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Abstract Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered 
synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based 
molecule generators have significantly advanced toward practical applications, their effective use still requires 
specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-pow-
ered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator 
through only chat interactions, including automated construction of reward functions for the specified properties. 
Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anti-
cancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule 
optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https:// 
github. com/ molec ule- gener ator- colle ction/ ChatC hemTS.

Scientific contribution
ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, 
solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced soft-
ware, such as AI-based molecular generators, which require specialized knowledge and technical skills.

Introduction
Artificial intelligence (AI)-based techniques for molecu-
lar designs are becoming promising methods for design-
ing synthetically accessible and insightful molecules with 
desired functionalities  [1–8]. Research articles on these 
techniques have been reported in a wide range of fields, 

from material design to drug discovery. In terms of mate-
rial design, fluorescent  [4] and photofunctional  [1, 5] 
molecules have been designed using AI-based molecule 
generators, and the designed molecules were success-
fully experimentally validated to exhibit the desired prop-
erties. Similarly, in drug discovery, new proton pump 
inhibitors  [6] and inhibitors for targeting antifibrotic 
effects  [7] were designed and demonstrated their good 
inhibitory effects. The AI-based molecule generators 
used in the above studies represent just a fraction of the 
techniques that have been developed thus far [9–25], and 
applying and testing various promising molecule genera-
tors to solve real-world problems is vital for achieving 
further advancements.

While various AI-based molecule generators have 
made significant progress toward practical applica-
tions, their effective utilization still requires specialized 
knowledge and skills concerning AI techniques [26]. This 
high level of expertise presents a critical obstacle to the 
widespread adoption of AI-based molecule generators. 
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The effective use of these methods necessitates a deep 
understanding of how to design reward functions that 
appropriately represent the desired functionalities and 
the ability to configure the set conditions according to 
the specifications of each AI-based molecule generator. 
In chemical, pharmaceutical, and other industries, the 
complexity of utilizing AI-based molecule generators 
and the need for skills such as machine learning (ML,) to 
design reward functions pose significant obstacles that 
prevent users from easily adopting these technologies for 
their projects. These challenges complicate the effective 
utilization of AI-based molecule generators to solve real-
world problems, especially for researchers and develop-
ers who possess expert knowledge and skills in chemistry 
but are not well versed in AI techniques.

To address these challenges, we developed ChatCh-
emTS, a large language model (LLM)-powered chatbot 
that assists users in utilizing ChemTSv2  [11]—AI-based 
molecule generator with experimental validations for 
various molecule designs  [1, 3–5]—through only inter-
active chats. All users are merely required to express 
a request to ChatChemTS via chat, and ChatChemTS 
then prepares the appropriate reward functions, con-
figures the desired conditions, and executes ChemTSv2 
for the users. In addition, ChatChemTS provides a tool 
for analyzing the output molecule generation results. 
ChatChemTS is based on a ReAct framework so that it 
can address the whole workflow of general AI-based mol-
ecule generators, and the framework employs the gen-
erative pretrained transformer (GPT) model of OpenAI, 
which has shown the great potential as an LLM chemis-
try agent to perform chemistry-related tasks [27–33]. As 
example applications of ChatChemTS, we performed two 
de novo molecular design tasks, one involving a photo-
functional organic molecule and another concerning a 
kinase inhibitor, as single- and multiobjective molecule 
optimization problems, respectively. Notably, users only 
need to prepare data related to the physicochemical 
properties of molecules or information about the tar-
get proteins of interest to perform AI-based molecule 
designs with ChatChemTS. We show that this concept 
of utilizing an LLM as an assistant of AI-based mole-
cule generators can be easily introduced to various gen-
erators developed with organized application structures, 
such as ChemTSv2. This study also showed the potential 
of LLMs not only to use software that requires simple 
inputs, such as a SMILES string, and advanced APIs for 
operating robots as tools, as shown in previous stud-
ies  [27, 29], but also to be able to utilize highly flexible 
software, AI-based molecular generators, as tools. The 

ChatChemTS application is publicly available on GitHub 
at https:// github. com/ molec ule- gener ator- colle ction/ 
ChatC hemTS.

Results
Implementation of ChatChemTS
ChatChemTS was developed based on LLMs to help 
users employ ChemTSv2 through interactive chats, as 
shown in Fig. 1.

The ChatChemTS application employs a ReAct frame-
work  [34] that enables LLMs to generate reasonable 
responses and take appropriate actions, including the 
use of predefined tools, as shown in Fig.  2. The prede-
fined tools in ChatChemTS include a reward generator, 
a prediction model builder, a configuration generator, a 
ChemTSv2 application programming interface (API), 
a molecule generation analyzer, and a file writing tool. 
In this study, the configuration included molecule gen-
eration parameters in ChemTSv2, such as molecular fil-
tering functions and an exploration parameter c  [11]. 
ChemTSv2 provides common filtering criteria, including 
the synthetic accessibility score (SAScore) [35] and Lipin-
ski’s rule of five [36]. The parameter c balances explora-
tion and exploitation in the upper confidence bound 
(UCB1) score. In molecule generation, a higher c value 
(e.g., 1.0) tends to generate molecules with diverse scaf-
folds, while a lower c value (e.g., 0.1) tends to focus the 
search on optimizing molecules that appear promising 
during exploration. To offer high-quality responses, mul-
tiple LLMs were utilized in ChatChemTS and specifically 
tailored for distinct roles, such as facilitating user inter-
actions and crafting reward function designs; thus, the 
use of verbose and ambiguous prompts that may elicit 
irrelevant responses was minimized in each LLM.

The platform was developed primarily by incorporating 
LangChain [37], GPT-4 (gpt-4-0613) from OpenAI [38], 
and FastAPI  [39] for backend operations, as well as 
Streamlit  [40] and Chainlit  [41] for frontend implemen-
tations, as shown in Fig. 2. To enhance the scalability of 
the application, the computing environments assigned 
to each role were containerized using Docker, ensur-
ing that no interference occurred among them. Docker 
Compose  [42] was utilized to implement a streamlined 
deployment process leveraging multiple Docker images, 
facilitating the automatic deployment of the application 
in a Docker-compatible environment. A demonstration 
movie of the workflow for ChatChemTS is shown in Sup-
plementary Movie 1.

https://github.com/molecule-generator-collection/ChatChemTS
https://github.com/molecule-generator-collection/ChatChemTS
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Example applications of ChatChemTS
To demonstrate the utility of ChatChemTS, we per-
formed de novo designs of a chromophore and an epi-
dermal growth factor receptor (EGFR) inhibitor, the 
latter of which is a common treatment for breast and 
lung cancers [43]. These designs illustrated examples of 
single- and multiobjective molecule optimization tasks, 
respectively. The aim of the chromophore design pro-
cess was to optimize molecules so that they possessed a 
specific absorption wavelength. On the other hand, the 
EGFR inhibitor design process focused on obtaining 

molecules with high inhibitory activity and high drug 
likeness scores. All file names presented in Fig.  3 and 
Fig.  4 are arbitrary and can be freely modified by the 
user when using ChatChemTS. Detailed explanations of 
both demonstrations are described below.

Chromophore design
Figure 3 shows a chat-based demonstration of the task of 
designing chromophores using ChatChemTS.

The enlarged versions of each column in the figure are 
provided in Fig.  S2. All processes described hereafter 

Fig. 1 Overview of ChatChemTS. The visual workflow of ChatChemTS is shown in the upper panel. A user can utilize ChatChemTS via chat in a web 
browser on a local laptop, and ChatChemTS assists users in designing molecules through AI. The schematic usage workflow of ChatChemTS 
is shown in the lower left panel. A snapshot of the user interface (UI) of this application is shown in the lower right panel. The UI was built 
with Chainlit and provides the users with an intuitive chat experience
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were successfully carried out through chat interactions 
and operations in graphical user interface (GUI) appli-
cations: prediction model builder and analysis tools. 
The prediction model builder of ChatChemTS provides 
a function for constructing ML models that predict a 
molecule property when provided a dataset in comma-
separated values (CSV) format (see the Methods section 
for details). First, the prediction model builder tool was 
used to create an ML model for predicting an absorp-
tion wavelength from an input molecule. The training 
dataset was prepared in CSV format and included 50000 
molecules with absorption wavelengths calculated using 
density functional theory (DFT) at the B3LYP/6-31  G* 
level  [44]. The AutoML parameters were set with a test 
dataset ratio of 0.1 and a budget time of one hour; the 
estimators list and metrics were automatically selected 
by the Fast Library for Automated Machine Learning and 
Tuning (FLAML) during the AutoML search process. 
The best model was the light gradient boosting machine 
(LightGBM), and its correlation coefficient for the test 
dataset was 0.93. The above GUI-based operations and 

their results are shown in Fig.  S1, and the demonstra-
tion movie of the prediction model builder can be seen 
in Supplementary Movie 2. Next, a reward function and 
a configuration were designed via chat based on the fol-
lowing conditions: the target absorption wavelength was 
set to 600 nm, the exploration parameter c was set to 0.1, 
the number of generated molecules was set to 30000, and 
an SAscore filter with a threshold of 4.5 was used. Then, 
ChemTSv2 was executed via chat using the above reward 
function and configuration files. Finally, the analysis tool 
was utilized to analyze the molecule generation results. 
As shown in the optimization process of Fig.  3 (right 
panel), ChatChemTS successfully designed molecules 
with predicted absorption wavelength of approximately 
600 nm.

EGFR inhibitor design
Figure 4 shows a chat-based demonstration of the task of 
designing EGFR inhibitors using ChatChemTS.

The enlarged versions of each column in the figure are 
provided in Fig.  S4. The subsequent processes were all 

Fig. 2 System architecture of ChatChemTS. LangChain was used to implement the ReAct framework in ChatChemTS. LLMs were used in the agent, 
the reward generator tool, and the configuration generator tool. Additionally, both tools utilized LLMs specialized in the corresponding tasks 
using in-context learning (ICL). ChatChemTS was containerized using Docker, allowing for easy deployment to user environments through Docker 
Compose. Users can employ ChatChemTS via local web browsers, such as Google Chrome
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accomplished through chat interactions and operations 
in the GUI applications. The prediction model builder 
of ChatChemTS provides a function for constructing 
regression ML models that predict inhibitory activity 
against a target protein by simply specifying its Univer-
sal Protein Resource ID (UniProt ID; see the Methods 
section for details). In this demonstration, UniProt ID 
P00533 was used as the input of the prediction model 
builder tool to retrieve molecules with inhibitory activi-
ties against EGFR from the ChEMBL database. ML mod-
els were designed to take a molecule as input and predict 
a pChEMBL value, representing the negative base-10 
logarithm of the half-maximal response concentration, 
potency, and affinity. The retrieved dataset was preproc-
essed as follows: (1) deduplicating molecules by leaving 
the maximum pChEMBL values; (2) retaining records 
by assay type of Binding; (3) filtering out records with 
assay descriptions, which contained the mutat, covalent, 

and irreversible substrings; and (4) removing the activ-
ity types of the half-maximal effective concentration 
(EC50) and half-maximal active concentration (AC50). 
Consequently, the dataset size was 7141 compounds, and 
the dataset was used in the training step. The AutoML 
parameters were set with a test dataset ratio of 0.1 and 
a budget time of one hour; the estimator list and met-
rics were automatically selected by the FLAML during 
the AutoML search process. The option to standardize 
the objective variable was applied to facilitate the use of 
the prediction values within a reward function. The best 
model was the LightGBM, and its correlation coefficient 
for the test dataset was 0.85. The above operations and 
their results are shown in Fig.  S3. Next, a reward func-
tion and a configuration were designed via chat interac-
tions based on the following conditions: maximizing the 
predicted inhibitory activity against EGFR and the QED 
score; setting the exploration parameter c to 0.1; setting 

Fig. 3 Application of ChatChemTS in designing chromophore. This demonstration aimed to design molecules with absorption wavelengths of 600 
nm. In step 1, based on the observed user requests, ChatChemTS created a prediction model to predict the absorption wavelength from an input 
molecule. The training dataset was prepared using 50000 compounds with DFT-calculated absorption wavelengths at the B3LYP/6-31 G* 
level [44] via the prediction model builder. The prediction model, saved with the name flaml_model_for_abs_wl.pkl during its construction 
using the prediction model builder, was used in the reward function. In step 2, ChatChemTS set up the configuration of ChemTSv2 according 
to the specifications provided by the user. In step 3, ChatChemTS executed the ChemTSv2 using the prepared configuration file. In step 4, a user 
analyzed the molecule generation results. The right panel shows examples of molecules with absorption wavelengths of approximately 600 nm 
and the optimization process of the molecule generation task. Expanded views of each column are provided in the Fig. S2
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the number of generated molecules to 50000; and using 
Lipinski’s rule-of-five filter and the SAscore filter with a 
threshold of 4.5. Then, ChemTSv2 was executed via chat 
using the above reward function and configuration files. 
Finally, the analysis tool was utilized to analyze the mol-
ecule generation results. As shown in the optimization 
process of Fig. 3 (right panel), ChatChemTS successfully 
designed molecules with predicted pChEMBL values 
above seven and QED scores of approximately 0.7. To 
confirm whether the molecule generation process con-
sidering the QED score worked properly, we compared 
the QED optimization processes of methods generating 
molecules based on both inhibitory activity and QED 
scores and methods based only on inhibitory activity 

under the same conditions. Figure  S5 indicates that the 
molecules designed solely based on inhibitory activity 
often had QED scores of approximately 0.4, highlighting 
the effectiveness of incorporating QED scores with inhib-
itory activity in the reward function.

Discussion and conclusion
In this study, we introduced ChatChemTS, an LLM-
powered application, to facilitate user interactions 
with ChemTSv2 through an interactive chat interface. 
Two demonstrations, chromophore and EGFR inhibi-
tor design tasks, were showcased as common de novo 
molecular generation tasks: single- and multiobjec-
tive optimizations, respectively. In the demonstrations, 

Fig. 4 Application of ChatChemTS in designing EGFR inhibitors. This demonstration aimed to design molecules that exhibited inhibitory 
activities against EGFR and high QED scores. In step 1, based on the observed user requests, ChatChemTS created a prediction model to predict 
the inhibitory activity of an input molecule. To prepare the training dataset, compounds that possessed activity data for the protein associated 
with UniProt ID P00533 were retrieved from the ChEMBL database via the prediction model builder, and this task was followed by preprocessing. 
The prediction model was used in the reward function. The prediction model, saved with the name flaml_model_egfr_qsar.pkl during its 
construction using the prediction model builder, was used in the reward function. In step 2, ChatChemTS set up the configuration of ChemTSv2 
according to the specifications provided by the user. In step 3, ChatChemTS executed the ChemTSv2 using the prepared configuration file. In step 4, 
a user analyzed the molecule generation results. The right panel shows the generated molecules ranked in descending order of their reward scores, 
provided that the QED scores were 0.89 or higher and the optimization process of the molecule generation. Expanded views of each column are 
provided in the Fig. S4
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ChatChemTS successfully assisted with four main opera-
tions that users need to perform when using AI-based 
molecule generators: designing reward functions, set-
ting up configurations, executing a molecule generator, 
and analyzing the results. Despite their success in terms 
of designing molecules with targeted properties based 
on prediction models, there is potential for improv-
ing the design of the reward functions. For example, the 
designed EGFR inhibitor lacked the major hinge-bind-
ing scaffolds used in common kinase inhibitors  [45]. A 
potential solution to this issue is to introduce a reward 
function designed to increase the structural similarity 
to these scaffolds, which is an unsupported feature in 
ChatChemTS.

The following tasks remain to make the experience of 
AI-based molecule designs via ChatChemTS more appro-
priate and convenient. ChatChemTS currently supports 
a single AI-based molecule generator, ChemTSv2; how-
ever, ChatChemTS was designed to easily incorporate 
additional molecule generators, assuming that the reward 
design and configuration settings are independently 
specified in separate files. Similarly, while ChatChemTS 
can be modified to support seamless switching between 
multiple LLMs (e.g., Meta’s Llama and Google AI’s 
Gemini), provided they are supported by LangChain’s 
Chat Models, this functionality has not yet been imple-
mented. In our experiments, we configured ChatCh-
emTS to retain only the most recent message to avoid 
saving unintended content during the file-saving step 
although ChatChemTS can support flexible adjustment 
of the number of recent messages retained in the GUI 
setting. Thus, this study did not demonstrate whether the 
system can work correctly while retaining a long mes-
sage history. Moreover, the current version of ChatCh-
emTS solely relies on the LLMs, which have learned to 
use ChemTSv2 through in-context learning techniques, 
for the quality of the generated reward function and con-
figuration file. In addition to this, considering the inher-
ently probabilistic nature of LLMs, a verification system 
needs to be developed to ensure that the LLMs correctly 
interpret user requests and the generated outputs are 
appropriate. To mitigate the risk of improperly saving 
reward and configuration files through LLM operations 
and the associated economic costs, a save button should 
be implemented within the GUI’s code window. In terms 
of reward designs, the current reward generator tool is 
limited to using Python packages and ML-based predic-
tion models within reward functions. Given the frequent 
use of various simulation packages, such as the Gaussian 
16  [46] and AutoDock Vina  [47] packages, in material 
and drug design scenarios, we plan to make these pack-
ages available in the reward designs of ChatChemTS. 
Furthermore, introducing a feature that automatically 

optimizes reward designs [48] could significantly reduce 
the manual effort required for reward adjustment, as this 
process typically involves extensive trial and error. To 
enhance the user experience in preparing and using ML 
models, we will add functionality for classification mod-
els in ChatChemTS and the Prediction model builder 
because both are currently designed primarily for regres-
sion models. In the configuration setup stage, switching 
the recurrent neural network (RNN) models provided 
in ChemTSv2 via ChatChemTS currently requires users 
to be well-versed in the characteristics of these RNNs. 
Thus, efforts are underway to improve ChatChemTS so 
that users can utilize these RNN models without need-
ing such knowledge by enabling appropriate suggestions 
for selecting the desired RNN model. ChatChemTS cur-
rently supports the basic use cases of ChemTSv2, does 
not yet provide a sufficiently flexible user experience, and 
would require expert intervention and support for com-
prehensive AI-based molecule designs. As we continue 
the development of ChatChemTS, it is crucial to establish 
a robust software foundation that includes features such 
as a test suite, continuous integration setup on GitHub, 
and LLM monitoring capabilities, similar to BioChat-
ter  [49]. The current version of ChatChemTS does not 
have such a robust software foundation, and thus, we also 
plan to work on building such a foundation.

Methods
Large language model
An LLM is a type of AI model that can perform vari-
ous general-purpose natural language processing (NLP) 
tasks at the human level, including text generation, ques-
tion answering, and information extraction  [50]. The 
core architecture of an LLM is a deep learning technique 
called a transformer [51], and LLMs are generally trained 
on immense amounts of data. LLMs are frequently uti-
lized in combination with prompting strategies, such as 
ICL, Chain of Thought (CoT), and Planning, for solving 
various tasks to enhance their contextual understanding 
and improve their task-specific performance [50]. In this 
study, GPT-4 (gpt-4-0613) developed by OpenAI with a 
temperature of 0.1 and the ReAct framework were used 
as the LLM and the Planning strategy, respectively.

ReAct framework
The ReAct framework allows LLMs to intertwine reason-
ing traces with task-specific actions in external environ-
ments, facilitating general task-solving  [34]. The LLM 
that performs the above role is called an agent. Within 
the ReAct framework, LLMs can interact with exter-
nal tools, such as Wikipedia, web searches, the Python 
interactive computing environment, and user-custom-
ized tools, and use their feedback for reasoning traces to 
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produce more reliable responses. LangChain was used to 
implement the ReAct framework in ChatChemTS, and a 
zero-shot ReAct agent that can return structured outputs 
to handle the prepared tools in ChatChemTS was used. 
The system message used in the agent is shown in List-
ing S1. The following section describes the tools used in 
ChatChemTS.

Tools
In the ReAct framework, tools are pivotal for enhancing 
LLMs by enabling the retrieval of additional informa-
tion, which contributes to more reliable responses. Nota-
bly, the tools included in the proposed application were 
the minimum tools required for using AI-based mol-
ecule generators, but other tools can easily be added to 
the application to satisfy users’ specific needs. The tools 
for reward and configuration generations utilized LLMs 
tuned to the corresponding tasks using few-shot prompt-
ing techniques. All the prompts utilized are described in 
Listing S2 and Listing S3.

Reward generator
This tool is dedicated to designing reward functions in 
ChemTSv2 format and is based on an LLM. A few-shot 
prompting technique was used to steer the LLM to the 
reward design tool. All the utilized prompts are described 
in Listing S2. Upon receiving a user request for molecules 
optimized based on specific properties, this tool returns 
a reward function reflecting that request. The currently 
available molecular properties are those that can be cal-
culated by RDKit software and predicted using predic-
tion models obtained from the FLAML [52]. There is no 
limit to the number of properties that can be used for 
multiobjecitve optimization in ChemTSv2, though the 
success of the optimization task is a separate issue. It 
should be noted that we do not explicitly teach the LLM 
how to calculate specific molecular properties through 
the prompts, so the ability to code a program that accu-
rately computes these properties depends on the LLMs’ 
performance.

Prediction model builder
This tool offers a GUI application that allows users to 
build their own prediction models using an automated 
ML tool (the FLAML) [52]. The interface was designed to 
be accessible to users with varying levels of ML expertise. 
The application accepts two input types: a CSV file for 
building general prediction models and a UniProt [53] ID 
for constructing quantitative structure-activity relation-
ship (QSAR) models from the ChEMBL database.

When a user uploads a CSV file, it is rendered as a 
table on the interface to enable the user to verify its 

content. To build prediction models, the user must 
select the names of two columns: one containing mol-
ecule structures in the SMILES format and another 
containing a target variable. A Morgan fingerprint, 
with a radius of two and dimensions of 2048, is used 
as an input feature for the prediction models. The 
interface guides the user through a structured con-
figuration process to develop a prediction model with 
the FLAML. Initially, the user adjusts the data pro-
portion for the test dataset. Following this, the user 
has the option to select the “use auto” for default ML 
estimators or manually choose ML estimators from 
a list option, including a random forest, LightGBM, 
eXtreme Gradient Boosting (XGBoost), Categorical 
Boosting (CatBoost), Extremely Randomized Trees 
(Extra Trees), Logistic Regression with L1 or L2 regu-
larization, and k-nearest neighbors. In the FLAML, 
the list of the default estimators are defined as follows: 
LightGBM, random forest, XGBoost, CatBoost, Extra 
Trees. Then, the user specifies the type of ML task to 
perform, which is currently limited to regression, and 
the metric used to evaluate the performance of the 
constructed model during training, with the option 
to utilize automatic metric selection. If the automatic 
metric selection is chosen, the FLAML uses 1− r

2 as 
the minimizing error metric, where r2 is the coefficient 
of determination. A time budget can be set to manage 
the amount of time that computational resources are 
dedicated to performing the AutoML search process. 
If the values of the target variable are not normalized, 
the user should employ the standardization function 
in this application to standardize the target values, 
ensuring that reward functions can be appropriately 
designed. Once all the settings are finalized, this tool 
runs the AutoML process to find quality models and 
saves the model that performs best on the test dataset 
for use in a reward function.

When a user inputs a UniProt ID, the application 
fetches and processes data from the ChEMBL database 
using the ChEMBL webresource client package  [54]. 
The application verifies the existence of records for 
the specified UniProt ID and then allows users to 
refine the dataset by deduplicating molecules based on 
pChEMBL values, retaining records according to their 
specific assay types, and filtering out records with cer-
tain assay descriptions and activity types. The retrieved 
record items that can be checked by users are as fol-
lows: canonical SMILES string; pChEMBL value; assay 
description, ChEMBL ID, and type; standard type, 
value, units, and relation; molecule ChEMBL ID; organ-
ism and ChEMBL ID related to the input UniProt ID; 
and document ChEMBL ID. Subsequently, the work-
flow is the same as that of the process described above 
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after uploading a CSV file. A demonstration movie of 
this tool is shown in Supplementary Movie 2.

Configuration generator
This tool is specialized in generating configuration 
files in YAML format for ChemTSv2 and is based on 
an LLM. The configuration includes, for example, the 
number of generated molecules, the exploration param-
eter c, and molecular filters for skipping the reward cal-
culation (refer to the paper that presented ChemTSv2 
for details  [11]). Similar to the reward generator tool, 
this tool employs a few-shot prompting technique 
to generate configurations. All the prompts used are 
described in Listing S3. By taking a user request for set-
ting a ChemTSv2 configuration, this tool returns a con-
figuration reflecting that request.

ChemTSv2 API
This tool serves as an API for executing ChemTSv2. 
ChemTSv2 employs two primary algorithms: a recur-
rent neural network (RNN) to generate molecules 
and a Monte Carlo Tree Search (MCTS) to navigate 
the search space. The usage workflow of ChemTSv2 
involves four steps: preparing reward and configura-
tion files, executing ChemTSv2, and analyzing the gen-
erated molecules, all of which are supported through 
chat-based interactions in ChatChemTS. When using 
ChemTSv2 directly, there are no software restrictions 
for designing reward functions, but the software users 
want to use must be installed in the computational 
environment beforehand. Currently, ChemTSv2 can 
only use pre-installed software, RDKit and FLAML, for 
reward design, as described in the Reward generator 
section. As for the API tool, upon receiving a path to a 
configuration file, the tool runs a ChemTSv2 using the 
provided configuration and returns a path to the exe-
cution outcome. The API was built using the FastAPI 
package [39].

Molecule generation analyzer
This tool provides users with a GUI application to eas-
ily analyze the results of molecule generation processes. 
Once a user uploads a CSV result file, the application 
offers three interactive functions, a table viewer, a mol-
ecule viewer, and a time series viewer, which are the 
common features used to analyze molecule genera-
tion results. The GUI application was developed based 
on Streamlit  [40] for creating the user interface, pan-
das  [55] for manipulating molecule generation results, 
and mols2grid  [56] for interactively visualizing mol-
ecules. A demonstration movie of this tool is shown in 
Supplementary Movie 3.

Availability and requirements

• Project name: ChatChemTS
• Project home page: https:// github. com/ molec ule- 

gener ator- colle ction/ ChatC hemTS
• Operating system(s): Tested on Linux OS (Ubuntu 

22.04.2 LTS), macOS (Ventura 13.6.8 and Sonoma 
14.4.1), and Windows OS with the Windows Subsys-
tem for Linux (11 Pro 23H2, 11 Home 23H2, 10 Pro 
22H2).

• Programming language: Python 3.
• Other requirements: dependencies are described in 

the README file on the project home page.
• License: MIT
• Any restrictions to use by non-academics: none.

Supporting information available
Snapshot UI of prediction model builder tool when 

building the prediction models to predict absorption 
wavelength (Fig.  S1); Snapshot UI of prediction model 
builder tool when building the prediction model to pre-
dict inhibitory activity against EGFR (Fig. S2); Compari-
son of QED optimization processes between generating 
molecules considering inhibitory activity against EGFR 
and QED score and generating molecules solely consid-
ering the inhibitory activity (Fig.  S3); System message 
used in the agent of ChatChemTS (Listing S1); Few-shot 
prompting for the reward generator tool (Listing  S2); 
Few-shot prompting for config generator tool (List-
ing  S3); Demonstration movies for ChatChemTS exam-
ple workflow (Supplementary Movie 1), prediction model 
builder tool (Supplementary Movie 2), and molecule gen-
eration analyzer tool (Supplementary Movie 3).

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321- 025- 00984-8.

Supplementary Maretial 1.

Supplementary Maretial 2.

Supplementary Maretial 3.

Supplementary Maretial 4.
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