show that our DFPN* implementation is superior to the 
MCTS with regards to chemical diversity as well as to 
synthesis effort, measured by the mean number of reac-
tions, at medium and long search time budgets.

Our approach tackles two major challenges in current 
CASP tools simultaneously. Currently available reaction 
data does not allow for near-error-free solutions and 
optimality in synthesis strategy is defined differently by 
the various branches of chemistry. The arguably best 
solution to both challenges is to provide a diverse set 
of pathways. From these, the users may choose those 
pathways that suit their needs best. We think that the 
DFPN* algorithm gives access to more user-oriented, 
higher quality CASP tools by proposing highly diverse 
synthesis pathways without compromising their 
individual quality.

The advancements in this work also give rise to further 
exploitation of the diversity principle. For example, from 
a set of pathways, calculated for a compound library, it is 
possible to search and select those that have the highest 
overlap in reactions, intermediates, and building blocks. 
Obviously, a high chemical diversity is critical to be 
able to find such a set. This approach would, on the one 
hand, give rise to a new compound selection criterion for 
experimental screening candidates and secondly could 
reduce the synthesis effort for the selected compounds 
significantly. Furthermore, computation is currently lim-
ited to a single core, and for single-target use cases no 
trivial parallelization scheme can be deployed, dictating 
wait times for users. Utilizing the multi-core design of 
modern processors would allow for a smoother integra-
tion in lab routines by shortening the time-to-solution.



Page 9 of 19Mrugalla et al. Journal of Cheminformatics           (2025) 17:72  

Appendix
A depth‑first proof‑number search and variants: formal 
description
Basic Definitions. The input graph is a directed graph 
G = (V ,E) where v0 ∈ V  is the start node. Further, V is 
partitioned into V0 and V1 , the sets of nodes of Player 0 
and Player 1 (corresponding to the molecule and reaction 
player, respectively), also referred to as AND and OR 
nodes, respectively. The sets W0 and W1 , the sets of 
winning nodes of Player  0 and Player  1, respectively, 
are disjoint subsets of V. Without loss of generality, we 
assume that

• all neighbors of nodes in V0 are in V1 and vice versa.
• for all v ∈ V  it holds that δoutG (v) = ∅ if and only if 

v ∈ W0 ∪W1.

A play P is a sequence of v0, v1, . . . , vk such that for all 
i ∈ {0, . . . , k − 1} , we have vi+1 ∈ N out

G (vi) . If P is a path 
in G, i.e., it contains each node at most once, we say P is 
winning for Player i ∈ {0, 1} if vk ∈ Wi . If v0, . . . , vk−1 is a 
path and vk ∈ {v0, . . . , vk−1} (the last move closes a cycle), 
we assume the play is winning for either of the players, 
e.g., Player 0 wins or the Player i with vk−1 /∈ Vi wins [38].

A strategy for Player i ∈ {0, 1} is a function σ : Vi → V  
such that σ(v) ∈ N out

G (v) for all v ∈ Vi . A pair of 
strategies for both players naturally induces a play (that 
stops the first time it is winning for one of the players). 
For i ∈ {0, 1} , we say that a strategy σi for Player 1 is a 
winning strategy if σi and each strategy σ1−i for Player 
1− i induces a play that is winning for Player i.

Proof‑Number Search. Proof-Number Search (PNS) [21] 
explores G starting from v0 , i.e., initially v0 is explored, and 
all other nodes are not explored. No edges are explored 
at that time. PNS iteratively expands nodes v that were 
previously not expanded. This way, PNS learns if v ∈ Wi 
for i ∈ {0, 1} , and all edges in δoutG (v) as well as v’s children 
N out
G (v) are explored. Note that, since G is not necessarily a 

tree, such endpoints have possibly been explored prior to 
the expansion of v.

A node v is called proved if a winning strategy for Player 
0 can be inferred from the explored part of G; if a winning 
strategy for Player 1 can be inferred, it is called disproved. 
A node that is neither proved nor disproved is said to be 
unproved.

The (dis)proof number of an explored node v is defined to 
be the minimum number of explored unproved nodes that 
have to be (dis)proved for v to be (dis)proved. Clearly, the 
(dis)proof number of a (dis)proved node is 0; by convention 
the proof number of a disproved node and the disproof 
number of a proved node is defined to be ∞.

For any explored node v, PNS maintains estimates pn(v) 
and dn(v) for the proof and disproof numbers, respectively, 

of v. For any unexpanded node v ∈ V  (in particular, v0 
at initialization), PNS sets pn(v) = 1 and dn(v) = 1 in 
accordance with the definition of the actual proof and 
disproof numbers.

In each iteration, PNS selects a most promising node to 
expand. To do so, it first selects v0 . If the currently selected 
node v has already been expanded, PNS distinguishes 
two cases. If v ∈ V0 , PNS next selects a node c in N out(v) 
minimizing pn(c) . Otherwise, i.e., if v ∈ V1 , it selects a node 
c in N out

G (v) minimizing dn(c) . Once PNS has selected an 
unexpanded node, it expands this node.

After expanding a node, PNS first sets pn(v) = 1 and 
dn(v) = 1 for the newly explored nodes v (as described 
above). Then it updates pn(v) and dn(v) for all the nodes 
v selected between the expansion that just happened and 
the expansion before that, in reverse order of selecting. 
In particular, in case of the just expanded node, PNS may 
have learned that v ∈ Wi for i ∈ {0, 1} , or a cycle has just 
been closed. In accordance with the definition of the actual 
proof and disproof numbers, upon learning Player 0 wins, 
it sets pn(v) = 0 and dn(v) = ∞ ; upon learning that Player 
1 wins, it sets pn(v) = ∞ and dn(v) = 0 . In all other cases, 
for v ∈ V0 it sets

and for v ∈ V1 it sets

If G is an out-tree, it is easy to see that pn(v) and dn(v) 
reflect the actual (dis)proof numbers. In a general graph, 
however, as can be seen, e.g., in the graph shown in Fig. 1, 
this is not necessarily the case.

Depth‑First Proof‑Number Search. Depth-First 
Proof-Number Search (DFPN) [18] does noFigat start 
the search for the most promising node from v0 in each 
iteration. Instead, when node v is currently selected, 
it tries to use thresholds thpn(v) and thdn(v) to decide 
whether the path taken from v0 to v is part of a path 
that PNS would take. In particular, if

then it continues the search like PNS would, and other-
wise it backtracks one step. The values of pn and dn are 
only recomputed at the node that DFPN is currently 
considering.

The thresholds are determined as follows. Initially, 
thpn(v0) := ∞ and thdn(v0) := ∞ . Suppose from node 
v, node c1 is selected next, i.e., if v ∈ V0 ( v ∈ V1 ), c1 

(1)

pn(v) := min
c∈Nout

G (v)
pn(c); dn(v) :=

∑

c∈Nout
G (v)

dn(c),

(2)

pn(v) :=
∑

c∈Nout
G (v)

pn(c); dn(v) := min
c∈Nout

G (v)
dn(c).

(3)pn(v) < thpn(v); dn(v) < thdn(v),
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has the smallest value of pn ( dn ) among N out(v) . If 
|N out(v)| = 1 , the thresholds for c1 are taken over from 
v. Otherwise, let c2 be a node that has the smallest value 
of pn ( dn ) among N out(v)\{c1} . If v ∈ V0,

and if v ∈ V1,

We give the full algorithm, including the Threshold 
Controlling Algorithm, in Algorithm 1.

Algorithm 1 search (DFPN with TCA)

(4)
thpn(c1) := min{thpn(v), pn(c2)+ 1},

thdn(c1) := thdn(v)− dn(v)+ dn(c1),

(5)
thpn(c1) := thpn(v)− pn(v)+ pn(c1),

thdn(c1) := min{thdn(v), dn(c2)+ 1}.

B Missing material from Subsection Simpler counter 
example without TCA 
In Fig. 4, we first repeat the graph from Simpler counter 
example without TCA  section in the more common 
vertical orientation.

Recall that, in DFPN, initially only v0 is explored. 
As a first step, this node is expanded. This leads to 
the explored part of the graph along with (dis)proof 
numbers and thresholds depicted in Fig. 5.

At that point, DFPN is indifferent between expanding 
v1 or v2 first. Suppose w.l.o.g. DFPN expands v1 first. 

Note that, thpn(v1) will remain ∞ while thdn(v1) is set 
to 2. Since v1 has only one child, its values of pn and 
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dn will remain 1 even after its expansion, and the 
thresholds remain the same, implying that DFPN 
continues expanding at along this path to v3 . Since 
v3 ∈ V0 has, however, two children, thdn(v3) = dn(v3) 
after the expansion of v3 . Hence, DFPN will backtrack 
back to v0 . The resulting explored part of G is shown in 
Fig. 6.

Now there is no indifference anymore and DFPN 
explores the nodes v2 , v4 in a similar manner, 
eventually backtracking to v0 . The result is shown in 

Fig.  7. Subsequently, DFPN will again visits v1 , v3 and 
backtrack to v0 ; the result is shown in Fig. 8.

It is easy to see that this behavior will continue and 
DFPN will run into an infinite loop. Running DFPN 
with TCA on this example will probably help the 
reader’s understanding of DFPN with TCA and the fact 
that it might not have the same issue.

C full proof of completeness of DFPN with TCA 
The purpose of this section is to prove the following 
theorem.

Theorem 1 DFPN with TCA is complete.

In the proof, we assume towards a contradiction that 
DFPN with TCA runs into an infinite loop. First, we 
remove all the parts of G that are irrelevant during the 
infinite loop, obtaining a new graph L = (V ′,E′) . More 

Fig. 4 The graph G from Simpler counter example 
without TCA  section in vertical orientation. Recall that the nodes 
in V0 and V1 are depicted as squares and circles, respectively, 
and that W0 = {v6},W1 = ∅

Fig. 5 The explored part of G right after the expansion of v0

Fig. 6 The explored part of G at the second visit to v0

Fig. 7 The explored part of G at the third visit to v0

Fig. 8 The explored part of G at the fourth visit to v0
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precisely, let P⋆ := v0, . . . , v
⋆ be the largest path that is a 

prefix of P throughout the infinite loop. Then

• V ′ contains all vertices in P⋆ , all vertices visited 
during the loop, and all their children;

• E′ contains all edges in P⋆ and outgoing edges from 
vertices visited during the loop.

For instance, for the loop considered in Subsection Sim-
pler counter example without TCA , L would consist of all 
nodes but v9 and all edges but the one leading to v9.

For a node, v ∈ V ′ , we now define its level ℓ(v) to be 
the length of the longest v0-v path in L. Note that in the 
proof for DFPN on directed acyclic graphs [22], levels 
are also used but defined on G rather than L. Let ℓmax 
be the maximal level of any node in L. The fundamental 
property of L is the following.

Consider a call during the infinite loop at some 
node nc that eventually returns because the threshold 
condition is not met anymore, i.e., pn(nc) ≥ thpn(nc) 
or dn(nc) ≥ thdn(nc) . Denote by M the set of nodes 
(including nc ) at which the threshold condition had been 
violated in the meantime.

Lemma 1 Consider some m ∈ M . There is no node 
o ∈ V ′ \ {m} with ℓ(o) ≥ ℓ(m) such that there exists a 
path from o to m in L.

Note that the statement is trivially true in acyclic 
graphs, in which an v0-o path can always be extended by 
an o-m path to a longer path, but not in cyclic graphs. We 
provide a proof.

Proof of Lemma 1 Suppose such a node o exists, and 
denote by P′ the o-m path in L. First note that o must 
be visited during the infinite loop. The reason is that 
otherwise

• either o is part of P⋆ , in which case the only v0-o path 
in L (a prefix of P⋆ ) could be extended by an o-m path 
in L, contradicting ℓ(o) ≥ ℓ(m);

• or o is a child of a node visited during the loop with 
N out
L (o) = ∅ , contradicting the fact that P′ exists.

Next, note that for any node p in P′ (in particular m) 
it must hold that md(o) < md(p) during the loop. This 
is because otherwise there must exist a node p′ on P′ 
with successor p′′ on P′ such that md(p′) ≥ md(p′′) . 
Upon visiting p′ , TCA would then increase the 
thresholds. This already contradicts the assumption 
that DFPN with TCA is in an infinite loop because it 

would eventually make progress by either expanding an 
unexpanded node or finding a new cycle.

Now consider the v0-o path P′′ of length ℓ(o) in L. Since 
ℓ(o) ≥ ℓ(m) , P′′ cannot be extended to a v0-m path by P′ . 
The reason for that must be that P′′ intersects P′ at some 
node p0 . By the same argument as above, applied to the 
p0-o subpath of P′′ , it holds that md(p0) < md(o).

Hence, md(o) < md(p0) < md(o) ; a contradiction.  
 �

The remaining part of the proof is quite similar to 
the proof of completeness of directed acyclic graphs 
[22]. Indeed, we call a node v ∈ V ′ consistent if it ful-
fills  (1) and  (2) (as equations rather than assign-
ments) and inconsistent otherwise. We also define 
the inconsistency tuple to be (Nℓmax ,Nℓmax−1, . . . ,N0) 
where, for i ∈ {ℓmax, . . . , 0} , Ni is the number of incon-
sistent nodes at level i of L. We call L i-consistent if 
Nℓmax = Nℓmax−1 = · · · = Ni = 0.

Using Lemma  1, the proofs of the following two 
lemmata are now quite similar to the completeness 
proof on acyclic graphs [22].

Lemma 2 Let n ∈ V ′ , suppose L is ℓ(n)-consistent, and 
pn(n) < thpn(n) as well as dn(n) < thdn(n) holds. If the 
algorithm now searches n, it will expand a node or find a 
new cycle before the call returns.

Proof We first show that the algorithm will select a 
child nc of n for which the condition pn(nc) < thpn(nc) as 
well as dn(nc) < thdn(nc) will hold. If n has a single child, 
this is clear. Assuming n ∈ V0 and letting cd be the second 
best child (called c2 in (4) and (5))), we can compute

and

using that the threshold criterion is met at n and that n is 
consistent. The argument in case n ∈ V1 is analogous.

We now claim that ℓ(nc) ≥ ℓ(n)+ 1 . The reason is 
the following: Otherwise, n must be part of a v0-nc path 
(because then that path cannot be extended by n). In 
particular, then there must exist an n-nc path in L. But 
then, on the emerging cycle, there must be a node p′ 
with successor p′′ such that md(p′) ≥ md(p′′) , prompting 
TCA to increase the thresholds upon visiting p′ and 
eventually make progress.

thpn(nc) :=min{thpn(n), pn(nd)+ 1}

>min(pn(n), pn(nc)) = pn(nc)

thdn(nc) := thdn(n)− dn(n)+ dn(nc) > dn(nc),
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The claim now follows because the algorithm 
successively selects nodes with higher levels, eventually 
expanding a node.   �

For the next lemma, recall that a tuple (a1, a2, . . . , ak) 
is lexicographically smaller than a tuple (b1, b2, . . . , bk) , 
denoted (a1, a2, . . . , ak) <lex (b1, b2, . . . , bk) , if for 
some i, it holds that a1 = b1, a2 = b2, . . . , ai = bi and 
ai+1 < bi+1.

Lemma 3 Suppose not all nodes in L are consistent. 
Denote by T and U the inconsistency tuples right before 
nc is searched and right after the call has returned, 
respectively. Then U <lex T .

Proof Let T = (tℓmax , tℓmax−1, . . . , t0) and 
U = (uℓmax ,uℓmax−1, . . . ,u0) . We define m⋆ to be a node 
from M with maximum level. First note that, since by 
Lemma 1, for all nodes o with ℓ(o) ≥ ℓ(m⋆) and m ∈ M , 
there is no o-m path in L. Hence, such nodes o cannot 
become inconsistent by a visit to a node in M. For all 
i > ℓmax , this implies ui = ti . Further, when pn(m⋆) 
and dn(m⋆) are recomputed, by Lemma  2, the formerly 
inconsistent node m⋆ becomes consistent, meaning 
tℓ(m⋆) > uℓ(m⋆) .   �

These lemmata allow us to prove the Theorem.

Proof of Theorem  1 Recall that P⋆ = v0, . . . , v
⋆ is the 

largest prefix that is part of P throughout the infinite 
loop. Consider some time during the infinite loop. If L is 
not yet ℓ(v⋆)-consistent at that time, Lemma 3 guarantees 
that it will be ℓ(v⋆)-consistent after finite time. At that 
time, Lemma 2 implies that the next time the algorithm 
searches v⋆ it will expand a node or find a new cycle 
before it returns, thereby making progress. That is a 
contradiction to the fact that the algorithm is in an 
infinite loop.   �

D Methods
D.1 Target compound selection
All of our experiments are based on a subset of the 
DUD-E data set, a target data set designed to help 
benchmark molecular docking programs by providing 
challenging decoys [41]. Out of 22805 initial molecules, 
we extracted the subset of active molecules and calculated 
all-to-all RDKit-fingerprint Tanimoto similarities with 
the RDkit package [42] and discarded those molecules 
with a similarity greater than 50% for a total of 2580 
molecules. We built our final set of molecules from 1000 
randomly selected molecules having between 19 and 33 
heavy atoms.

D.2 Synthesis pathway calculations
We calculated all synthesis pathways using our 
own DFPN* implementation and a modified MCTS 
implementation based on the ASKCOS code. For all 
searches we used the same set of template prioritization 
and reaction viability models (described in Appendix 
D.4). The reaction viability inclusion threshold was set 
to > 0.5 , the maximum search depth was limited to 7 
reaction steps from the target, and search was terminated 
prematurely if 500 routes were found. We set σ = 3 and 
preac = 10 in our DFPN* calculations and we set the 
exploration constant of MCTS to 2 and its maximum 
branching factor to 50. All calculations used the same set 
of building blocks (see Appendix D.3). For comparison 
and further analysis we searched for 60  s, 120  s, 300  s, 
600 s, 900 s, and 1200 s respectively.

D.3 Template creation/extraction and building block 
molecules
The retrosynthetic reactions, selected by the respective 
algorithm during route search, are applied to the target 
molecule as well as to all intermediates as reaction 
templates in form of reaction SMARTS. These templates 
are extracted from known chemical reactions (as 
reactions SMILES), in our case taken from the  Reaxys®1 
database and in-house lab journal data. The extracted 
reactions are first standardized with the Pipeline Pilot 
Node [43] “Standardize Molecule”, removing all stereo 
chemistry information from the SMILES, single atom 
fragments, and standardizing all charges while keeping 
the original charges of acids. In a second step the 
reactions were filtered for maximum molecule size of 128 
heavy atoms and single product reactions (a limitation 
of both search algorithms) or more than 3 reactants. 
The latter was checked with RDKit [42] which thereby 
also doubles as a filter for SMILES interpretability. 
As building-block molecules we used a version of 
Bayer’s internal catalogs. To align those compounds 
with our templates, the corresponding molecules were 
standardized in the same way, omitting the filtering step 
on heavy atoms.

The filtered and standardized reaction where than atom 
mapped with first the Namerxn software by Nextmove 
[44] and those reactions which could not be mapped that 
way where treated in Pipeline Pilot with the “Add Reac-
tion Mapping” with a maximum MCSS search time of 
600  s and maximum time per mapping of 1800  s. The 
extraction of SMARTS patterns from the atom mapped 

1 https://www.reaxys.com/
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reactions was done with the open source Python package 
RDChiral [45].

In total, there were 11,960,851 transformations 
extracted from the combined data sets, which were then 
grouped into 2,819,644 classes of identical SMARTS. 
Consequently, the largest transformation classes are 
encoding the most abundant reaction classes. In an effort 
to filter out transformations containing errors from 
the atom-mapping step and the SMARTS extraction 
process as well as to exclude questionable, and therefore 
seldom publicized chemistry, a cutoff of at least five class 
members was applied, yielding a final data set containing 
about 270,605 classes and 8,616,236 million samples.

The distribution of class sizes as well as the cumulative 
proportion of the total data set is given as a Pareto 
diagram in Fig. 9. As indicated by dashed lines, only 20% 
of all transformation classes cover already about 80% of 
the full data set and, shown in the inset, the biggest class 
is composed of about 100,000 members while the 100th 
already only contains mere 6,000 samples, dropping 
fast in the two-digit numbers range. This testifies to the 
extreme imbalanced nature of the here employed data set 
used for training the one-step-retro model.

D.4 Single‑step retrosynthesis (template prioritization + 
reaction viability)
When choosing which single reaction is the most 
appropriate for a single retrosynthetic step, we follow 
previous approaches for the prioritization and application 
of templates [9, 46].

During the exploration phase, the DFPN* algorithm 
often needs to further expand a node before determin-
ing whether it can be proved. In chemistry terms, this 
means that the selected molecule is neither a building 
block nor well known enough to be considered a build-
ing block. When this occurs, a reaction prediction model 
generates a list of k possible retrosynthetic transforma-
tions that could be applied to the current molecule. This 
neural network model is trained as classifier from litera-
ture (extracted from the  Reaxys® (https://www.reaxys.
com/) database), and in our case from internal labora-
tory journals extracted transformation classes with the 
reaction product as input [47, 48]. In this publication 
we are using two models trained on the same data and 
with the same architecture but one with modified class 
weights in training and one without. The purpose of 
the reweighting is to counteract the severe imbalance 
between class sized in the training set. To do so, the 
weights are calculated by dividing the maximum class 
size by the individual class sizes, giving smaller classes 
a higher weight in comparison to larger ones. In the fol-
lowing, the model trained without the class-size depend-
ent reweighting scheme is marked with a dagger symbol 
as template prioritization model† or TP-model† while the 
one with is simply referred to as TP-model. However, in 
the training of both models at least one class-reweighting 
scheme was applied which gave reactions from the in-
house lab journals more emphasis. This was also done 
class-wise by using a factor of 10 for such reactions and 
assigning the mean weighting-factor over all contribut-
ing reactions to the individual classes. In the case of the 
TP-model both weights were multiplied. The architecture 
of both variants was the same, a MLP neural network 
with two hidden layers of size 1024, using ELU activa-
tion functions. As input the binary Morgan fingerprint 
( length = 216 , radius = 2 ) of the product molecule was 
used. Before feeding the input to the model, a variance 
filter was applied to unify the fingerprints [9], resulting 
in an input dimension of 214 . The according thresholds 
were established based on an analysis over the training-
set and can be found as part of the supporting informa-
tion. The output layer had a size equal to the number 
of transformation classes (270,605) with a softmax acti-
vation function. The training was performed over 100 
epochs (the final model was chosen based on validation 
loss from those 100 epochs) using the Adam optimiza-
tion algorithm on a sparse categorical cross-entropy loss 
with a learning rate of 1 · 10−5 and a batch size of 512. A 
dropout rate of 0.1 was sufficient to minimize overfitting.

Every transformation candidate generated by one of 
the TP-models is further tested in a forward direction. If 
the reaction prediction model determines that the target 
molecule R can be split into sub-molecules R1 and R2 via 
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transformation T, a fast-filter model determines whether 
a transformation involving molecules R1 and R2 is likely 
to succeed. This fast filter model is a fully-connected, 
single-layer neural network with ReLu activation and 
Sigmoid output. Its inputs are the concatenation of the 
binary ECFP fingerprints (radius=2, features=8192) of 

molecules R1 and R2 . This model is trained as a binary 
classifier for the task of deciding whether a transforma-
tion involving its input molecules is likely to be success-
ful. For training the in Tensorflow 1.9.0 implemented 
Adam optimizer was used with a learning rate of 1 · 10−4 . 
This model is trained with a set of 8 M working reactions 
taken from from the  Reaxys® database and our internal 
laboratory journals [47, 48]. We used 136k negative and 
608k working reactions from our internal laboratory 
journals and 12.8M generated algorithmically following 
the general approach by Segler et al. [9].

D.5 Single‑step retrosynthesis model quality
A key element in the route search with the here used 
implementations of the MCTS and DFPN* search 
algorithms is the proposition of suitable chemical 
retrosynthetic transformations. Consequently, the quality 
of the deep learning model providing those is central for 
the capabilities of the algorithm to solve molecules and to 
find a diverse set of synthesis pathways.

The measured accuracy for the model trained on 
re-weighted class importance is significantly worse than 
the one trained without, as shown in Fig. 10. The larger 
gap in accuracy for smaller k between both approaches is 

0%

25%

50%

75%

100%

100 101 102 103

Top k

Ac
cu

ra
cy

/A
pp

lic
ab

ilit
y

Applicability

Accuracy (reweighted)

Accuracy

Applicability (reweighted)

Fig. 10 Top k accuracy and applicability for models trained 
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Fig. 12 Number of unique molecules per Route. The differences 
of the medians for DFPN* and MCTS are statistically significant 
for all computing times (Asymptotic Wilcoxon-Mann–Whitney 
Test, significance level α = 0.01 ). We believe the much broader 
IQRs in the data generated by the DFPN* are a result of the higher 
diversity in said data. We assume a superlinear relation between CDS 
and the number of unique molecules, yielding wider IQRs than those 
found in the CDS analysis. Due to its mechanism of finding multiple 
routes via penalizing nodes on the search graph, the DFPN* 
algorithm is forced to explore a wider variety of molecules. (Colored 
boxes correspond to the IQR between the first and third quantile, 
whiskers go up-to/down-to 1.5 times of the upper/lower bound 
of the IQR, dots represent outliers.)
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qualitatively expected and a consequence of the effective 
removal of the heavy class sizes imbalance in the data set 
(see Appendix D.3) for the TP-model. For it the statistical 
advantage of predicting the largest classes is eliminated 
which subsequently leads to a smaller success rate. 
However, not predicting the associated label for a given 
molecule does not necessarily mean a bad prediction in 
the context of a retrosynthesis tool as the one used in 
this paper. For most molecules there are usually more 
than one way to synthesize it. This is most obvious for 
the de-protection reactions, which are the largest classes, 

as they are only a subsequent step in most cases and are 
not meant to build the actual chemical structure. The fact 
that the gap in accuracy between the two models closes 
with larger k, can therefore be interpreted as a result of 
an alternative transformation prioritization. Although 
the model assigns the given label in the dataset  a lower 
importance, it is still capable of finding it (in light of 
the total number of transformation classes of roughly 
270,000, finding the assigned label within the first 1000 
highest ranked classes is still a significant enrichment. 
Furthermore, even those can still be used in pathways in 
our implementations).

A similar argument can be made for the applicability 
of the transformations, where the best ranked 
transformations of the model trained on re-weighted 
classes show a slightly worse performance. With the 
statistical advantage of the bigger (and more general) 
classes removed, more specific transformations get 
predicted with a higher probability, leading to a drop in 
applicability (Figs. 11, 12, and 13) (Tables 2, 3, 4, and 5).
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Fig. 13 Comparison between DFPN* and MCTS with respect to the minimum and maximum route viability: (left) Minimum multiplicative viability 
score for DFPN* and MCTS routes for different search times. The viability scores for each reaction of a route are multiplied with each other to give 
the estimated route viability. The respective minimum score from each target molecule (i.e. the assumably worst route found) is distributed 
around lower values for the DFPN* than for the MCTS implementation for search times 60 and 120 s. For longer search times both algorithms 
converge to the approximately same level. (Colored boxes correspond to the IQR between the first and third quantile, whiskers go up-to/down-to 
1.5 times of the upper/lower bound of the IQR). (right) Maximum multiplicative viability score for DFPN* and MCTS routes for different search times. 
The viability scores for each reaction of a route are multiplied with each other to give the estimated route viability. The respective maximum score 
from each target molecule (i.e. the assumably best route found) is distributed around lower values for the DFPN* than for the MCTS implementation 
for search times 60, 120, and 300 s. At 600 s the distribution is very similar, while for 900 and 1200~s the trend reverses. (Colored boxes correspond 
to the IQR between the first and third quantile, whiskers go up-to/down-to 1.5 times of the upper/lower bound of the IQR)

Table 2 Fraction of molecules in the test set for which the 
individual algorithms were able to find at least one synthesis 
route. The dagger symbol denotes experiments conducted with 
the transformation prediction model trained without the class 
size correcting weights on the loss function

Search time [s] DFPN* DFPN*† MCTS MCTS†

Solved molecules [%]

60 83 84 76 78

120 87 87 84 84

300 90 90 89 89

600 92 93 92 91

900 93 94 93 93

1200 94 95 94 94
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The objectively worse performance of the TP-model in 
accuracy and applicability is not reflected in the number 
of solved molecules, as shown in Table 1, nor in the mean 
reactions per route ( Table  5) or the CDS ( Table  3). In 
fact, the opposite is the case, as the said model leads to 
slightly better results in both algorithms. These results 
attest to the limited expressiveness of the usually used 
metrics to evaluate reaction prediction models used in 
similar context. Although much more computationally 
expensive, testing the models as integrated parts of 
retrosynthetic route search algorithms seems to us as the 
only conclusive approach.

D. 6 In‑depth explanation of the Chemical Diversity Score
We now formalize the idea behind the CDS and give a 
descriptive explanation of our design choices. To do so, 
we take a target molecule R and a set M of n synthesis 
pathways S1, ..., Sn to synthesize R, so M = {S1, ..., Sn} . To 
calculate the diversity of chemical ideas in M we propose 
the following procedure: 

(1) First, all bonds of R, which get formed in the differ-
ent pathways, are identified. The set Ŝi contains all 
indices of bonds from R created during the synthe-
sis with pathway Si.

Table 3 Median/Maximal Chemical Diversity Scores over all solved molecules: The DFPN* algorithm generates significantly higher 
CDSs than the MCTS could achieve. Additionally the data shows a slight advantage of the TP-model over the regular TP-model† in both 
algorithms

Search time [s] DFPN* DFPN*† MCTS MCTS†

q25 Median q75 q25 Median q75 q25 Median q75 q25 Median q75

60 1.3 2.0 3.1 1.0 2.0 3.0 1.0 1.0 2.0 1.0 1.0 2.0

120 1.7 2.5 3.7 1.5 2.3 3.7 1.0 1.7 2.5 1.0 1.5 2.0

300 2.0 3.0 4.6 1.8 2.9 4.2 1.0 2.0 3.0 1.0 1.8 2.8

600 2.1 3.4 5.1 2.0 3.2 4.7 1.0 2.0 3.0 1.0 1.8 2.6

900 2.4 3.7 5.4 2.0 3.4 4.9 1.0 2.0 2.9 1.0 1.7 2.5

1200 2.5 3.8 5.6 2.2 3.5 5.0 1.0 1.8 2.8 1.0 1.7 2.5

Table 4 Median/Maximal number of unique molecules used per Route: DFPN* clearly uses more unique molecules during route 
search, which is an indication that the found routes are more diverse

Search time [s] DFPN* DFPN*† MCTS MCTS†

q25 Median q75 q25 Median q75 q25 Median q75 q25 Median q75

60 26.0 46.0 79.0 26.0 49.0 83.0 13.0 20.0 28.0 14.0 21.0 29.0

120 42.0 78.5 138.0 40.0 83.0 146.5 25.0 39.0 52.0 23.0 38.0 50.0

300 75.0 164.0 292.3 73.0 165.0 318.0 53.0 77.0 100.0 48.0 68.0 92.8

600 116.0 278.0 474.0 109.0 287.5 446.8 69.3 94.0 127.0 61.0 86.0 112.0

900 158.3 390.0 522.0 150.0 379.5 508.0 79.0 107.0 144.8 68.0 95.0 125.5

1200 188.8 448.0 550.5 184.0 425.5 531.8 85.0 116.0 154.0 77.0 103.0 135.0

Table 5 Median/Maximum of the mean number of reactions used for a set of routes per molecule: For shorter search times DFPN* 
uses more reactions to reach the target, than the MCTS. Around 300 s search time the picture reverses and the DFPN* uses less 
reactions to reach a target than the MCTS

Search time [s] DFPN* DFPN*† MCTS MCTS†

q25 Median q75 q25 Median q75 q25 Median q75 q25 Median q75

60 3.0 3.5 4.3 3.0 3.7 4.5 1.9 2.6 3.5 1.9 2.7 3.9

120 3.3 3.9 4.7 3.4 4.0 4.9 2.7 3.5 4.6 2.7 3.6 5.1

300 3.9 4.4 5.2 4.0 4.6 5.4 4.3 5.4 6.6 4.5 6.0 7.1

600 4.2 4.8 5.5 4.3 5.0 5.7 5.8 6.7 7.3 6.1 7.1 7.5

900 4.3 5.0 5.7 4.4 5.1 5.9 6.3 7.1 7.6 6.7 7.3 7.7

1200 4.4 5.1 5.9 4.5 5.2 6.0 6.7 7.3 7.6 7.0 7.4 7.7
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(2) We denote a pathway T ∈ M as parent of pathway 
S ∈ M if T̂ ⊂ Ŝ . Furthermore, pathways of M which 
do not have a parent in M are denoted as core 
pathways and the set of all core pathways of M we 
denote with CM ⊂ M . In the case of T̂ = Ŝ only one 
of the both is in CM.

(3) Finally, with the Jaccard distance 
dJ (T̂ , T̂ ′) := 1− |T̂∩T̂ ′|

|T̂∪T̂ ′|
 for two sets T, T ′ and for 

M  = ∅ , the Chemical Diversity Score CDS is defined 
as 

The CDS can be interpreted as the number of different 
chemical ideas present in a given set of synthesis path-
ways. Higher CDS values are considered better, as they 
indicate a higher diversity between them.

To perform step  (1), all bonds present in the target 
molecules are indexed. In our case this is done with the 
RDKit on a SMILES-basis without explicit hydrogen. 
To identify the formed bonds in a pathway, the set of all 
bonds in R is compared to those present in the for this 
pathway used building blocks.

In step  (2) pathways are selected, which cannot be 
represented by another, shorter one in the set. They 
represent the core of a chemical synthesis idea. The 
pathways that are not a member of CM can be seen as 
variations of them and contain additional, often unnec-
essary, steps for the synthesis of the target molecule R. 
In our understanding, those pathways do not contrib-
ute to the overall chemical diversity in a meaningful 
way.

In step (3) we compare the core pathways to each other, 
virtually building an all-to-all distance matrix using the 
Jaccard distance. The individual contribution of any path-
way to the overall diversity and also to the CDS can be 
obtained by the mean distances to all other pathways. 
The total CDS is calculated by summing over those val-
ues for all pathways. Adding 1 sets the minimum value 
for the CDS , bringing it in line with the interpretation of 
the score as a measure of the number of chemical ideas in 
a set of synthesis pathways, which must be at least one, 
even if there is just a single pathway. The Jaccard distance 
is a value between 0 and 1. Pathways that create exactly 
the same bonds have Jaccard distance of 0, so they do not 
contribute to the overall diversity. For pathways that pro-
duce completely different bonds, we have T̂ ∩ T̂ ′ = ∅ and 
therefore J (T̂ , T̂ ′) = 1.

If we now obtain different sets of synthesis pathways 
M and N for the same molecule R, e.g., from two 
different algorithms, we can now compare them in 

CDS := 1+
1

|CM |

∑

T∈CM

∑

T ′∈CM

dJ (T̂ , T̂ ′)

terms of diversity by calculating CDSM and CDSN  . This 
is possible since the CDS is intrinsically independent 
of the cardinality of the sets M and N themselves and 
focuses only on CM and CN .
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