
Ishida et al. Journal of Cheminformatics (2025) 17:36
https://doi.org/10.1186/s13321-025-00984-8

SOFTWARE Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cheminformatics

Large language models open new way
of AI-assisted molecule design for chemists
Shoichi Ishida1,2*, Tomohiro Sato3, Teruki Honma3 and Kei Terayama1,2,4,5*

Abstract Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered
synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based
molecule generators have significantly advanced toward practical applications, their effective use still requires
specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-pow-
ered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator
through only chat interactions, including automated construction of reward functions for the specified properties.
Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anti-
cancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule
optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://
github. com/ molec ule- gener ator- colle ction/ ChatC hemTS.

Scientific contribution
ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2,
solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced soft-
ware, such as AI-based molecular generators, which require specialized knowledge and technical skills.

Introduction
Artificial intelligence (AI)-based techniques for molecu-
lar designs are becoming promising methods for design-
ing synthetically accessible and insightful molecules with
desired functionalities [1–8]. Research articles on these
techniques have been reported in a wide range of fields,

from material design to drug discovery. In terms of mate-
rial design, fluorescent [4] and photofunctional [1, 5]
molecules have been designed using AI-based molecule
generators, and the designed molecules were success-
fully experimentally validated to exhibit the desired prop-
erties. Similarly, in drug discovery, new proton pump
inhibitors [6] and inhibitors for targeting antifibrotic
effects [7] were designed and demonstrated their good
inhibitory effects. The AI-based molecule generators
used in the above studies represent just a fraction of the
techniques that have been developed thus far [9–25], and
applying and testing various promising molecule genera-
tors to solve real-world problems is vital for achieving
further advancements.

While various AI-based molecule generators have
made significant progress toward practical applica-
tions, their effective utilization still requires specialized
knowledge and skills concerning AI techniques [26]. This
high level of expertise presents a critical obstacle to the
widespread adoption of AI-based molecule generators.

*Correspondence:
Shoichi Ishida
ishida.sho.nm@yokohama-cu.ac.jp
Kei Terayama
terayama@yokohama-cu.ac.jp
1 Graduate School of Medical Life Science, Yokohama City University,
1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
2 MolNavi LLC, #402 Wizard building 1-4-3 Sengen-cho Nishi-ku,
Yokohama, Kanagawa 220-0072, Japan
3 RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho,
Tsurumi-ku, Yokohama 230-0045, Japan
4 RIKEN Center for Advanced Intelligence Project, 1-4-1, Nihonbashi,
Chuo-ku, Tokyo 103-0027, Japan
5 MDX Research Center for Element Strategy, Institute of Science Tokyo,
4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-025-00984-8&domain=pdf
https://github.com/molecule-generator-collection/ChatChemTS
https://github.com/molecule-generator-collection/ChatChemTS

Page 2 of 11Ishida et al. Journal of Cheminformatics (2025) 17:36

The effective use of these methods necessitates a deep
understanding of how to design reward functions that
appropriately represent the desired functionalities and
the ability to configure the set conditions according to
the specifications of each AI-based molecule generator.
In chemical, pharmaceutical, and other industries, the
complexity of utilizing AI-based molecule generators
and the need for skills such as machine learning (ML,) to
design reward functions pose significant obstacles that
prevent users from easily adopting these technologies for
their projects. These challenges complicate the effective
utilization of AI-based molecule generators to solve real-
world problems, especially for researchers and develop-
ers who possess expert knowledge and skills in chemistry
but are not well versed in AI techniques.

To address these challenges, we developed ChatCh-
emTS, a large language model (LLM)-powered chatbot
that assists users in utilizing ChemTSv2 [11]—AI-based
molecule generator with experimental validations for
various molecule designs [1, 3–5]—through only inter-
active chats. All users are merely required to express
a request to ChatChemTS via chat, and ChatChemTS
then prepares the appropriate reward functions, con-
figures the desired conditions, and executes ChemTSv2
for the users. In addition, ChatChemTS provides a tool
for analyzing the output molecule generation results.
ChatChemTS is based on a ReAct framework so that it
can address the whole workflow of general AI-based mol-
ecule generators, and the framework employs the gen-
erative pretrained transformer (GPT) model of OpenAI,
which has shown the great potential as an LLM chemis-
try agent to perform chemistry-related tasks [27–33]. As
example applications of ChatChemTS, we performed two
de novo molecular design tasks, one involving a photo-
functional organic molecule and another concerning a
kinase inhibitor, as single- and multiobjective molecule
optimization problems, respectively. Notably, users only
need to prepare data related to the physicochemical
properties of molecules or information about the tar-
get proteins of interest to perform AI-based molecule
designs with ChatChemTS. We show that this concept
of utilizing an LLM as an assistant of AI-based mole-
cule generators can be easily introduced to various gen-
erators developed with organized application structures,
such as ChemTSv2. This study also showed the potential
of LLMs not only to use software that requires simple
inputs, such as a SMILES string, and advanced APIs for
operating robots as tools, as shown in previous stud-
ies [27, 29], but also to be able to utilize highly flexible
software, AI-based molecular generators, as tools. The

ChatChemTS application is publicly available on GitHub
at https:// github. com/ molec ule- gener ator- colle ction/
ChatC hemTS.

Results
Implementation of ChatChemTS
ChatChemTS was developed based on LLMs to help
users employ ChemTSv2 through interactive chats, as
shown in Fig. 1.

The ChatChemTS application employs a ReAct frame-
work [34] that enables LLMs to generate reasonable
responses and take appropriate actions, including the
use of predefined tools, as shown in Fig. 2. The prede-
fined tools in ChatChemTS include a reward generator,
a prediction model builder, a configuration generator, a
ChemTSv2 application programming interface (API),
a molecule generation analyzer, and a file writing tool.
In this study, the configuration included molecule gen-
eration parameters in ChemTSv2, such as molecular fil-
tering functions and an exploration parameter c [11].
ChemTSv2 provides common filtering criteria, including
the synthetic accessibility score (SAScore) [35] and Lipin-
ski’s rule of five [36]. The parameter c balances explora-
tion and exploitation in the upper confidence bound
(UCB1) score. In molecule generation, a higher c value
(e.g., 1.0) tends to generate molecules with diverse scaf-
folds, while a lower c value (e.g., 0.1) tends to focus the
search on optimizing molecules that appear promising
during exploration. To offer high-quality responses, mul-
tiple LLMs were utilized in ChatChemTS and specifically
tailored for distinct roles, such as facilitating user inter-
actions and crafting reward function designs; thus, the
use of verbose and ambiguous prompts that may elicit
irrelevant responses was minimized in each LLM.

The platform was developed primarily by incorporating
LangChain [37], GPT-4 (gpt-4-0613) from OpenAI [38],
and FastAPI [39] for backend operations, as well as
Streamlit [40] and Chainlit [41] for frontend implemen-
tations, as shown in Fig. 2. To enhance the scalability of
the application, the computing environments assigned
to each role were containerized using Docker, ensur-
ing that no interference occurred among them. Docker
Compose [42] was utilized to implement a streamlined
deployment process leveraging multiple Docker images,
facilitating the automatic deployment of the application
in a Docker-compatible environment. A demonstration
movie of the workflow for ChatChemTS is shown in Sup-
plementary Movie 1.

https://github.com/molecule-generator-collection/ChatChemTS
https://github.com/molecule-generator-collection/ChatChemTS

Page 3 of 11Ishida et al. Journal of Cheminformatics (2025) 17:36

Example applications of ChatChemTS
To demonstrate the utility of ChatChemTS, we per-
formed de novo designs of a chromophore and an epi-
dermal growth factor receptor (EGFR) inhibitor, the
latter of which is a common treatment for breast and
lung cancers [43]. These designs illustrated examples of
single- and multiobjective molecule optimization tasks,
respectively. The aim of the chromophore design pro-
cess was to optimize molecules so that they possessed a
specific absorption wavelength. On the other hand, the
EGFR inhibitor design process focused on obtaining

molecules with high inhibitory activity and high drug
likeness scores. All file names presented in Fig. 3 and
Fig. 4 are arbitrary and can be freely modified by the
user when using ChatChemTS. Detailed explanations of
both demonstrations are described below.

Chromophore design
Figure 3 shows a chat-based demonstration of the task of
designing chromophores using ChatChemTS.

The enlarged versions of each column in the figure are
provided in Fig. S2. All processes described hereafter

Fig. 1 Overview of ChatChemTS. The visual workflow of ChatChemTS is shown in the upper panel. A user can utilize ChatChemTS via chat in a web
browser on a local laptop, and ChatChemTS assists users in designing molecules through AI. The schematic usage workflow of ChatChemTS
is shown in the lower left panel. A snapshot of the user interface (UI) of this application is shown in the lower right panel. The UI was built
with Chainlit and provides the users with an intuitive chat experience

Page 4 of 11Ishida et al. Journal of Cheminformatics (2025) 17:36

were successfully carried out through chat interactions
and operations in graphical user interface (GUI) appli-
cations: prediction model builder and analysis tools.
The prediction model builder of ChatChemTS provides
a function for constructing ML models that predict a
molecule property when provided a dataset in comma-
separated values (CSV) format (see the Methods section
for details). First, the prediction model builder tool was
used to create an ML model for predicting an absorp-
tion wavelength from an input molecule. The training
dataset was prepared in CSV format and included 50000
molecules with absorption wavelengths calculated using
density functional theory (DFT) at the B3LYP/6-31 G*
level [44]. The AutoML parameters were set with a test
dataset ratio of 0.1 and a budget time of one hour; the
estimators list and metrics were automatically selected
by the Fast Library for Automated Machine Learning and
Tuning (FLAML) during the AutoML search process.
The best model was the light gradient boosting machine
(LightGBM), and its correlation coefficient for the test
dataset was 0.93. The above GUI-based operations and

their results are shown in Fig. S1, and the demonstra-
tion movie of the prediction model builder can be seen
in Supplementary Movie 2. Next, a reward function and
a configuration were designed via chat based on the fol-
lowing conditions: the target absorption wavelength was
set to 600 nm, the exploration parameter c was set to 0.1,
the number of generated molecules was set to 30000, and
an SAscore filter with a threshold of 4.5 was used. Then,
ChemTSv2 was executed via chat using the above reward
function and configuration files. Finally, the analysis tool
was utilized to analyze the molecule generation results.
As shown in the optimization process of Fig. 3 (right
panel), ChatChemTS successfully designed molecules
with predicted absorption wavelength of approximately
600 nm.

EGFR inhibitor design
Figure 4 shows a chat-based demonstration of the task of
designing EGFR inhibitors using ChatChemTS.

The enlarged versions of each column in the figure are
provided in Fig. S4. The subsequent processes were all

Fig. 2 System architecture of ChatChemTS. LangChain was used to implement the ReAct framework in ChatChemTS. LLMs were used in the agent,
the reward generator tool, and the configuration generator tool. Additionally, both tools utilized LLMs specialized in the corresponding tasks
using in-context learning (ICL). ChatChemTS was containerized using Docker, allowing for easy deployment to user environments through Docker
Compose. Users can employ ChatChemTS via local web browsers, such as Google Chrome

Page 5 of 11Ishida et al. Journal of Cheminformatics (2025) 17:36

accomplished through chat interactions and operations
in the GUI applications. The prediction model builder
of ChatChemTS provides a function for constructing
regression ML models that predict inhibitory activity
against a target protein by simply specifying its Univer-
sal Protein Resource ID (UniProt ID; see the Methods
section for details). In this demonstration, UniProt ID
P00533 was used as the input of the prediction model
builder tool to retrieve molecules with inhibitory activi-
ties against EGFR from the ChEMBL database. ML mod-
els were designed to take a molecule as input and predict
a pChEMBL value, representing the negative base-10
logarithm of the half-maximal response concentration,
potency, and affinity. The retrieved dataset was preproc-
essed as follows: (1) deduplicating molecules by leaving
the maximum pChEMBL values; (2) retaining records
by assay type of Binding; (3) filtering out records with
assay descriptions, which contained the mutat, covalent,

and irreversible substrings; and (4) removing the activ-
ity types of the half-maximal effective concentration
(EC50) and half-maximal active concentration (AC50).
Consequently, the dataset size was 7141 compounds, and
the dataset was used in the training step. The AutoML
parameters were set with a test dataset ratio of 0.1 and
a budget time of one hour; the estimator list and met-
rics were automatically selected by the FLAML during
the AutoML search process. The option to standardize
the objective variable was applied to facilitate the use of
the prediction values within a reward function. The best
model was the LightGBM, and its correlation coefficient
for the test dataset was 0.85. The above operations and
their results are shown in Fig. S3. Next, a reward func-
tion and a configuration were designed via chat interac-
tions based on the following conditions: maximizing the
predicted inhibitory activity against EGFR and the QED
score; setting the exploration parameter c to 0.1; setting

Fig. 3 Application of ChatChemTS in designing chromophore. This demonstration aimed to design molecules with absorption wavelengths of 600
nm. In step 1, based on the observed user requests, ChatChemTS created a prediction model to predict the absorption wavelength from an input
molecule. The training dataset was prepared using 50000 compounds with DFT-calculated absorption wavelengths at the B3LYP/6-31 G*
level [44] via the prediction model builder. The prediction model, saved with the name flaml_model_for_abs_wl.pkl during its construction
using the prediction model builder, was used in the reward function. In step 2, ChatChemTS set up the configuration of ChemTSv2 according
to the specifications provided by the user. In step 3, ChatChemTS executed the ChemTSv2 using the prepared configuration file. In step 4, a user
analyzed the molecule generation results. The right panel shows examples of molecules with absorption wavelengths of approximately 600 nm
and the optimization process of the molecule generation task. Expanded views of each column are provided in the Fig. S2

Page 6 of 11Ishida et al. Journal of Cheminformatics (2025) 17:36

the number of generated molecules to 50000; and using
Lipinski’s rule-of-five filter and the SAscore filter with a
threshold of 4.5. Then, ChemTSv2 was executed via chat
using the above reward function and configuration files.
Finally, the analysis tool was utilized to analyze the mol-
ecule generation results. As shown in the optimization
process of Fig. 3 (right panel), ChatChemTS successfully
designed molecules with predicted pChEMBL values
above seven and QED scores of approximately 0.7. To
confirm whether the molecule generation process con-
sidering the QED score worked properly, we compared
the QED optimization processes of methods generating
molecules based on both inhibitory activity and QED
scores and methods based only on inhibitory activity

under the same conditions. Figure S5 indicates that the
molecules designed solely based on inhibitory activity
often had QED scores of approximately 0.4, highlighting
the effectiveness of incorporating QED scores with inhib-
itory activity in the reward function.

Discussion and conclusion
In this study, we introduced ChatChemTS, an LLM-
powered application, to facilitate user interactions
with ChemTSv2 through an interactive chat interface.
Two demonstrations, chromophore and EGFR inhibi-
tor design tasks, were showcased as common de novo
molecular generation tasks: single- and multiobjec-
tive optimizations, respectively. In the demonstrations,

Fig. 4 Application of ChatChemTS in designing EGFR inhibitors. This demonstration aimed to design molecules that exhibited inhibitory
activities against EGFR and high QED scores. In step 1, based on the observed user requests, ChatChemTS created a prediction model to predict
the inhibitory activity of an input molecule. To prepare the training dataset, compounds that possessed activity data for the protein associated
with UniProt ID P00533 were retrieved from the ChEMBL database via the prediction model builder, and this task was followed by preprocessing.
The prediction model was used in the reward function. The prediction model, saved with the name flaml_model_egfr_qsar.pkl during its
construction using the prediction model builder, was used in the reward function. In step 2, ChatChemTS set up the configuration of ChemTSv2
according to the specifications provided by the user. In step 3, ChatChemTS executed the ChemTSv2 using the prepared configuration file. In step 4,
a user analyzed the molecule generation results. The right panel shows the generated molecules ranked in descending order of their reward scores,
provided that the QED scores were 0.89 or higher and the optimization process of the molecule generation. Expanded views of each column are
provided in the Fig. S4

Page 7 of 11Ishida et al. Journal of Cheminformatics (2025) 17:36

ChatChemTS successfully assisted with four main opera-
tions that users need to perform when using AI-based
molecule generators: designing reward functions, set-
ting up configurations, executing a molecule generator,
and analyzing the results. Despite their success in terms
of designing molecules with targeted properties based
on prediction models, there is potential for improv-
ing the design of the reward functions. For example, the
designed EGFR inhibitor lacked the major hinge-bind-
ing scaffolds used in common kinase inhibitors [45]. A
potential solution to this issue is to introduce a reward
function designed to increase the structural similarity
to these scaffolds, which is an unsupported feature in
ChatChemTS.

The following tasks remain to make the experience of
AI-based molecule designs via ChatChemTS more appro-
priate and convenient. ChatChemTS currently supports
a single AI-based molecule generator, ChemTSv2; how-
ever, ChatChemTS was designed to easily incorporate
additional molecule generators, assuming that the reward
design and configuration settings are independently
specified in separate files. Similarly, while ChatChemTS
can be modified to support seamless switching between
multiple LLMs (e.g., Meta’s Llama and Google AI’s
Gemini), provided they are supported by LangChain’s
Chat Models, this functionality has not yet been imple-
mented. In our experiments, we configured ChatCh-
emTS to retain only the most recent message to avoid
saving unintended content during the file-saving step
although ChatChemTS can support flexible adjustment
of the number of recent messages retained in the GUI
setting. Thus, this study did not demonstrate whether the
system can work correctly while retaining a long mes-
sage history. Moreover, the current version of ChatCh-
emTS solely relies on the LLMs, which have learned to
use ChemTSv2 through in-context learning techniques,
for the quality of the generated reward function and con-
figuration file. In addition to this, considering the inher-
ently probabilistic nature of LLMs, a verification system
needs to be developed to ensure that the LLMs correctly
interpret user requests and the generated outputs are
appropriate. To mitigate the risk of improperly saving
reward and configuration files through LLM operations
and the associated economic costs, a save button should
be implemented within the GUI’s code window. In terms
of reward designs, the current reward generator tool is
limited to using Python packages and ML-based predic-
tion models within reward functions. Given the frequent
use of various simulation packages, such as the Gaussian
16 [46] and AutoDock Vina [47] packages, in material
and drug design scenarios, we plan to make these pack-
ages available in the reward designs of ChatChemTS.
Furthermore, introducing a feature that automatically

optimizes reward designs [48] could significantly reduce
the manual effort required for reward adjustment, as this
process typically involves extensive trial and error. To
enhance the user experience in preparing and using ML
models, we will add functionality for classification mod-
els in ChatChemTS and the Prediction model builder
because both are currently designed primarily for regres-
sion models. In the configuration setup stage, switching
the recurrent neural network (RNN) models provided
in ChemTSv2 via ChatChemTS currently requires users
to be well-versed in the characteristics of these RNNs.
Thus, efforts are underway to improve ChatChemTS so
that users can utilize these RNN models without need-
ing such knowledge by enabling appropriate suggestions
for selecting the desired RNN model. ChatChemTS cur-
rently supports the basic use cases of ChemTSv2, does
not yet provide a sufficiently flexible user experience, and
would require expert intervention and support for com-
prehensive AI-based molecule designs. As we continue
the development of ChatChemTS, it is crucial to establish
a robust software foundation that includes features such
as a test suite, continuous integration setup on GitHub,
and LLM monitoring capabilities, similar to BioChat-
ter [49]. The current version of ChatChemTS does not
have such a robust software foundation, and thus, we also
plan to work on building such a foundation.

Methods
Large language model
An LLM is a type of AI model that can perform vari-
ous general-purpose natural language processing (NLP)
tasks at the human level, including text generation, ques-
tion answering, and information extraction [50]. The
core architecture of an LLM is a deep learning technique
called a transformer [51], and LLMs are generally trained
on immense amounts of data. LLMs are frequently uti-
lized in combination with prompting strategies, such as
ICL, Chain of Thought (CoT), and Planning, for solving
various tasks to enhance their contextual understanding
and improve their task-specific performance [50]. In this
study, GPT-4 (gpt-4-0613) developed by OpenAI with a
temperature of 0.1 and the ReAct framework were used
as the LLM and the Planning strategy, respectively.

ReAct framework
The ReAct framework allows LLMs to intertwine reason-
ing traces with task-specific actions in external environ-
ments, facilitating general task-solving [34]. The LLM
that performs the above role is called an agent. Within
the ReAct framework, LLMs can interact with exter-
nal tools, such as Wikipedia, web searches, the Python
interactive computing environment, and user-custom-
ized tools, and use their feedback for reasoning traces to

Page 8 of 11Ishida et al. Journal of Cheminformatics (2025) 17:36

produce more reliable responses. LangChain was used to
implement the ReAct framework in ChatChemTS, and a
zero-shot ReAct agent that can return structured outputs
to handle the prepared tools in ChatChemTS was used.
The system message used in the agent is shown in List-
ing S1. The following section describes the tools used in
ChatChemTS.

Tools
In the ReAct framework, tools are pivotal for enhancing
LLMs by enabling the retrieval of additional informa-
tion, which contributes to more reliable responses. Nota-
bly, the tools included in the proposed application were
the minimum tools required for using AI-based mol-
ecule generators, but other tools can easily be added to
the application to satisfy users’ specific needs. The tools
for reward and configuration generations utilized LLMs
tuned to the corresponding tasks using few-shot prompt-
ing techniques. All the prompts utilized are described in
Listing S2 and Listing S3.

Reward generator
This tool is dedicated to designing reward functions in
ChemTSv2 format and is based on an LLM. A few-shot
prompting technique was used to steer the LLM to the
reward design tool. All the utilized prompts are described
in Listing S2. Upon receiving a user request for molecules
optimized based on specific properties, this tool returns
a reward function reflecting that request. The currently
available molecular properties are those that can be cal-
culated by RDKit software and predicted using predic-
tion models obtained from the FLAML [52]. There is no
limit to the number of properties that can be used for
multiobjecitve optimization in ChemTSv2, though the
success of the optimization task is a separate issue. It
should be noted that we do not explicitly teach the LLM
how to calculate specific molecular properties through
the prompts, so the ability to code a program that accu-
rately computes these properties depends on the LLMs’
performance.

Prediction model builder
This tool offers a GUI application that allows users to
build their own prediction models using an automated
ML tool (the FLAML) [52]. The interface was designed to
be accessible to users with varying levels of ML expertise.
The application accepts two input types: a CSV file for
building general prediction models and a UniProt [53] ID
for constructing quantitative structure-activity relation-
ship (QSAR) models from the ChEMBL database.

When a user uploads a CSV file, it is rendered as a
table on the interface to enable the user to verify its

content. To build prediction models, the user must
select the names of two columns: one containing mol-
ecule structures in the SMILES format and another
containing a target variable. A Morgan fingerprint,
with a radius of two and dimensions of 2048, is used
as an input feature for the prediction models. The
interface guides the user through a structured con-
figuration process to develop a prediction model with
the FLAML. Initially, the user adjusts the data pro-
portion for the test dataset. Following this, the user
has the option to select the “use auto” for default ML
estimators or manually choose ML estimators from
a list option, including a random forest, LightGBM,
eXtreme Gradient Boosting (XGBoost), Categorical
Boosting (CatBoost), Extremely Randomized Trees
(Extra Trees), Logistic Regression with L1 or L2 regu-
larization, and k-nearest neighbors. In the FLAML,
the list of the default estimators are defined as follows:
LightGBM, random forest, XGBoost, CatBoost, Extra
Trees. Then, the user specifies the type of ML task to
perform, which is currently limited to regression, and
the metric used to evaluate the performance of the
constructed model during training, with the option
to utilize automatic metric selection. If the automatic
metric selection is chosen, the FLAML uses 1− r

2 as
the minimizing error metric, where r2 is the coefficient
of determination. A time budget can be set to manage
the amount of time that computational resources are
dedicated to performing the AutoML search process.
If the values of the target variable are not normalized,
the user should employ the standardization function
in this application to standardize the target values,
ensuring that reward functions can be appropriately
designed. Once all the settings are finalized, this tool
runs the AutoML process to find quality models and
saves the model that performs best on the test dataset
for use in a reward function.

When a user inputs a UniProt ID, the application
fetches and processes data from the ChEMBL database
using the ChEMBL webresource client package [54].
The application verifies the existence of records for
the specified UniProt ID and then allows users to
refine the dataset by deduplicating molecules based on
pChEMBL values, retaining records according to their
specific assay types, and filtering out records with cer-
tain assay descriptions and activity types. The retrieved
record items that can be checked by users are as fol-
lows: canonical SMILES string; pChEMBL value; assay
description, ChEMBL ID, and type; standard type,
value, units, and relation; molecule ChEMBL ID; organ-
ism and ChEMBL ID related to the input UniProt ID;
and document ChEMBL ID. Subsequently, the work-
flow is the same as that of the process described above

Page 9 of 11Ishida et al. Journal of Cheminformatics (2025) 17:36

after uploading a CSV file. A demonstration movie of
this tool is shown in Supplementary Movie 2.

Configuration generator
This tool is specialized in generating configuration
files in YAML format for ChemTSv2 and is based on
an LLM. The configuration includes, for example, the
number of generated molecules, the exploration param-
eter c, and molecular filters for skipping the reward cal-
culation (refer to the paper that presented ChemTSv2
for details [11]). Similar to the reward generator tool,
this tool employs a few-shot prompting technique
to generate configurations. All the prompts used are
described in Listing S3. By taking a user request for set-
ting a ChemTSv2 configuration, this tool returns a con-
figuration reflecting that request.

ChemTSv2 API
This tool serves as an API for executing ChemTSv2.
ChemTSv2 employs two primary algorithms: a recur-
rent neural network (RNN) to generate molecules
and a Monte Carlo Tree Search (MCTS) to navigate
the search space. The usage workflow of ChemTSv2
involves four steps: preparing reward and configura-
tion files, executing ChemTSv2, and analyzing the gen-
erated molecules, all of which are supported through
chat-based interactions in ChatChemTS. When using
ChemTSv2 directly, there are no software restrictions
for designing reward functions, but the software users
want to use must be installed in the computational
environment beforehand. Currently, ChemTSv2 can
only use pre-installed software, RDKit and FLAML, for
reward design, as described in the Reward generator
section. As for the API tool, upon receiving a path to a
configuration file, the tool runs a ChemTSv2 using the
provided configuration and returns a path to the exe-
cution outcome. The API was built using the FastAPI
package [39].

Molecule generation analyzer
This tool provides users with a GUI application to eas-
ily analyze the results of molecule generation processes.
Once a user uploads a CSV result file, the application
offers three interactive functions, a table viewer, a mol-
ecule viewer, and a time series viewer, which are the
common features used to analyze molecule genera-
tion results. The GUI application was developed based
on Streamlit [40] for creating the user interface, pan-
das [55] for manipulating molecule generation results,
and mols2grid [56] for interactively visualizing mol-
ecules. A demonstration movie of this tool is shown in
Supplementary Movie 3.

Availability and requirements

• Project name: ChatChemTS
• Project home page: https:// github. com/ molec ule-

gener ator- colle ction/ ChatC hemTS
• Operating system(s): Tested on Linux OS (Ubuntu

22.04.2 LTS), macOS (Ventura 13.6.8 and Sonoma
14.4.1), and Windows OS with the Windows Subsys-
tem for Linux (11 Pro 23H2, 11 Home 23H2, 10 Pro
22H2).

• Programming language: Python 3.
• Other requirements: dependencies are described in

the README file on the project home page.
• License: MIT
• Any restrictions to use by non-academics: none.

Supporting information available
Snapshot UI of prediction model builder tool when

building the prediction models to predict absorption
wavelength (Fig. S1); Snapshot UI of prediction model
builder tool when building the prediction model to pre-
dict inhibitory activity against EGFR (Fig. S2); Compari-
son of QED optimization processes between generating
molecules considering inhibitory activity against EGFR
and QED score and generating molecules solely consid-
ering the inhibitory activity (Fig. S3); System message
used in the agent of ChatChemTS (Listing S1); Few-shot
prompting for the reward generator tool (Listing S2);
Few-shot prompting for config generator tool (List-
ing S3); Demonstration movies for ChatChemTS exam-
ple workflow (Supplementary Movie 1), prediction model
builder tool (Supplementary Movie 2), and molecule gen-
eration analyzer tool (Supplementary Movie 3).

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13321- 025- 00984-8.

Supplementary Maretial 1.

Supplementary Maretial 2.

Supplementary Maretial 3.

Supplementary Maretial 4.

Acknowledgements
The authors thank Dr. Tomoki Yonezawa of Keio University and Dr. Nobuo
Cho of RIKEN for testing ChatChemTS and for valuable discussions from the
perspective of expert chemists.

Author contributions
Shoichi Ishida: conceptualization (lead); methodology (lead); software (lead);
writing - original draft (lead); writing - review & editing (lead). Tomohiro Sato:
methodology (support); software (support), writing—review & editing (sup-
port). Teruki Honma: supervision (lead); funding acquisition (lead); project
administration (lead); software (support); writing—review & editing (support).
Kei Terayama: supervision (lead); funding acquisition (lead); methodology

https://github.com/molecule-generator-collection/ChatChemTS
https://github.com/molecule-generator-collection/ChatChemTS
https://doi.org/10.1186/s13321-025-00984-8
https://doi.org/10.1186/s13321-025-00984-8

Page 10 of 11Ishida et al. Journal of Cheminformatics (2025) 17:36

(equal); project administration (lead); conceptualization (lead); software (sup-
port); writing—review & editing (lead).

Funding
This work was conducted in “Development of a Next-generation Drug
Discovery AI through Industry-Academia Collaboration (DAIIA)” from Japan
Agency for Medical Research and Development (AMED) under grant
no.JP23nk0101111 and a Research Support Project for Life Science and Drug
Discovery under grant no.JP22ama121023. This work was also supported
by MEXT as a “Program for Promoting Researches on the Supercomputer
Fugaku (Simulation and AI-driven next-generation medicine and drug
discovery based on Fugaku)” (JPMXP1020230120) and Data Creation and
Utilization Type Material Research and Development Project Grant Number
JPMXP1122683430.

Availability of data and materials
The ChatChemTS application is publicly available on GitHub at https:// github.
com/ molec ule- gener ator- colle ction/ ChatC hemTS under the MIT License.
The README file in the GitHub repository provides information about how to
set up and use the application. The tutorials on ChatChemTS are available on
GitHub at https:// github. com/ molec ule- gener ator- colle ction/ ChatC hemTS/
wiki/ Tutor ial.

Declarations

Competing interests
The authors declare no competing interests.

Received: 30 July 2024 Accepted: 7 March 2025

References
 1. Sumita M, Yang X, Ishihara S, Tamura R, Tsuda K (2018) Hunting for organic

molecules with artificial intelligence: molecules optimized for desired
excitation energies. ACS Central Sci 4:1126–1133

 2. Kajita S, Kinjo T, Nishi T (2020) Autonomous molecular design by Monte-
Carlo tree search and rapid evaluations using molecular dynamics
simulations. Commun Phys 3:77

 3. Zhang Y, Zhang J, Suzuki K, Sumita M, Terayama K, Li J, Mao Z, Tsuda K,
Suzuki Y (2021) Discovery of polymer electret material via de novo mol-
ecule generation and functional group enrichment analysis. Appl Phys
Lett 10(1063/5):0051902

 4. Sumita M, Terayama K, Suzuki N, Ishihara S, Tamura R, Chahal MK, Payne
DT, Yoshizoe K, Tsuda K (2022) De novo creation of a naked eye-detecta-
ble fluorescent molecule based on quantum chemical computation and
machine learning. Sci Adv 8:eabj3906

 5. Fujita T, Terayama K, Sumita M, Tamura R, Nakamura Y, Naito M, Tsuda K
(2022) Understanding the evolution of a de novo molecule generator
via characteristic functional group monitoring. Sci Technol Adv Mater
23:352–360

 6. Abe K, Ozako M, Inukai M, Matsuyuki Y, Kitayama S, Kanai C, Nagai C,
Gopalasingam CC, Gerle C, Shigematsu H, Umekubo N, Yokoshima S,
Yoshimori A (2023) Deep learning driven de novo drug design based on
gastric proton pump structures. Commun Biol 6:956

 7. Ren F et al (2024) A small-molecule TNIK inhibitor targets fibrosis in
preclinical and clinical models. Nat Biotechnol

 8. Ivanenkov Y, Zagribelnyy B, Malyshev A, Evteev S, Terentiev V, Kamya
P, Bezrukov D, Aliper A, Ren F, Zhavoronkov A (2023) The Hitchhiker’s
guide to deep learning driven generative chemistry. ACS Med Chem Lett
14:901–915

 9. Segler MHS, Kogej T, Tyrchan C, Waller MP (2017) Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS
Central Sci 4:120–131

 10. Yang X, Zhang J, Yoshizoe K, Terayama K, Tsuda K (2017) ChemTS: an
efficient python library for de novo molecular generation. Sci Technol
Adv Mater 18:972–976

 11. Ishida S, Aasawat T, Sumita M, Katouda M, Yoshizawa T, Yoshizoe K, Tsuda
K, Terayama K (2023) ChemTSv2: functional molecular design using de
novo molecule generator. WIREs Comput Mol Sci 13:e1680

 12. Dollar O, Joshi N, Beck DAC, Pfaendtner J (2021) Attention-based genera-
tive models for de novo molecular design. Chem Sci 12:8362–8372

 13. Bagal V, Aggarwal R, Vinod PK, Priyakumar UD (2021) MolGPT: molecular
generation using a transformer-decoder model. J Chem Inform Model
62:2064–2076

 14. Kusner M J, Paige B, Hernández-Lobato J M (2017) Grammar variational
autoencoder. Proceedings of the 34th International Conference on
Machine Learning. pp 1945–1954

 15. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM,
Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD,
Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a
data-driven continuous representation of molecules. ACS Central Sci
4:268–276

 16. Zang C, Wang F (2020) MoFlow: an invertible flow model for generating
molecular graphs. Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. pp 617–626

 17. Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J (2020) GraphAF: a flow-
based autoregressive model for molecular graph generation. Int Conf
Learn Represent. https:// doi. org/ 10. 48550/ arXiv. 2001. 09382

 18. Guan J, Qian WW, Peng X, Su Y, Peng J, Ma J (2023) 3D equivariant
diffusion for target-aware molecule generation and affinity prediction.
Eleventh Int Conf Learn Represent. https:// doi. org/ 10. 48550/ arXiv. 2303.
03543

 19. Bao F, Zhao M, Hao Z, Li P, Li C, Zhu J (2023) Equivariant energy-guided
SDE for inverse molecular design. Eleventh Int Conf Learn Represent.
https:// doi. org/ 10. 48550/ arXiv. 2209. 15408

 20. Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular de-novo
design through deep reinforcement learning. J Cheminform 9:1

 21. Loeffler HH, He J, Tibo A, Janet JP, Voronov A, Mervin LH, Engkvist O (2024)
Reinvent 4: modern AI-driven generative molecule design. J Cheminform
16:20

 22. Jensen JH (2019) A graph-based genetic algorithm and generative
model/Monte Carlo tree search for the exploration of chemical space.
Chem Sci 10:3567–3572

 23. Nigam A, Pollice R, Aspuru-Guzik A (2022) Parallel tempered genetic
algorithm guided by deep neural networks for inverse molecular design.
Digital Discov 1:390–404

 24. Yoshizawa T, Ishida S, Sato T, Ohta M, Honma T, Terayama K (2022) Selec-
tive inhibitor design for kinase homologs using multiobjective Monte
Carlo tree search. J Chem Inform Model 62:5351–5360

 25. Murakami Y, Ishida S, Demizu Y, Terayama K (2023) Design of antimicrobial
peptides containing non-proteinogenic amino acids using multi-objec-
tive Bayesian optimisation. Digital Discov 2:1347–1353

 26. Anstine DM, Isayev O (2023) Generative models as an emerging para-
digm in the chemical sciences. J Am Chem Soc 145:8736–8750

 27. Boiko DA, MacKnight R, Kline B, Gomes G (2023) Autonomous chemical
research with large language models. Nature 624:570–578

 28. Fang Y, Liang X, Zhang N, Liu K, Huang R, Chen Z, Fan X, Chen H (2024)
Mol-Instructions—a Large-Scale Biomolecular Instruction Dataset for
Large Language Models. The Twelfth International Conference on Learn-
ing Representations

 29. Bran A M, Cox S, Schilter O, Baldassari C, White A, Schwaller P (2023) Aug-
menting large language models with chemistry tools. 37th Conference
on Neural Information Processing Systems (NeurIPS 2023) AI for Science
Workshop

 30. Song Y, Miret S, Liu B (2023) MatSci-NLP: Evaluating scientific language
models on materials science language tasks using text-to-schema
modeling. Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers)

 31. Guo T, Guo K, Nan B, Liang Z, Guo Z, Chawla N V, Wiest O, Zhang X (2023)
What can Large Language Models do in chemistry? A comprehensive
benchmark on eight tasks. Thirty-seventh Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track

 32. Deb J, Saikia L, Dihingia KD, Sastry GN (2024) ChatGPT in the material
design: selected case studies to assess the potential of ChatGPT. J Chem
Inform Model 64:799–811

 33. Hasrod T, Nuapia YB, Tutu H (2024) ChatGPT helped me build a chemistry
app, and Here’s how you can make one also. J Chem Educ 101:653–660

https://github.com/molecule-generator-collection/ChatChemTS
https://github.com/molecule-generator-collection/ChatChemTS
https://github.com/molecule-generator-collection/ChatChemTS/wiki/Tutorial
https://github.com/molecule-generator-collection/ChatChemTS/wiki/Tutorial
https://doi.org/10.48550/arXiv.2001.09382
https://doi.org/10.48550/arXiv.2303.03543
https://doi.org/10.48550/arXiv.2303.03543
https://doi.org/10.48550/arXiv.2209.15408

Page 11 of 11Ishida et al. Journal of Cheminformatics (2025) 17:36

 34. Yao S, Zhao J, Yu D, Du N, Shafran I, Narasimhan K R, Cao Y (2023) ReAct:
synergizing reasoning and acting in language models. The Eleventh
International Conference on Learning Representations

 35. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score
of drug-like molecules based on molecular complexity and fragment
contributions. J Cheminform 1:1

 36. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and
computational approaches to estimate solubility and permeability in
drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

 37. Chase H (2022) LangChain; https:// github. com/ langc hain- ai/ langc hain
 38. OpenAI, GPT-4 (2023) https:// openai. com/ gpt-4
 39. Ramírez S (2023) FastAPI; https:// github. com/ tiang olo/ fasta pi
 40. Streamlit (2023) https:// strea mlit. io/
 41. Chainlit (2023) https:// docs. chain lit. io/
 42. Merkel D (2014) Docker: lightweight linux containers for consistent

development and deployment. Linux J 2014(239):2
 43. Zubair T, Bandyopadhyay D (2023) Small molecule EGFR inhibitors as

anti-cancer agents: discovery, mechanisms of action, and opportunities.
Int J Mol Sci 24:2651

 44. Terayama K, Sumita M, Tamura R, Payne DT, Chahal MK, Ishihara S, Tsuda
K (2020) Pushing property limits in materials discoveryviaboundless
objective-free exploration. Chem Sci 11:5959–5968

 45. Attwood MM, Fabbro D, Sokolov AV, Knapp S, Schiöth HB (2021) Trends in
kinase drug discovery: targets, indications and inhibitor design. Nat Rev
Drug Discov 20:839–861

 46. Frisch MJ et al (2016) Gaussian∼ 16 Revision C.01. Gaussian Inc.,
Wallingford

 47. Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina
1.2.0: New docking methods, expanded force field, and python bindings.
J Chem Inform Model 61:3891–3898

 48. Ajileye T, Gainer P, Urbonas M, Pires D E V (2023) Automating reward
function configuration for drug design. NeurIPS 2023 Workshop on New
Frontiers of AI for Drug Discovery and Development

 49. Lobentanzer S, Feng S, Consortium T B, Maier A, Wang C, Baumbach J,
Krehl N, Ma Q, Saez-Rodriguez J (2024) A platform for the biomedical
application of large language models. arXiv. https:// doi. org/ 10. 48550/
arXiv. 2305. 06488

 50. Zhao WX et al (2023) A survey of large language models. arXiv. https://
doi. org/ 10. 48550/ arXiv. 2303. 18223

 51. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser
L u, Polosukhin I (2017) Attention is all you need. Adv Neural Inform
Process Syst

 52. Wang C, Wu Q, Weimer M, Zhu E (2021) FLAML: a fast and lightweight
AutoML library. Proc Mach Learn Syst 3:434–447

 53. Bateman A et al (2022) UniProt: the Universal Protein Knowledgebase in
2023. Nucleic Acids Res 51:D523–D531

 54. Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F,
Bellis L, Overington JP (2015) ChEMBL web services: streamlining access
to drug discovery data and utilities. Nucleic Acids Rese 43:W612–W620

 55. McKinney W (2010) Data Structures for Statistical Computing in Python.
Proceedings of the 9th Python in Science Conference

 56. mols2grid - Interactive molecule viewer for 2D structures. https:// github.
com/ cbouy/ mols2 grid (2021)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/langchain-ai/langchain
https://openai.com/gpt-4
https://github.com/tiangolo/fastapi
https://streamlit.io/
https://docs.chainlit.io/
https://doi.org/10.48550/arXiv.2305.06488
https://doi.org/10.48550/arXiv.2305.06488
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://github.com/cbouy/mols2grid
https://github.com/cbouy/mols2grid

	Large language models open new way of AI-assisted molecule design for chemists
	Abstract
	Introduction
	Results
	Implementation of ChatChemTS
	Example applications of ChatChemTS
	Chromophore design
	EGFR inhibitor design

	Discussion and conclusion
	Methods
	Large language model
	ReAct framework
	Tools
	Reward generator
	Prediction model builder
	Configuration generator
	ChemTSv2 API
	Molecule generation analyzer

	Availability and requirements
	Acknowledgements
	References

