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Abstract 

This study investigates the risks of exposing confidential chemical structures when machine learning models trained 
on these structures are made publicly available. We use membership inference attacks, a common method to assess 
privacy that is largely unexplored in the context of drug discovery, to examine neural networks for molecular property 
prediction in a black-box setting. Our results reveal significant privacy risks across all evaluated datasets and neu-
ral network architectures. Combining multiple attacks increases these risks. Molecules from minority classes, often 
the most valuable in drug discovery, are particularly vulnerable. We also found that representing molecules as graphs 
and using message-passing neural networks may mitigate these risks. We provide a framework to assess privacy risks 
of classification models and molecular representations, available at https:// github. com/ Fabia nKrug er/ molpr ivacy. Our 
findings highlight the need for careful consideration when sharing neural networks trained on proprietary chemical 
structures, informing organisations and researchers about the trade-offs between data confidentiality and model 
openness.

Scientific contribution 

This study presents the first systematic assessment of the privacy risks associated with the sharing of neural networks 
trained to predict molecular properties. We are the first to develop a comprehensive framework for assessing these 
privacy risks in the context of cheminformatics, enabling the evaluation of vulnerabilities across different molecular 
representations and model architectures. Our work bridges the gap between privacy research and cheminformatics, 
providing a foundation for safer data sharing practices in drug discovery.
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Introduction
The use of neural networks has gained significant trac-
tion in early drug discovery, with organisations increas-
ingly relying on these models for a range of important 
modelling tasks [1]. One of the most common applica-
tions is the prediction of molecular properties [2, 3]. The 
performance of these models is heavily dependent on the 
quality and quantity of available datasets [2]. However, 
generating these datasets in drug discovery is an expen-
sive and resource-intensive process, often requiring sig-
nificant investment in both time and money [4]. As a 
result, organisations are highly protective of their data, 
as they have invested significant resources in generating 
the proprietary datasets and are accordingly reluctant to 
make this information publicly available.

While organisations are interested in keeping their 
proprietary datasets private due to the significant invest-
ments involved, they still recognise the value of engaging 
with the broader drug discovery community and artificial 
intelligence (AI) communities [5]. In the AI research field, 
it is common practice to share models through open-
source platforms or alternatively to offer them as secure 
web services, fostering collaboration and innovation [6]. 
This interaction is mutually beneficial, as it allows for the 
refinement and validation of models while also advanc-
ing the field as a whole [7]. However, this type of collabo-
ration inevitably raises concerns about data security, an 
issue of growing importance in AI research [8]. As organ-
isations seek to balance the advantages of community 
engagement with the need to protect valuable data, the 
issue of privacy is becoming increasingly important.

In this work, we adopt an interdisciplinary approach 
that bridges the fields of drug discovery and data privacy 
research. This bridge has largely been missing and we 
firmly believe that there are great opportunities for sci-
entific progress by bringing the two fields closer to each 
other. To empirically evaluate the privacy of machine 
learning models, membership inference attacks have 
become the most widely used method [9–11]. These 
attacks can be conceptualized as a privacy game, where 
the adversary seeks to determine whether a specific sam-
ple was part of the model’s training data (Algorithm  1). 
There are various levels of information the adversary 
might have access to regarding the model [12]. In our 
study, we focus on the so-called black-box scenario, 
where the adversary is provided with the output logits of 
the trained model, rather than the model’s weights, which 
would correspond to a white-box scenario. This black-
box scenario is similar to making machine learning mod-
els available as web services.

Algorithm 1 Membership Inference Attack. This algorithm 
formalizes the membership inference attack game we use to evaluate 
the privacy of our neural networks. The attack assumes knowledge 
about the underlying data distribution (chemical space) � from which 
the training dataset is sampled. Given an adversary A, a training 
algorithm T, and the data distribution � , the process involves sampling 
points from the data distribution, training a model on these samples, 
and then using the adversary to infer whether a specific data point 
(chemical structure) was part of the training set or not. The algorithm 
tests the adversary’s ability to distinguish between data points sampled 
from the training set and those not included, thereby evaluating 
potential information leakage from the model.

Building on the growing body of research on member-
ship inference attacks, Hu et  al. conducted an extensive 
survey, highlighting that they have been studied in the 
domains of image data, text data, tabular data, as well as 
node classification in graph data [13]. Among the differ-
ent implementations of attacks, likelihood ratio attacks 
(LiRA) and robust membership inference attacks (RMIA) 
have been shown to be the most effective in identify-
ing training data samples, setting state-of-the-art per-
formance benchmarks for the most commonly used 
benchmark datasets [11, 14]. Despite the growing inter-
est in membership inference attacks, their application to 
molecular property prediction in drug discovery remains 
largely unexplored. To the best of our knowledge, Pejo 
et al. conducted the only study about membership infer-
ence attacks in the context of molecular property predic-
tion, but they focused on federated learning scenarios 
using attacks tailored to this approach [15]. The broader 
implications and potential risks of membership inference 
attacks in molecular property prediction, particularly 
in traditional centralised machine learning models, still 
require investigation.

In this study, we provide the first comprehensive 
analysis of membership inference attacks against neural 
networks trained to predict molecular properties. We 
thereby highlight the risk that releasing machine learn-
ing models may expose proprietary chemical structures 
to the public, a challenge that organisations, for instance, 
must consider. To our knowledge this is the first study 
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to investigate how different molecular representations 
affect the privacy of the resulting models. Additionally, 
we create a framework where the privacy risks of clas-
sification model architectures and representation algo-
rithms can be assessed and compared. A scheme of our 
workflow is described in Fig. 1. Our study also explores 
whether different membership inference attacks can be 
used together, and we present some characteristics of the 
identified chemical structures that provide insights into 
the specific privacy risks. The approaches and findings of 
this study have relevance beyond the pharmaceutical sec-
tor, offering applicability to any field that relies on predic-
tions of molecular properties, such as materials science 
or toxicology. Our framework also allows for the system-
atic assessment of privacy threats associated with predic-
tive models in these fields.

Results
In this section, we present the results of membership 
inference attacks on different neural networks trained 
on different datasets for specific tasks: Blood-Brain Bar-
rier crossing (BBB) to predict the ability of molecules 
to cross the blood-brain barrier [17], Ames mutagenic-
ity prediction (Ames) to assess potential mutagenicity 
[18, 19], DNA Encoded Library enrichment (DEL) to 
analyse enrichment [20], and inhibition of the potas-
sium ion channel encoded by the human ether-à-go-go-
related gene (hERG) to assess cardiac toxicity risks [21]. 
The datasets differ in size with BBB and Ames being 
relatively small (859 and 3,264 training data molecules) 
and DEL and hERG being relatively large (48,837 and 
137,853 training data molecules). We explore the poten-
tial of combining different attacks to identify additional 

molecules contained in the training data. We also investi-
gate whether the identified molecules have distinct prop-
erties that distinguish them from the rest of the training 
data. Finally, we provide a detailed example of a specific 
attack to illustrate our findings.

Membership inference attacks
We wanted to see if we could identify whether a mole-
cule was part of the training data from querying a neu-
ral network and analysing its outputs. To achieve this, we 
used two different membership inference attacks: likeli-
hood ratio attacks (LiRA) and robust membership infer-
ence attacks (RMIA) [11, 14]. We evaluated their ability 
to distinguish between molecules in the training data 
and those outside it by measuring the true positive rate 
(TPR) at a false positive rate (FPR) of 0. In this context, 
we refer to molecules that were part of the training data 
as positives. Evaluating membership inference attacks at 
low FPRs was recommended by Carlini et al. [11]. Here 
we examine the TPR at an FPR of 0, which is the most 
conservative approach. For models trained on smaller 
datasets, we observed significantly higher TPRs than 
would be observed when randomly guessing if the chemi-
cal structure was part of the training dataset (Fig.  2). 
For example, in the blood-brain barrier crossing data-
set, median TPRs were between 0.01 and 0.03 for most 
representations, corresponding to the identification 
of between 9 and 26 of the 859 training molecules. The 
baseline in our experimental setup for identifying mol-
ecules by chance is identifying 2 molecules of the training 
data (See Supplementary Information for a comprehen-
sive derivation of this baseline). Models trained on larger 
datasets also showed significantly high TPRs, but only for 

Fig. 1 Overview of our workflow to evaluate privacy risks of neural network for molecular property prediction. Two random, non-overlapping 
subsets are created from each dataset. One subset is transformed into the desired molecular representation and used to train a neural network, 
optimised through Bayesian hyperparameter tuning [16]. We then apply membership inference attacks (Algorithm 1) to determine if chemical 
structures in the training data can be distinguished from those in the other subset. We evaluate this using two different attack implementations. 
This process is repeated 20 times for each dataset and molecular representation. We assess the results by analyzing true positive rates at fixed false 
positive rates, comparing them to random guessing, and examining the impact of the molecular representations
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one of the attacks, which varied between datasets (Fig. 2). 
The observed TPRs decreased with increasing dataset 
size.

To verify the consistency of our trends, we repeated 
our analysis of the TPR at an FPR of 10−3 , as shown in 
Supplementary Fig.  1. We observed similar trends at 
this FPR. One notable difference was that RMIA always 
performed at least as well as LiRA across every dataset 
and representation. Specifically, RMIA was significantly 

better in half of the cases. For the other half, no signifi-
cant difference was observed. In addition, even for the 
larger datasets, RMIA consistently provided higher TPRs 
than the baseline. We also investigated the correspond-
ing ROC curves for all datasets and representations, 
which show our trends are consistent even for larger 
FPRs (Supplementary Fig.  2). The high TPRs across all 
four datasets at both FPRs indicate significant informa-
tion leakage, showing that chemical structures from the 

Fig. 2 True positive rates for identifying training data molecules at a false positive rate of 0. The distributions of 20 experimental repetitions 
are shown for each representation and dataset, for both the likelihood ratio attack (LiRA) and the robust membership inference attack (RMIA). 
Distributions with significantly higher true positive rates than the baseline are indicated by red stars. A single star represents a p-value less than 0.05, 
two stars represent a p-value less than 0.01, and three stars represent a p-value less than 0.001. Training dataset sizes (total amount of positives) are: 
859 molecules for the blood-brain barrier permeability dataset; 3,264 for the Ames mutagenicity prediction dataset; 48,837 for the DNA-encoded 
library enrichment dataset; and 137,853 for the hERG channel inhibition dataset
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training data can be identified. The amount of informa-
tion leakage seems to be higher for models trained on 
smaller datasets.

When comparing different molecular representa-
tions for neural networks, we found that models trained 
on graph representations showed the least information 
leakage across all datasets (Fig.  2). The graph represen-
tation consistently had the lowest TPRs across all data-
sets and attacks, with a median TPR that was on average 
66%± 6% lower than median TPRs of the other repre-
sentations at an FPR of 0. In fact, for our larger datasets 
(DEL enrichment and hERG channel inhibition), mod-
els trained on graph representations were the only ones 
for which it was not possible to identify more training 
data molecules than by random guessing (Fig.  2). We 
observed the same trend for an FPR of 10−3 , where the 
graph representation consistently had the lowest TPRs 
(Supplementary Fig. 2). We tested whether this was due 
to differences in model performance (Fig.  3), but found 
no clear correlation between model performance and 
information leakage. For the small datasets, most of the 
models trained on different representations performed 
similarly. For the larger datasets, there were some outliers 

in model performances. In the DNA encoded library 
enrichment dataset, this included models trained on 
MACCS keys, which performed significantly worse than 
the other representations. In the hERG channel inhibi-
tion dataset this included models trained on graph and 
SMILES representations, which performed significantly 
better than the other representations. Our findings sug-
gest that graph representations combined with message 
passing neural networks may offer the safest architec-
ture in terms of data privacy, without sacrificing model 
performance.

Combining membership inference attacks
After confirming that both membership inference attacks 
could identify molecules from the training data, we inves-
tigated whether they identified the same molecules or 
whether they could be used together to gain more infor-
mation about the training data. To do this, we calculated 
the percentage of maximum possible overlap between the 
sets of molecules identified by each attack (Fig. 4). For our 
small datasets, we observed significantly higher overlap 
than would have been observed by chance if the attacks 
were completely uncorrelated. However, the overlap was 

Fig. 3 Classification performance of neural networks trained on different molecular representations in molecular property prediction tasks. The 
performance is measured as the area under the receiver operating characteristic curve (AUROC). The performance is displayed as the distribution 
over 20 experiment repetitions
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still well below 100%, indicating that using both attacks 
can identify a wider range of molecules in the training 
data. For our larger datasets (DEL enrichment and hERG 
inhibition), there was no significant overlap, which is 
reasonable given our earlier findings that only one of the 
attacks significantly outperformed random guessing in 
each dataset. How much the observed overlap deviated 
from overlap occurring due to chance is shown in Sup-
plementary Fig. 3. Our results suggest that using multiple 
different membership inference attacks is advantageous 
and allows the identification of more molecules from the 
training data.

We also investigated the overlap of identified molecules 
in models trained on different representations. We found 
a consistently large overlap between models trained on 
ECFP4 and ECFP6. For other representations, the over-
lap varied depending on the dataset and the attacks used. 
Detailed results can be found in Supplementary Fig. 4.

Analysing the identified training data molecules
Next, we wanted to see if the molecules identified from 
the training data shared any common characteristics. To 
do this, we analysed whether they differed in their distri-
butions of property labels and molecular sizes compared 
to the overall training data. For the property labels, we 
found that the identified molecules had a significantly 

higher proportion of minority class molecules compared 
to the overall dataset (Table 1). The minority class refers 
to the less frequently occurring label category within a 
dataset, such as active compounds in a screening assay 
where the majority are inactive. This significant differ-
ence in label distribution was observed in all our imbal-
anced datasets and held true for both small datasets 
(blood-brain barrier crossing) and larger ones (DNA 
encoded library enrichment, hERG channel inhibition) 
across both membership inference attacks. We con-
firmed this finding by examining the TPRs of minority 
class molecules and discovered that their TPRs were con-
sistently higher than the overall TPRs (Supplementary 
Fig. 5). Specifically, the median TPR of the minority class 
was approximately three times greater for all representa-
tions of the blood-brain barrier crossing dataset and up 
to 20 times greater for some representations of the DNA 
encoded library enrichment and hERG channel inhibi-
tion datasets. Detailed TPR distributions for all data-
sets and representations can be found in Supplementary 
Fig.  5. Regarding molecular sizes, we only found differ-
ences between identified and not identified structures in 
models trained on ECFP representations (Supplementary 
Figure  6). For models trained on other representations, 
we did not find any significant differences. While the 
identified structures do not seem to show a clear trend 

Fig. 4 Overlap between the sets of molecules identified by the likelihood ratio attack (LiRA) and the robust membership inference attack (RMIA). 
The percentage of possible overlap is defined as the proportion of molecules from the smaller set that are also present in the larger set. The 
less overlap exists between the attacks, the more information is gained when combining them. Overlap that was significantly higher than observed 
when randomly drawing two uncorrelated subsets is indicated by red stars. A single star represents a p-value less than 0.05, two stars represent 
a p-value less than 0.01, and three stars represent a p-value less than 0.001
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regarding their molecular size, our findings do indicate 
that it is easier to identify molecules from the minority 
class.

We also investigated whether molecules with uncom-
mon structural features are easier to identify. Uncom-
mon structures were defined based on both their 
highest (nearest neighbour) and average Tanimoto simi-
larity to the rest of the training data, and identification 
was assessed at an FPR of 0. For the highest Tanimoto 
similarity, Mann–Whitney U tests revealed that in more 
than 80% of dataset-representation combinations, the 
identified molecules had significantly lower similarity 
to their nearest neighbour in the training set compared 
to non-identified molecules. In addition, we examined 

whether the fraction of identified molecules varied sys-
tematically with Tanimoto similarity-following trends 
such as linear or exponential relationships-but no con-
sistent pattern emerged across all combinations of data-
sets and representations (Supplementary Figures  7 and 
8). Similar results were observed for average Tanimoto 
similarity. In 75% of cases, identified molecules had a 
significantly lower average similarity to the rest of the 
training data compared to non-identified molecules. 
However, when analysing the fraction of identified mol-
ecules across different similarity values, we again did not 
observe a consistent relationship between Tanimoto sim-
ilarity and identification rates (Supplementary Figures 9 
and 10). Overall, these results show that molecules with 
lower structural similarity to the training data tend to be 
easier to identify, but their identification rates do not fol-
low a simple, systematic trend based on similarity alone.

Case study
To illustrate our results, we present a specific example 
of attacking one neural network model trained to pre-
dict whether molecules can pass the blood-brain barrier. 
Molecules are represented by ECFP4s, a common rep-
resentation in many related applications. This particular 
model was chosen because it is representative of the 20 
experimental repetitions we conducted, with its TPR fall-
ing within the interquartile range of our results. Figure 5 
shows the chemical structures identified using LiRA on 
this model under the most stringent conditions (an FPR 
of 0). It was possible to identify 23 of the 859 structures 
from the training data (Fig. 5). The baseline for random 
guessing in that case is identifying 2 of 859 structures 
(See Supplementary information). 21 of the 23 identi-
fied structures are from the minority class (Fig. 5). When 
we relaxed the FPR to 1.1× 10−2 (allowing for 10 false 
positives among the identified structures), we were able 
to identify 100 structures from the training data (base-
line for random guessing is 10 structures in that case). 
This illustrates the rapid increase in identified structures 
as the restrictions on the FPR are relaxed. Additionally, 
when combining both LiRA and RMIA, we identified 
53 structures at an FPR of 0. We hope that this concrete 
illustration shows the potential risks that membership 
inference attacks pose to neural network models used in 
drug discovery.

Discussion
We investigated if it is possible to identify molecules 
from the training data only using the output of trained 
neural networks, a so-called black-box attack scenario. 

Table 1 Property label distributions of the identified molecules 
and the overall datasets.

The amount of positive compounds in each dataset is written in parentheses in 
the ’Dataset’ column. The numbers in the ’Mean’ columns refer to the percentage 
of positive compounds in the identified molecules. Stars indicate significant 
differences in the property label distribution of the identified molecules 
compared to the property label distribution in the training data. A single star 
represents a p-value less than 0.05, two stars represent a p-value less than 0.01, 
and three stars represent a p-value less than 0.001

LiRA RMIA

Dataset Representation Mean Significance Mean Significance

BBB
(0.76)

ECFP4 0.16 *** 0.25 ***

ECFP6 0.07 *** 0.17 ***

Graph 0.40 ** 0.42 **

MACCS 0.31 *** 0.37 **

RDKitFP 0.19 *** 0.31 ***

SMILES 0.21 *** 0.20 ***

Ames
(0.54)

ECFP4 0.54 0.45 *

ECFP6 0.49 0.45

Graph 0.51 0.77 **

MACCS 0.50 0.53

RDKitFP 0.60 0.47

SMILES 0.44 0.44 *

Del
(0.05)

ECFP4 0.16 0.78 ***

ECFP6 0.12 0.82 ***

Graph 0.00 *** 0.43

MACCS 0.23 0.69 ***

RDKitFP 0.14 ** 0.62 ***

SMILES 0.05 ** 1.00 ***

hERG
(0.04)

ECFP4 0.80 *** 0.55

ECFP6 0.44 0.47

Graph 0.29 0.53

MACCS 0.75 *** 0.78 ***

RDKitFP 0.66 *** 0.76 ***

SMILES 0.72 *** 1.00 ***
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To investigate this question, we have applied state-of-
the-art membership inference attacks to neural networks 
trained on different machine learning tasks for molecu-
lar property prediction. We showed that it is possible to 
confidently identify a subset of the training data. We also 
showed that combining multiple different membership 
inference attacks allows us to identify even more mol-
ecules since each attack identifies different molecules. 
Furthermore, we investigated the identified molecules 
and found that they contain a much higher proportion of 
molecules from the minority class. Thus the investigation 
presents evidence that there can be significant informa-
tion leakage of chemical structures from the training data 
when publishing a trained neural network model, which 
we will discuss in the following section.

It is important to note that our results focus on mem-
bership inference attacks against neural networks trained 
on classification tasks. This investigation does not cover 
regression tasks. Further research is needed to explore 
this area.

A limitation of the membership inference attacks 
we used is that they require the adversary to have data 

similar to the training data of the target model. While in 
some real-world scenarios it may hold — for instance, 
many organizations do have comparable internal data-
sets or can leverage publicly available datasets [22] — 
this does not fully capture the complexity of real-world 
applications. While assuming that the adversary has data 
from a similar distribution is a useful starting point for 
exploring privacy vulnerabilities, in drug discovery, pri-
vate datasets often contain novel chemistries or rare scaf-
folds that lie outside common public libraries, potentially 
degrading the efficacy of these attacks when the adver-
sary’s data distribution diverges from that of the target 
model. Although Shokri et  al. [9] showed that synthetic 
data generated by the target model can still be used to 
perform attacks requiring shadow models, the feasibil-
ity of this approach for molecular data, where the gap 
between known and unexplored chemical space can be 
substantial, requires further investigation. Future work 
should address how these attacks perform under distri-
bution shifts in order to better assess their applicability 
under these conditions.

Fig. 5 Chemical structures identified using the likelihood ratio attack (LiRA) against a neural network model trained to predict whether molecules 
pass the blood-brain barrier. Molecules were represented using ECFP4s in this model. Structures that are from the minority class have the label 0 
and are surrounded by a solid line. These structures correspond to molecules that cannot pass the blood-brain barrier. It was possible to identify 23 
of the 859 training structures at an FPR of 0
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In a real world scenario, this might often be the case. 
For many tasks in drug discovery, there are some small 
publicly available datasets [22]. Additionally, many organ-
isations have their own internal datasets for these tasks. 
Furthermore, Shokri et al. showed that even when similar 
data is not available, synthetic data generated from the 
target model can be used to successfully perform attacks 
that require shadow models [9].

We also want to emphasize that membership infer-
ence attacks assess whether it is possible to identify sam-
ples from the training data, not whether it is possible 
to reconstruct the training data from the model. These 
attacks are commonly used to assess information leak-
age in privacy assessments and viewed as a building block 
towards other attacks, e.g. reconstruction attacks [12]. In 
the context of drug discovery, they may have even more 
practical applications. For example, if an organisation 
offers neural network based molecular property predic-
tions as an online service, membership inference attacks 
could determine whether specific molecules were part of 
the model’s training data. Since the presence of a mole-
cule in the training data suggests that it is being actively 
researched, a competitor could use this information to 
gain valuable insights that could give them a strategic 
advantage.

Our study shows that neural networks trained for 
molecular property prediction in drug discovery can 
leak training data information, as demonstrated through 
membership inference attacks. However, message-pass-
ing neural networks using graph representations of mol-
ecules showed significantly reduced vulnerability to these 
attacks. We argue that this shows that these models are 
the safest architecture in terms of privacy conservancy of 
the training data in our setting. An alternative interpreta-
tion could be that message-passing neural networks are 
not inherently safer, but rather that the specific member-
ship inference attacks we used were less effective against 
this particular combination of model and representation. 
However, we think this is very unlikely, as the results 
are held across two different attacks, both of which rely 
only on model outputs rather than architecture-specific 
features. The only way the attacks are influenced by the 
specific architecture is through the training of shadow 
models that share the architecture of the target model. 
Notably, LiRA and RMIA are robust to mismatches in 
shadow model architectures, as shown by Carlini et  al. 
and Zarifzadeh et al. [11, 14], meaning that variations in 
shadow model architectures do not significantly affect 
the success of the attacks. This supports our claim that 
graph representations of molecules with message-passing 

neural networks are the safest architecture in terms of 
protecting training data privacy in drug discovery.

We are confident that our results would be similar even 
if attacks tailored to graph classification neural networks, 
such as those proposed by Wu et  al. [23], were used. 
Our conclusion is supported by Zarifzadeh et  al. [14], 
who showed both theoretically and empirically that the 
Attack-P method of Ye et al. [24] — which is essentially 
identical to the threshold-based attack of Wu et al. — is 
less effective than both LiRA and RMIA. Therefore, we 
focused on the use of RMIA and LiRA, as they are widely 
recognised as state-of-the-art techniques in the field and 
can be applied to any model architecture.

Our findings align with those of Zarifzadeh et  al., 
who investigated membership inference attacks in the 
domains of computer vision (using CIFAR-10, CIFAR-
100, and CINIC-10 datasets) and tabular data (using 
the Purchase-100 dataset) [14]. At a false positive rate 
(FPR) of 0, they reported true positive rates ranging 
from 0.0082 to 0.0778, which is in the same range as 
our results. This indicates that the findings of attacks on 
neural networks in other deep learning fields translate 
into the field of molecular property prediction. Another 
finding of Zarifzadeh et. al was that RMIA consistently 
outperformed LiRA [14]. They derived this both theo-
retically and empirically. Our results generally support 
this, with one exception: for attacks on the hERG chan-
nel inhibition dataset, LiRA outperformed RMIA at an 
FPR of 0. However, at an FPR of 10−3 , this was not the 
case. At an FPR of 10−3 , our results completely agreed 
with the findings of Zarifzadeh et al. [14]. The small dis-
crepancy at an FPR of 0 may be due to the computational 
constraints we faced with the hERG dataset, which was 
the largest in our study. Due to its large size, we had to 
use a small amount of samples Z from the underlying 
distribution to do the likelihood ratio test against for 
RMIA. This limitation arose because comparing all data 
points against many points Z across our models was 
computationally prohibitive. In contrast, LiRA does not 
have these constraints, which may explain its better per-
formance compared to RMIA in this case. While RMIA 
generally outperforms LiRA, the latter remains a valuable 
approach, as it identifies different molecules, making it a 
complementary method, which we will discuss in a later 
paragraph.

Our results also show that membership inference 
attacks are most effective on smaller datasets. This is 
consistent with the findings of Shokri et al. [9], who link 
the success of attacks to the generalisability of the model 
and the diversity of the training data — both of which 
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improve with larger datasets. It is important to note that 
our neural networks are by no means designed in a way 
that makes them vulnerable to attack. On the contrary, 
we have implemented robust regularisation techniques 
that have been shown to make neural networks more 
resilient to membership inference attacks and improve 
privacy guarantees. In particular, our models use early 
stopping, dropout, and L2 weight regularisation. For the 
latter two, it has been specifically shown to reduce the 
efficiency of membership inference attacks [9, 25].

In practice, it could even be possible to increase the 
effectiveness of the attacks further by augmenting the 
attack query with some similar data as was shown by 
Zarifzadeh et  al. [14]. We did not explore this due to 
computational limitations and given the broader scope of 
our study.

Another way to further increase the effectiveness of 
privacy attacks could be to incorporate scaffold-based 
inference strategies. Shifting from identifying complete 
molecular structures to detecting the presence or absence 
of specific molecular scaffolds within the training data 
could be an easier task that still provides information 
about sensitive intellectual property. Future research in 
this direction could potentially uncover additional pri-
vacy vulnerabilities in molecular property prediction.

We found that by applying multiple membership infer-
ence attacks, we were able to identify more molecules 
within the training data. This is consistent with previ-
ous work by Ye et al. [24], which demonstrated that some 
data points are only identified by certain attacks. We 
extended this by investigating the current state-of-the-art 
methods, LiRA and RMIA, and explicitly quantifying the 
overlap between these attacks across different datasets. 
From a practical point of view, using both attacks makes 
sense because it is possible to reuse the same shadow 
models between attacks, allowing more training data to 
be identified with limited computational overhead. In 
addition, the attacks remain feasible even when mini-
mal computational resources are available. For example, 
RMIA has been shown to perform effectively with as few 
as two shadow models [14]. In such cases, the attacks can 
be run on any device capable of training neural networks 
with architectures similar to the target model.

Our finding that molecules in the minority class are 
more likely to be identified could be explained by the 
lower diversity in the training data for these compounds, 
as discussed above. This observation has important 
implications for drug discovery. In many datasets, the 
pharmacologically relevant compounds often belong 

to the minority class. For example, in high-throughput 
screening assays such as DNA-encoded library enrich-
ment, researchers focus on the few molecules that bind 
to the target protein, while the majority that do not 
bind are of less interest [26]. This pattern is also seen in 
various cell-based screening assays, such as phenotypic 
assays aimed at identifying molecules that inhibit cancer 
cell proliferation [27]. In these scenarios, the minority 
class contains the compounds of greatest interest, mak-
ing their identification far more valuable.

Our findings also indicate that molecules with low sim-
ilarity to the rest of the training data are easier to iden-
tify, which has potential implications for drug discovery. 
Unique molecular structures that differ from established 
library compounds may correspond to proprietary lead 
compounds or novel scaffolds under development. Our 
results suggest that models might be more likely to 
memorize and subsequently reveal information about 
such structures. This observation aligns with previous 
research indicating that models tend to memorize out-
liers [28], which is suspected to contribute to the easier 
identification of these molecules [11].

To address these privacy concerns, we have developed 
a Python package to assess the privacy of training data 
for molecular property prediction.1 This package allows 
users to evaluate their own data by applying our work-
flow to determine the extent to which training data can 
be identified when using different molecular representa-
tion methods. In addition, the package supports the test-
ing of new representation methods by providing insight 
into their training data privacy and model performance 
on both user-provided and pre-supplied datasets. We 
hope that this tool will help researchers assess privacy 
risks before publishing their models.

Our research shows the potential dangers of infor-
mation leakage from training data when publishing a 
trained neural network for drug discovery tasks. This 
risk exists even when the weights of the neural network 
are not published, and the model is offered as a suppos-
edly safe web service. This has significant implications for 
organisations, which must constantly balance the need 
to make scientific discoveries openly available with the 
imperative to protect confidential data. We have shown 
that information leakage is consistently observed, but it 
can be mitigated by representing molecules as graphs 
and using message-passing neural networks, which also 
proved to be among the best performing models on our 
datasets. However, when planning to publish a model, it 
is crucial to consider not only performance but also the 

1 https:// github. com/ Fabia nKrug er/ molpr ivacy

https://github.com/FabianKruger/molprivacy
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privacy implications of different model architectures. 
Our findings also open up new research questions, such 
as how to adapt reconstruction attacks to the domain of 
molecules and how to develop models that are safer in 
terms of training data privacy in this field. The baseline 
for developing safer models might be to represent mole-
cules as graphs and use message-passing neural networks 
for predictions. Our research highlights the essential bal-
ance between publicly available innovation and privacy, 
a balance that will impact the future of AI-driven drug 
discovery.

Methods
In this section, we first describe how we trained neural 
networks on biological datasets to predict molecular 
properties. Then, we outline the membership inference 
attacks used to evaluate the vulnerabilities of the mod-
els. Finally, we explain the methods used to compare and 
analyse the molecules leaked by these attacks. A high-
level overview of our workflow is presented in Fig. 1. The 
code for our models and membership inference attacks, 
along with the datasets used in this study, are available on 
GitHub.

https:// github. com/ Fabia nKrug er/ molpr ivacy

Datasets
We used four different datasets to predict pharmacologi-
cally relevant molecular properties. The datasets differ in 
size, task, and class imbalance. The first dataset is used 
for mutagenicity prediction [18, 19]. It contains Ames 
test results for 7,255 drugs. Of these, 54% show positive 
results. The second dataset assesses blood-brain barrier 
permeability [17]. It contains 1,909 molecules, with 76% 
able to penetrate the barrier. The third dataset provides 
information on the inhibition of the potassium ion chan-
nel encoded by the human Ether-à-go-go-Related Gene 
(hERG) [21]. Inhibition is defined as a half-maximal 
inhibitory concentration of less than 10 µ M. This dataset 
contains 306,341 compounds, with 4.5% being inhibitors. 
These three datasets were obtained from Therapeutics 
Data Commons [22]. The fourth dataset contains infor-
mation on whether a molecule is enriched in a DNA-
encoded library (DEL) for binding to carbonic anhydrase 
IX [20]. Positive enrichment is defined as the top 5% of 
enrichment scores. This dataset includes 108,528 mol-
ecules, with 4.9% showing enrichment after cleaning the 
data.

We pre-processed all datasets to remove ambiguities 
and incorrect compounds. Molecules were standard-
ised for correct bonding, aromaticity, and hybridisation. 
Salts were removed to isolate the primary compound and 
Simplified Molecular Input Line Entry System (SMILES) 
[29] strings were converted to their canonical forms. 
Duplicate molecules and those with conflicting labels 
were removed. Molecules with canonical SMILES strings 
longer than 200 characters were also excluded. These 
steps were performed using the RDKit package version 
2024.03.1. The reported dataset sizes are after clean-
ing. The cleaned datasets were randomly divided into a 
training set (45%), a validation set (10%), and a popula-
tion subset (45%). The population subset was used for 
membership inference attacks, while the training and 
validation sets were used for model training and hyper-
parameter optimisation.

Model architectures
To capture the variety in molecular representation 
approaches, we trained neural networks on a range of 
commonly used representations. Our study included 
extended-connectivity fingerprints (ECFPs) [30], molec-
ular access system (MACCS) keys [31], graph represen-
tations, RDKit fingerprints (RDKitFPs) [32], and SMILES 
[29] representations. We chose these representations 
to cover various conceptually different approaches to 
molecular representation. For ECFPs, we investigated 
fingerprints with radii of 2 and 3, both mapped to 2048-
bit vectors. MACCS keys were represented as binary vec-
tors, indicating the presence or absence of 166 structural 
patterns. RDKitFPs identified all subgraphs in the mol-
ecule up to a length of 7, hashed into 2048-bit vectors. 
These three representations were generated using RDKit 
[32]. The graph representation was generated using 
Chemprop version 1.6.1 [33].

The type of neural network we used varied depend-
ing on the specific molecular representation. We used 
multi-layer perceptrons (MLPs) for ECFPs, MACCS 
keys, and RDKitFPs. We employed message passing neu-
ral networks implemented in Chemprop for the graph 
representation. For the SMILES representation, we used 
a pre-trained transformer encoder combined with a con-
volutional neural network based on Karpov et  al. [34]. 
All our models were implemented in Pytorch version 
2.2.2 [35]. We pre-trained the transformer encoder to 
convert non-canonical SMILES strings to their canoni-
cal counterparts for 20 epochs using the ChEMBL_V29 

https://github.com/FabianKruger/molprivacy
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dataset from Therapeutics Data Commons [36]. We ran-
domly split this dataset into 90% training data and 10% 
validation data. For the transformer encoder, we used 
the same hyperparameters as in the original publication 
but increased the context length of the transformer from 
110 to 202 tokens in order to also generate encodings for 
larger molecules. We determined the hyperparameters 
for the MLPs, message passing neural networks, and con-
volutional neural networks using a Bayesian optimisation 
method, which we will describe in the next paragraph. 
All our models had one output node to predict the logits 
for our binary classification problems.

Hyperparameter optimization
To avoid introducing subjective bias into our models, 
we decided to automatically optimise the hyperparam-
eters of the neural networks using a tree structured 
Parzen estimator [16]. This was done using Optuna ver-
sion 3.6.0. [37]. We optimised dropout rate, number and 
dimension of hidden layers, learning rate, and weight 
decay for MLPs. For message passing neural networks, 
we optimised message passing steps, dropout, encoder 
hidden dimension, bias addition in the encoder, aggrega-
tion function, number and dimension of classifier hidden 
layers, learning rate, and weight decay. For convolutional 
neural networks, we kept the filter sizes from the origi-
nal publication and optimised dropout, learning rate, 
and weight decay. Detailed ranges for the hyperparam-
eter search spaces are shown in Supplementary Table 1. 
We optimised each neural network architecture for three 
hours on an NVIDIA Volta V100 GPU. During this time, 
we evaluated the validation cross-entropy loss for dif-
ferent hyperparameter combinations. Each training run 
was performed for a maximum of 20 epochs. We stopped 
runs early if the validation loss did not improve for two 
consecutive epochs or if, after 15 epochs, the validation 
loss was below the median value for that epoch.

Model training
After finding the optimised hyperparameters, we trained 
the final models until their performance converged on the 
validation set. We used early stopping with a patience of 
10 epochs and saved the model weight of the epoch with 
the lowest validation loss. For all our models, we used 
a weighted binary cross-entropy loss as a loss function. 
The weights accounted for the class imbalance and were 
inversely proportional to the frequency of the classes. 

We used the adaptive moment estimation with decou-
pled weight decay regularization (AdamW) optimiser 
for MLPs and message passing neural networks [38]. 
For convolutional neural networks, we used the original 
adaptive moment estimation (Adam) optimiser to remain 
consistent with the original implementation [39]. Train-
ing was done in batch sizes of 64 samples. We repeated 
our experiment 20 times for each dataset and represen-
tation to capture the marginal distribution of all ran-
domness in the experiment, including dataset splitting, 
hyperparameter optimisation, and model weight initiali-
sation. We examined the performance of each model on 
the population sample dataset (Fig. 1), as it was not used 
in any way for training or hyperparameter optimisation, 
and testing the performance of the model is independent 
of the membership inference attacks.

Membership inference attacks
To determine whether an adversary can discriminate 
between molecules that are in the training data and those 
that are not, we applied two state-of-the-art membership 
inference attacks: likelihood ratio attacks (LiRA) [11] and 
robust membership inference attacks (RMIA) [14]. Both 
methods assign a score to each sample, indicating the 
confidence that it was part of the training dataset. LiRA 
performs a likelihood ratio test by comparing the likeli-
hood of the model output when the sample is included in 
the training dataset against when it is not (Algorithm 2). 
To approximate these likelihoods, so-called shadow mod-
els are trained on data from the same distribution. Some 
shadow models include the target sample in their train-
ing data, while others do not. We used random subsets 
containing 50% of our population subset dataset to train 
10 shadow models for each target model. Each target 
model training data sample was included in some shadow 
models and excluded from others. The shadow models 
had the same hyperparameters as the target model and 
were trained for 15 epochs. For each target sample, two 
Gaussian distributions of the rescaled output logits are 
modelled: one for shadow models that included the tar-
get sample in their training data and one for those that 
did not. The likelihood of observing the rescaled output 
logits of the target model is then calculated for each dis-
tribution. The ratio between these likelihoods repre-
sents the likelihood ratio that the target sample was in 
the training data. For more details on LiRA, we refer the 
reader to the original publication [11].
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Algorithm 2 Likelihood Ratio Attack (LiRA) tests whether a specific target data point m - in our case, a molecular structure x with the corresponding 
label y - was part of the training data for a target neural network model fθ . In this attack, shadow models si , i = 1, . . . ,N are trained on data drawn 
from a distribution similar to that of fθ ’s training data (in our case, a similar chemical space). Some shadow models include m in their training data, 
while others do not. The re-scaled confidence of each shadow model when predicting m is then calculated. These confidences are modeled as two 
Gaussian distributions: one for the shadow models that included m, and one for those that did not. Finally, we determine whether the confidence 
of the target model fθ is more likely to belong to the distribution of models that included m or the distribution of models that did not. The likelihood 
ratio between these distributions, combined with a decision threshold t, determines whether m is predicted to have been part of fθ ’s training data.

RMIA compares the likelihood ratio of observing the 
target model fθ after applying the training algorithm T 
with two different conditions: first, when the target sam-
ple m is included in the training dataset D, and second, 
when a random, different, sample z is included instead. 
This process is repeated with many different random 
samples. RMIA then attempts to calculate the probability 
that these likelihood ratios exceed a threshold gamma

Score(m, fθ ) ≈ Pz∼�

(

P(F� = fθ |fθ = T (D ∪ {m})

P(F� = fθ |fθ = T (D ∪ {z})
≥ γ

)

.

In our experiments, we chose a gamma value of 2. It was 
shown that the attack is robust to different values for 
gamma [14]. Each likelihood of the ratio is calculated 
using Bayes’ rule (for brevity we abbreviate the condi-
tions on both probabilities with m and z here)

The probability P(m|fθ ) is approximated by the prob-
ability of the correct class prediction and the probability 
P(m) is approximated as the empirical mean of this over 

P(fθ |m)

P(fθ |z)
=

(

P(m|fθ )

P(m)

)

·

(

P(z|fθ )

P(z)

)−1

.



Page 14 of 17Krüger et al. Journal of Cheminformatics           (2025) 17:38 

all shadow models (Algorithm  3). The probabilities for 
the random points Z are computed similarly. The com-
plete implementation of this attack is shown in Algo-
rithm 3. For more details on RMIA, we refer readers to 
the original publication [14]. For this attack, we reused 
the shadow models from LiRA and used the 50% of the 
population sample dataset not included in their training 
as random sample points Z in the attack. We based our 
implementation of LiRA and RMIA on the implementa-
tion in the LeakPro repository of AI Sweden.2

Algorithm 3 Robust Membership Inference Attack (RMIA) tests whether a specific target data point m-in our case, a molecular structure x 
with the corresponding label y-was part of the training data for a target neural network model fθ . In this attack, shadow models si , i = 1, . . . ,N are 
trained on data drawn from a distribution similar to that of fθ ’s training data (in our case, a similar chemical space). Some shadow models include m 
in their training data, while others do not. The probability of m is approximated by averaging the correct class probability over all shadow models. 
Similarly, the probability of m given fθ is approximated as the probability of the correct class assignment by model fθ . The ratio between these 
probabilities is then calculated and compared to the ratios obtained for other points z. The final score is the proportion of points z for which the ratio 
is at least γ times higher for data point m. This score, combined with a decision threshold t, determines whether m is predicted to have been part of fθ ’s 
training data.

We evaluated the success of our attacks by determin-
ing the true positive rates (TPRs) for identifying train-
ing data molecules at different false positive rates (FPRs). 
We focused our evaluation on low FPRs, as was recom-
mended by Carlini et. al [11] and is discussed in their 
paper in more detail. In both of our attacks, we give the 
adversary a training data sample with a probability of 
0.67 and a non-training data sample with a probability of 
0.33. The reason for this is that we did not want the train-
ing datasets for the models to become too small, while 

2 https:// github. com/ aidot se/ LeakP ro

https://github.com/aidotse/LeakPro
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still using all the data points for the attack. This approach 
allowed us to use 45% of the dataset size as training data 
for the target model. With a membership probability of 
0.67, the baseline TPR at an FPR of 0 is 2N  , where N is the 
size of the training dataset. A detailed derivation of this 
baseline is provided in the Supplementary information. 
To determine if the attacks leak training data informa-
tion, we compared the TPRs of our attacks to the base-
line TPR of 2N  . We tested for significance using Wilcoxon 
signed-rank tests over the 20 repetitions of each experi-
ment. We repeated this experiment with the TPR at an 
FPR of 10−3 to see if we observe similar trends. We also 
investigated the ROC curves for identifying training data 
molecules to see the trends at all possible FPRs.

Leaked molecule analysis
We investigated whether our two membership inference 
attacks identify the same molecules or can be used com-
plementarily to gain more information about the train-
ing data. To do this, we analysed the overlap between the 
identified molecules from each attack. In our setting, we 
have the training dataset � , from which we identify two 
subsets, A ⊆ � and B ⊆ � , each corresponding to one 
attack. These subsets can have different sizes and can 
overlap. We define the percentage of the maximum pos-
sible overlap as

This scalar value ranges from 0 to 1, where 1 indicates 
that the larger subset contains all molecules of the smaller 
subset. We examined the percentage of maximum pos-
sible overlap between the two membership inference 
attacks for every dataset and representation. For each 
combination, we plotted the distribution of the 20 experi-
ment repetitions. To determine whether the overlap is 
significantly different from what would occur by chance 
when drawing two uncorrelated subsets, we calculate the 
difference between the expected overlap by chance and 
the observed overlap. This is done for our 20 experiment 
repetitions. We use a Wilcoxon signed-rank test to assess 
if the difference between the observed and random over-
lap is significantly different from 0. The overlap by chance 
can be thought of as a random variable following a hyper-
geometric distribution, because when we independently 
draw the smaller subset, we draw without replacement 
from the training dataset � , which contains the larger 
subset as possible overlap successes

f (A,B) =
|A ∩ B|

min(|A|, |B|)
.

|A ∩ B| ∼ Hypergeometric(N = |�|,

K = max(|A|, |B|), n = min(|A|, |B|)).

The mean of the hypergeometric distribution is defined 
as E[|A ∩ B|] = nK

N  , which is the overlap that is expected 
to be observed by chance. We also calculated the overlap 
between the identified molecules from models trained on 
different molecular representations of the same training 
data.

In addition, we investigated characteristics of the mol-
ecules that could be identified. To do this, we compared 
the distributions of property labels of identified mol-
ecules with the underlying property label distribution. 
For each of the 20 experiment repetitions, we calculated 
the percentage of positive compounds for both identi-
fied and not identified molecules. We then used Mann–
Whitney U tests to analyse whether the two distributions 
differed significantly. We also calculated the TPRs of the 
minority class. We did this similarly as before but only 
considered the training data molecules of the minority 
class in this case. We also assessed whether the identi-
fied molecules differed in size compared to the rest of the 
training dataset. To do this, we calculated the number of 
atoms in each molecule and pooled the amounts across 
all 20 experiment repetitions for both identified and not 
identified molecules. We compared the distributions of 
molecule sizes and determined significance using Mann–
Whitney U tests.

To investigate whether molecules with low similar-
ity to the rest of the training data are easier to identify, 
we computed pairwise Tanimoto similarity scores for all 
molecules in the training set. Specifically, we generated 
ECFP fingerprints with a radius of 2 and a size of 2048, 
using RDKit for both fingerprint computation and Tani-
moto similarity calculations [32]. For each molecule, we 
determined the highest similarity to any other molecule 
in the training set (nearest neighbour similarity), as well 
as the average similarity across all training molecules. 
This approach allowed us to account for individual outli-
ers as well as local clusters distant from the majority of 
the training data. To analyse the highest similarity values, 
we divided the range from 0 to 1 into ten equal-width 
bins, each covering a 0.1 increment, and then calculated 
the fraction of molecules identified at an FPR of 0 within 
each bin. In contrast, for average similarity, where values 
were more closely distributed, we used quantile binning 
to divide the data into deciles, ensuring that each bin con-
tained an equal number of samples. We then calculated 
the fraction of molecules identified at an FPR of 0 within 
each bin. In addition, we performed one-tailed Mann–
Whitney U tests to determine whether the similarity 
values of identified molecules were significantly lower 
than those of non-identified molecules, considering both 
the highest and average similarity metrics. Our analysis 
was performed on all molecular representations for the 
BBB and Ames datasets. However, due to computational 
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constraints, we were unable to perform the same analysis 
for the DEL and hERG datasets, as calculating all pair-
wise similarity values would have been infeasible due to 
the exponential increase in computational complexity 
with dataset size.
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