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Abstract 

Liver toxicity poses a critical challenge in drug development due to the liver’s pivotal role in drug metabolism 
and detoxification. Accurately predicting liver toxicity is crucial but is hindered by scattered information sources, 
a lack of curation standards, and the heterogeneity of data perspectives. To address these challenges, we developed 
the HepatoToxicity Portal (HTP), which integrates an expert‑curated knowledgebase (HTP‑KB) and a state‑of‑the‑art 
machine learning model for toxicity prediction (HTP‑Pred). The HTP‑KB consolidates hepatotoxicity data from nine 
major databases, carefully reviewed by hepatotoxicity experts and categorized into three levels: in vitro, in vivo, 
and clinical, using the Medical Dictionary for Regulatory Activities (MedDRA) terminology. The knowledgebase 
includes information on 8,306 chemicals. This curated dataset was used to build a hepatotoxicity prediction mod‑
ule by fine‑tuning a GNN‑based foundation model, which was pre‑trained with approximately 10 million chemicals 
in the PubChem database. Our model demonstrated excellent performance, achieving an area under the ROC curve 
(AUROC) of 0.761, surpassing existing methods for hepatotoxicity prediction. The HTP is publicly accessible at https:// 
kobic. re. kr/ htp/, offering both curated data and prediction services through an intuitive interface, thus effectively sup‑
porting drug development efforts.

Scientific contributions
HTP‑KB consolidates comprehensive curated information on liver toxicity gathered from nine sources. HTP‑Pred 
utilizes advanced deep learning techniques, significantly enhancing predictive accuracy. Together, these tools provide 
valuable resources for researchers and practitioners in drug development, accessible through a user‑friendly interface.
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Introduction
Drug development is a complex and resource-intensive 
process with a low success rate of less than 10% in each 
developmental phase [1, 2]. A significant contributing 
factor to this high attrition rate is drug toxicity, often 
exacerbated by discrepancies between animal models 
and human responses [3–6]. Given the liver’s pivotal 
role in chemical transformation and detoxification, it is 
particularly susceptible to drug-induced damage. Even 
after FDA market approval, drugs may have adverse 
effects such as drug-induced liver injury (DILI), a major 
cause of acute liver failure cases in U.S. tertiary care 
centers, accounting for over 50% of instances [7].

The need for comprehensive knowledge bases detail-
ing drug effects on liver tissues has become apparent. 
The US FDA has made significant efforts to estab-
lish knowledge resources of DILI for FDA-approved 
drugs. The Liver Toxicity Knowledge Base (LTKB) is 
an umbrella project to develop content-rich resources 
on liver toxicity [8]. Notably, the DILIrank dataset [9] 
is the classification of 1,036 FDA-approved drugs into 
four classes according to their potential for causing 
DILI, determined by analyzing the hepatotoxic descrip-
tions in the drug labeling documents and assessing 
causality evidence in literature. Similarly, LiverTox [10] 
provides clinical and research information on DILI for 
over 1,400 drugs. These databases are pivotal in hepato-
toxicity research, yet their coverage is limited to drugs 
in the market only.

Experimental data remains crucial as it offers detailed 
insights into drug effects at cellular and organismal lev-
els. Databases like InvitroDB [11] and CEBS [12] exem-
plify efforts to catalog chemical effects in biological 
systems based on drug experiments in cell lines, though 
translating these findings into clinical insights remains 
a challenge. Other approaches involve compiling drug 
experimental results from multiple publications to offer 
diverse perspectives on drug effects [13–15]. However, 
the usability of these databases is often hindered by the 
format of their reference data, typically stored as PDFs 
or CSVs, complicating data extraction for researchers.

To facilitate access to comprehensive drug data, vari-
ous web servers have been developed to integrate dis-
parate resources. Examples include CompTox [16], 
NITE-CHIRP [17], and eChemPortal [18], providing 
web-based access to toxicity reference databases in the 
U.S., Japan, and OECD, respectively. However, assess-
ing overall compound toxicity or uncovering hidden 

biological connections remains challenging, as these 
platforms often lack additional curation and data visu-
alization features.

Recent studies have focused on developing predic-
tive models for hepatotoxicity using compiled datasets, 
reflecting diverse biological scenarios. Computational 
methods offer advantages over traditional in  vitro and 
in vivo experiments in terms of time, coverage, and cost 
efficiency. Greene et  al. introduced a model utilizing 
ECFP6 fingerprints to classify predefined hepatotoxic-
ity labels [19], paving the way for subsequent algorithmic 
advancements. Bayesian models [20, 21], support vec-
tor machines (SVMs) [22–24], decision trees [25, 26], 
and random forests [24, 27, 28] have since been widely 
applied to predict hepatotoxicity, often integrating 
ensemble methods to enhance predictive performance 
[29–32].

With the emergence of deep learning methods, convo-
lutional neural network (CNN)-based approaches have 
also been employed for toxicity predictions. Kang et  al. 
applied deep neural networks to represent fingerprints of 
chemical compounds for hepatotoxicity prediction [33], 
while Xu et  al. utilized undirected graph recursive neu-
ral networks for molecular structure encoding to identify 
DILI-positive molecules [34]. These approaches demon-
strate the potential of deep learning in linking chemical 
structures and properties with hepatotoxicity outcomes, 
warranting further exploration of advanced algorithms 
and methodologies.

Beyond algorithmic research, efforts have been made 
to provide user-friendly web servers offering both pre-
diction models and toxicity data. PASS Online supports 
diverse prediction modules trained on literature data 
with active maintenance [35]. Similarly, LAZAR [36], 
ProTox3 [37], admetSAR 2.0 [38], and eMolTox [39] pro-
vide prediction modules focusing on various aspects of 
ADMET (Absorption, Distribution, Metabolism, Excre-
tion, and Toxicity). However, these platforms, while com-
prehensive in terms of subject coverage, lack in-depth 
analysis specific to hepatotoxicity.

In response to these needs, we introduce the Hepa-
toToxicity Portal (HTP), a specialized web application 
focused on liver toxicity. HTP integrates curated data 
from diverse toxicity databases and presents accurate 
prediction models trained on extensive datasets. Our 
knowledgebase systematically catalogs hepatotoxic com-
pounds based on multiple reference sources, compiling 
the hepatotoxicity scores with manual curation, which 
could be valuable for both non-toxicology and toxicology 

Keywords Liver toxicity, Drug induced liver injury, Hepatotoxicity, Molecular graph, Fine‑tuning, Foundation model, 
Deep neural network, Graph neural network
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researchers. Moreover, to address the persistent issue 
of data scarcity in biology-based deep learning models, 
HTP leverages a generally pre-trained molecular graph-
based model and fine-tuning techniques, resulting in 
improved performance compared to existing methods.

Construction and content
Database overview
The HTP comprises two modules, namely the HTP 
KnowledgeBase (HTP-KB) and HTP Prediction (HTP-
Pred) (Fig.  1). HTP-KB serves as a knowledgebase, 
consolidating information from nine public resources. 
After annotating the compound ID from PubChem [40], 
the collected documents underwent manual curation 
classifying their information into three classes: clinical, 
in vivo, and in vitro evidence. Additionally, liver toxicity-
related terms from Medical Dictionary for Regulatory 
Activities (MedDRA) were annotated based on the 
anticipated biological mechanisms of each compound. 
The overall hepatotoxicity score was computed 
considering the methodological importance of each 
reference of the contents. The subsequent module, HTP-
Pred, is a hepatotoxicity prediction tool that leverages 
a pre-trained graph neural network on large unlabeled 
molecule data, which is fine-tuned using our curated 

dataset for hepatotoxicity prediction. HTP-KB and HTP-
Pred are integrated into a web information portal with 
enhanced visualizations. Users can predict the toxicity 
score of new small molecules and identify substructural 
toxicophores.

Data collection and curation
Data collection and integration
The HTP-KB comprises a comprehensive collection of 
nine chemical-related databases, each established with 
diverse objectives and affiliations (Table  1). These data-
bases are categorized based on their specific purposes, 
including organizing results from drug experiments 
(CEBS [12], InvitroDB [11]), aggregating information on 
commercially available drugs (DrugBank [41], DILIrank 
[9], SIDER [42], LiverTox [10]), and curating case studies 
on drug-environment effects along with relevant publica-
tions (T3DB [13], IRIS [14], ATSDR [15]).

Depending on the database, liver-specific content was 
either readily accessible or required additional filtering 
from the complete dataset. The downloaded dataset 
underwent manual filtering to ensure its relevance to liver 
toxicity. Throughout the annotation process, PubChem 
Compound Identifiers (CIDs), widely used across most 
databases, were employed. In cases where assigning 

Fig. 1 An overview of the HTP database, illustrating the development of the knowledgebase, prediction module, and web portal
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a unique PubChem CID was unclear, PubChemPy 
(ver.1.0.4), a tool for retrieving related compound data 
using various substance identifiers, was utilized. The 
detailed curation processes varied due to disparities in 
available data across databases (Supplementary Fig. S1). 
The specific quantities of data before and after filtering is 
outlined in the Supplementary Materials.

MedDRA annotation
To describe biological activities with standardized vocab-
ularies, we utilized the Medical Dictionary for Regulatory 
Activities (MedDRA) terms [43] to annotate documents 
and references aggregated from nine databases. MedDRA 
is an international medical ontology that supports a wide 
range of pharmaceutical and medical subject structured 
into four hierarchical levels under the System Organ 
Class (SOC) (Supplementary Fig. S2). The MedDRA 
ontology was accessed via BioPortal (BioPortal Med-
DRA 2019AB, accessed 2019.11.18). The four levels of the 
MedDRA structure consist of High-Level Group Terms 
(HLGT), High-Level Terms (HLT), Preferred Terms (PT), 
and Lowest Level Terms (LLT). For annotating references 
related to hepatotoxicity, we focused on SOC-level terms 
‘Hepatobiliary disorders’ and ‘Investigations’, extract-
ing their sub-hierarchical data from BioPortal. Under 
‘Hepatobiliary disorders’, we selected five HLGT terms: 
‘Hepatic and hepatobiliary disorders’, ‘Hepatobiliary neo-
plasm’, ‘Bile duct disorders’, ‘Gallbladder disorders’, and 
‘Hepatobiliary investigations’. Additionally, to include lab-
oratory blood tests for liver function, we chose the HLGT 
term ‘Hepatobiliary investigations’ under ‘Investigations’. 
We then utilized HLT and PT level terms within these 
selected HLGT terms to classify each reference in detail. 
Each HLT-PT set was paired to ensure precise clustering 
and annotation of data. To maintain focus on liver toxic-
ity, we limited the inclusion of terms related to bile duct 
or gallbladder to one HLT-PT set per organ (i.e. ‘Bile duct 
disorders’- ‘Bile duct disorders’ and ‘Gallbladder disor-
ders’- ‘Gallbladder disorders’). Furthermore, recogniz-
ing the clinical complexity, we selected the HLGT term 
‘Hepatobiliary neoplasms’ to cover terms related to liver 
cancer at the PT level.

Calculation of the hepatotoxicity score
Due to the heterogeneous nature of information 
resources, estimating the reliability and relevance 
of records to hepatotoxicity poses challenges. To 
consolidate multiple records into a single metric, we 
developed a scoring system that assigns higher weights 
to clinical references over in  vitro and in  vitro data. In 
our classification of references, we assigned arbitrary 
weights of 3 for clinical evidence, 2 for in vivo evidence, 
and 1 for in  vitro evidence. The overall hepatotoxicity 

score for a compound (c) is calculated as the weighted 
sum of contributions from all records across nine source 
databases, taking into account whether each record has a 
positive or negative impact on hepatotoxicity:

where: nc , number of records for compound c; 
signc(i) ,  + 1 or − 1 according to whether the record 
describes positive or negative evidence of hepatotoxicity; 
weightc(i) , 3, 2, or 1 for clinical, in vivo, or in vitro evi-
dence, respectively.

Conflicting records within a database are excluded 
from the sum (i.e., given a weight of zero). This scor-
ing system allows us to assess the overall hepatotoxicity 
potential of a compound based on aggregated evidence 
from diverse sources while considering the varying qual-
ity and type of data provided by each database.

HTP‑KB contents and statistics
The integration of nine databases followed by manual 
curation and scoring has resulted in the creation of the 
most comprehensive knowledgebase on hepatotoxicity. 
We provide a brief overview of the statistics for the 
HTP-KB contents, including evidence classes, source 
databases, annotation levels, and overall hepatotoxicity 
scores in Fig.  2. Additionally, the detailed contributions 
and compound overlaps from each database are 
presented in Supplementary Fig. S3. All statistics are 
based on the PubChem CIDs.

HTP-KB includes a total of 8306 compounds curated 
manually into three classes by toxicology experts. There 
are 2260 (27.2%) entries supported by clinical evidence, 
significantly surpassing entries found in LiverTox or DIL-
Irank (Fig.  2a and b). Entries supported by in  vitro evi-
dence constitute the largest portion, with 6472 (77.9%) 
compounds, indicating that HTP-KB has substantially 
broadened the scope of hepatotoxic compounds by incor-
porating in vitro evidence.

Analyzing the source databases of the records, 2260 
entries in the clinical class are distributed across data-
bases such as LiverTox (1005), T3DB (890), SIDER (748), 
and DILI (669) (Fig.  2b). CEBS contributes the larg-
est collection of in  vivo evidence, albeit representing a 
smaller portion of the knowledgebase. Almost all in vitro 
evidence is sourced from InvitroDB.

Next, we examine the distribution of the hepatotoxicity 
scores within our database, ranging from −  7 to + 16 
(Fig.  2c). The histogram plot showed a skewed 
distribution towards the positive side, likely because it 
is generally easier to determine positive hepatotoxicity 
compared to negative hepatotoxicity based on 

(1)Sc =

nc∑

i=1

signc(i)× weightc(i)
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experimental or literature evidence. Overall, HTP-KB 
includes 5379 compounds with positive scores and 2843 
compounds with negative scores in terms of overall 
hepatotoxicity.

Annotation using MedDRA terms provides valuable 
insights into biological functions. Our annotation of 
hepatotoxicity utilizes a combination of High-Level Term 
(HLT) and Preferred Term (PT) terms from MedDRA 
terminology. The largest portion of the HLT terms is 
attributed to ‘Hepatocellular damage and hepatitis NEC’ 
(30%), encompassing various PT terms such as ‘Hepato-
toxicity’, ‘Hepatitis’, ‘Liver injury’, and ‘Hepatic necrosis’ 
for sub-level categorizations (Supplementary Fig. S4). 
Other significant HLT terms include ‘Cholestasis and 
jaundice’ (14%), ‘Hepatic enzymes and function abnor-
malities’ (14%), and ‘Hepatic and hepatobiliary disorders 
NEC’ (13%). Cancer-related terms such as ‘adenoma’ and 
‘carcinoma’ contributed to a relatively small portion (5% 
and 5%, respectively).

Development of HTP‑Pred model
Pre‑processing the HTP‑KB dataset
To prepare the training and test data for the HTP-Pred 
model, we further curated the original HTP-KB dataset 
through additional pre-processing steps. Specifically, the 
data were re-labeled into binary classes as either hepa-
totoxic or non-hepatotoxic compounds after excluding 
molecules with fewer than three or more than 60 heavy 
atoms. Merging diverse hepatotoxicity datasets often 
results in data entries with conflicting labels. Excluding 
all such entries affects the model performance adversely 
due to insufficient amount of training data or overfitting 
limited amount of data. To address this, we resolved label 
conflicts by prioritizing the source database in the follow-
ing order of reliability: clinical, in vivo, and in vitro. Addi-
tionally, we excluded ambiguous cases when the evidence 
for a compound contradicts each other at the same level 
of reliability. This approach ensures the model is trained 
on higher-confidence data while maintaining a sufficient 
number of data points. For evaluating robustness of the 
model upon imbalanced dataset, we employed stratified 
tenfold cross-validation to calculate the average perfor-
mance score and standard deviation. Additionally, for 

Fig. 2 Statistics of HTP‑KB data. a Venn diagram of compounds with clinical, in vivo, and in vitro evidences. b Distribution of different classes 
of evidence records across source databases. Note that each compound may be annotated in multiple databases. c Histogram of overall 
hepatotoxicity score for all compounds in HTP‑KB. Note that the frequency values are on a log2 scale to visualize the distribution effectively
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comparison with other hepatotoxicity prediction tools, 
we conducted hold-out validation. The dataset was split 
into training, validation, and test sets in an 8:1:1 ratio, 
maintaining an equivalent positive-to-negative class dis-
tribution. This split resulted in 5592 compounds in the 
training set, 699 in the validation set, and 700 in the test 
set.

Fine‑tuning MolCLR with the HTP‑KB dataset
Next, we developed a hepatotoxicity classification model 
by fine-tuning a pre-trained graph neural network (GNN) 
model (Fig. 3). Pre-trained deep learning models on large 
amount of data are widely employed as foundational 
frameworks for various downstream tasks, particularly 
in cases with limited labeled data [44, 45]. Hepatotoxicity 
prediction is one such case; despite rigorous data 
curation from diverse databases, training a model solely 
on the HTP-KB dataset is insufficient to capture a broad 
chemical space. To address this limitation, we employed 
MolCLR [46], a pre-trained GNN utilizing self-supervised 
learning techniques. MolCLR leverages approximately 10 
million unique molecules from PubChem for contrastive 
learning task, enabling it to learn generalizable molecular 

representations. This approach allows the model to adapt 
to downstream tasks of molecular property prediction, 
demonstrating superior performance on both regression 
and classification benchmarks. Accordingly, we fine-
tuned the base GNN model of MolCLR on the HTP-KB 
dataset, compensating for data scarcity and enhancing 
hepatotoxicity prediction.

We utilized either a graph convolutional network 
(GCN) [47] or graph isomorphism network (GIN) [48] 
as the GNN backbone for the pre-trained model, with 
pre-trained parameters provided by the original MolCLR 
implementation. For the binary classification task, we 
appended a randomly initialized multi-layer perceptron 
(MLP) prediction head to the pre-trained GNN feature 
extractor module. Following MolCLR’s training protocol, 
we fine-tuned the model for 100 epochs, using an initial 
learning rate of 1× 10−4 for the base model and 5× 10−4 
for the prediction head. The resulting fine-tuned model 
was named HTP-Pred.

The performance of HTP-Pred is summarized in 
Table  2. As baselines, we used molecular descriptors 
from InterDILI [49] to build input features and applied 
machine learning (ML) methods, including support 

Fig. 3 Structure of HTP‑Pred model
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vector machine (SVM), random forest (RF), and logistic 
regression, for classification. For SVM, we tested three 
kernel types: linear, polynomial, and radial basis function 
(RBF). Additionally, we conducted an ablation study 
on pre-training by training the backbone model from 
scratch. We also compared the performance of GCN- 
and GIN-based pre-trained models. AUROC scores were 
used as an evaluation metric, which captures the binary 
classification performance across different thresholds. 
Among the ML-based methods, RF achieved the best 
performance, consistent with the results from InterDILI. 
However, even without pre-training, the GNN-based 
classifiers outperformed the baseline ML models in terms 
of AUROC scores. Between the two backbones, GIN 
consistently outperformed GCN. Fine-tuning MolCLR 
further improved GIN-based performance, achieving the 
best AUROC score of 0.772. These results demonstrate 
that the pre-trained GIN-based MolCLR effectively 

captures informative molecular representations, leading 
to superior hepatotoxicity prediction.

Next, we evaluated the concordance between HTP-
Pred predictions and the hepatotoxicity curation scores 
from HTP-KB, using the model trained on the hold-out 
validation set. Compounds in HTP-KB were categorized 
into three groups based on their hepatotoxicity scores: 
hepatotoxicity negative (KB score: −  7 to 0), moderately 
positive (KB score: 0 to 7), and highly positive (KB 
score: > 7). Compounds in the negative group exhibited 
significantly lower HTP-Pred scores compared to those in 
the positive groups, indicating that HTP-Pred effectively 
distinguishes hepatotoxicity-negative compounds from 
hepatotoxicity-positive ones (Supplementary Fig. S5). 
However, the moderately positive and highly positive 
groups showed similar score distributions, likely because 
the model was trained to predict the binary presence or 
absence of hepatotoxicity rather than specific score values.

Additionally, we compared HTP-Pred’s performance 
against previous liver toxicity prediction tools for com-
pounds (Table 3). Although we aimed to use the full test 
set of 700 compounds, some tools were limited by input 
constraints, restricting the comparison to 644 overlap-
ping compounds. The list of these compounds is avail-
able in the model repository, alongside the model scripts 
(https:// github. com/ Wonho Zhung/ HTP_ Pred). The 
results demonstrate that HTP-Pred outperforms existing 
toxicity prediction tools, likely due to the combination 
of a robustly curated dataset and advanced deep learn-
ing techniques, including the GIN-based molecular rep-
resentation and fine-tuning of a GNN model pre-trained 
on large, unlabeled datasets. Further details on this com-
parative analysis can be found in the Supplementary 
materials.

Table 2 Hepatotoxicity prediction performance of ML‑based 
baseline models and HTP‑Pred models with different pre‑training 
method, with stratified tenfold cross‑validation

Best AUROC score shown in bold

Models Pre‑training method AUROC

SVM (linear) None 0.638 ± 0.015

SVM (polynomial) None 0.538 ± 0.009

SVM (RBF) None 0.658 ± 0.017

RF None 0.677 ± 0.011

Logistic regression None 0.633 ± 0.022

HTP‑Pred‑GCN None 0.755 ± 0.020

MolCLR 0.740 ± 0.023

HTP‑Pred‑GIN None 0.763 ± 0.021

MolCLR 0.772 ± 0.019

Table 3 Performance comparison with existing prediction tools using 644 overlapping compounds

a Unable to specify the liver-specific training dataset or model algorithm

Models
(Prediction tool)

Liver toxicity data Algorithm Accuracy AUROC References

ProTox [37] 3
(Webserver)

LiverTox RF 0.457 0.549 [37]

ToxSTAR 
(Webserver)

DILIrank, PharmaPendium SVM, RF 0.534 0.495 [31]

eMolTox
(Webserver)

38/174 journal survey dataset RF 0.598 0.553 [39]

admetSAR
(Webserver)

–a –a 0.624 0.498 [38]

Hepatopred‑EL
(Webserver)

DILIrank, FDA orange book Ensemble
(RF, SVM, XGB)

0.618 0.558 [29]

DeepDILI
(Code‑based)

DILIst, DrugBank, Wikipedia, FDALabelDB Ensemble
(LR, KNN, XGB, RF, SVM)

0.620 0.586 [32]

HTP‑Pred 9 Datasets GIN 0.717 0.761

https://github.com/WonhoZhung/HTP_Pred
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Hepato‑toxicophore calculation
To enhance our comprehension and explainability of 
hepatotoxicity predictions for small molecules, it is 
essential to identify the contributions of individual 
atoms or substructures within a molecule. Gradient-
based methods [50, 51], originally developed to assess 
pixel contributions in image-based predictions, were 
adapted for use with the HTP-Pred model. For a given 
molecular graph G , each atom a is represented as a node 
feature Xa ∈ R

F , where F  denotes the feature dimension. 
To determine the contribution of each atom to the 
prediction, we first compute the absolute gradient of 
the prediction output yG , with respect to the input node 
features:

where c̃(G, a) represents the unnormalized contribu-
tion score for atom a . Next, these scores are normalized 
across all atoms in the molecule to obtain the atom con-
tribution score c(G, a):

This approach quantifies the contribution of each atom 
or substructure to the model’s prediction outcome, ena-
bling the identification of hepato-toxicophores (toxic 
substructures) within the input molecule. Note that the 
unnormalized contribution score is positive, so the nor-
malized atom contribution score ranges between 0 and 1.

To define toxicophores, we used a set of SMiles ARbi-
trary Target Specification (SMARTS) patterns derived 
from Yang et  al. [52], which employ a cheminformatics 
language for describing chemical patterns. RDKit func-
tions were utilized to search for these substructure pat-
terns within each compound. Atom contribution scores 
obtained earlier were summed for each pattern’s corre-
sponding atoms to derive an overall score c(G,S) for each 
substructure S:

where V (S) represents the set of atoms comprising 
substructure S . The score of substructures, identified 
through toxicophore SMARTS matching, can also range 
from 0 to 1, indicating the contribution of the substruc-
ture to the model’s decision. This methodology enabled 
the identification of key toxicophores by ranking sub-
structures based on their overall scores. These ranked 
toxicophores provide insights into the molecular features 
most critical for hepatotoxicity prediction.

c̃(G, a) =

F∑

i=1

∣∣∣∣
∂yG

∂Xa,i

∣∣∣∣,

c(G, a) =
c̃(G, a)∑
bc̃(G, b)

.

c(G,S) =
∑

a∈V (S)

c(G, a),

HTP Database and web server implementation
Database construction
PubChem CID was utilized as the primary identifier for 
each compound to efficiently link specific contents from 
individual databases with overall curation summary 
results. Additionally, sample IDs were created for 
references from their respective databases, formatted 
as numeric identifiers prefixed with the abbreviated 
database name. An SQL file was compiled to consolidate 
all database sample IDs with the main PubChem CID, 
integrating additional molecular properties and the 
corresponding HTP-Pred results. The web server 
operates by querying this comprehensive SQL file, 
ensuring seamless access to integrated data.

Web interface overview
The HTP web interface is designed to provide users with 
accessible and comprehensive information on chemical 
hepatotoxicity. The ‘Search’ section allows users to iden-
tify compounds through various methods, supporting 
multiple chemical ID formats and featuring visual repre-
sentations of chemical structures for enhanced usability. 
An integrated statistics page presents a summary of the 
dataset, offering users a broad and detailed view of hepa-
totoxicity data coverage. The ‘Downloads’ section allows 
users to download the entire curated dataset or specific 
subsets from individual databases, enabling further anal-
ysis and research. To assist users in navigating and utiliz-
ing the HTP web server effectively, detailed instructions 
and usage guidelines are provided on the ‘Help’ page. 
This user-friendly interface ensures streamlined access to 
hepatotoxicity data for research and exploration.

Compound searching and browsing
In the ‘Search’ module, users can search for chemical 
compounds either by querying compound IDs or 
by drawing chemical structures (Fig.  4). Alongside 
PubChem CID, the primary identifier, we support diverse 
ID formats such as general compound names, IUPAC 
names, SMILES, CASIDs, and molecular formulas. 
Users have the option to choose between exact matching 
results or explore structurally similar or substructural 
compounds as per their needs. Additionally, users can 
input their original molecules using the JSME molecule 
editor. In cases where no matching compound is found in 
HTP-KB, only the HTP-Pred result is displayed, which is 
further detailed in the result interface section.

Alternatively, users can utilize the ’Statistics’ module 
to explore overall data across each database and select 
preferred compounds. While this page provides com-
prehensive statistics for our data, clicking on each data-
base name directs users to a detailed data browsing table. 
The result table includes user-friendly filtering options 
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via a selection bar adjacent to the table, allowing users 
to obtain a filtered list of compounds within each data-
base. Each table entry features basic identifiers such as 
PubChem CID, SMILES, InChI, and InChI Key, along-
side all unique lists of matched High-Level Terms (HLT). 
Clicking on any row navigates users to the specific com-
pound result page.

HTP‑KB result page
The HTP-KB result for the queried compound consists 
of several active subpages (Fig.  5). At the top of each 
HTP-KB subpage, a color bar indicates the overall 
hepatotoxicity score of the queried compound relative to 
the score distribution.

In the center of the page, a main table allows users to 
quickly assess the hepatotoxicity references from each 
database, along with their corresponding importance 
classes. Colored compartments within the table signify 
the characteristics of the data: red for hepatotoxic and 
blue for non-hepatotoxic. Clicking on each activated 
compartment reveals detailed results at the bottom of the 
screen.

Each database subpage varies in format due to 
distinct characteristics and evidence information for 
hepatotoxicity determination. However, all subpages 
include links to the original database web server and 
annotated MedDRA toxicity classification terms at the 

top. Even within a single database, multiple reference 
buttons may be provided to display results corresponding 
to various MedDRA terms. Clicking these buttons shows 
the main evidence sentence and overall data used for 
MedDRA term decisions. For databases such as ATSDR, 
DILI, LiverTox, and IRIS, which offer PDF-formatted 
files as resources, pages containing relevant sentences are 
prioritized, with additional pages accessible by scrolling 
through the embedded PDF file. If a database’s primary 
data file is in CSV format (e.g., CEBS and InvitroDB), 
a subpage presents a table with selectable columns. 
Initially, pre-selected columns are displayed, but users 
can customize the view by selecting columns of interest. 
Some databases follow different formats not covered 
above. For instance, T3DB highlights crucial sentences 
related to data decisions among multiple sections on its 
subpages, while SIDER provides all MedDRA-related 
reference files. DrugBank presents only the critical 
sentence used in toxicity determination directly.

HTP‑Pred result page
Another significant output of HTP is the prediction 
result generated by the HTP-Pred module (Fig.  6). 
The primary toxicity prediction score, displayed at the 
upper right part of the figure, indicates the likelihood 
of hepatotoxicity. This score is represented as a green 
dotted line on a plot showing the distribution of 

Fig. 4 User interface for compound searches. The figure illustrates example pages for searching and browsing compounds. Users can query 
compounds using several ID types or the JSME molecular editor. The search results screen allows users to select exact matching compounds, similar 
compounds, and substructural compounds through various options. The ‘Statistics’ menu provides access to individual database‑wise browsing 
tables, allowing users to filter by toxicity class and score options. It also includes basic ID information and molecular properties for each compound. 
Upon final selection, users are presented with two main pages: HTP‑KB search results and HTP‑Pred results
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prediction scores for HTP-KB compounds. To aid 
in assessing the confidence of the prediction result, 
HTP-KB compounds are categorized into three 
hepatotoxicity classes based on overall curation scores: 
negative (−  7 to 0), moderately positive (0 to 7), and 
highly positive (7 to 16). This categorization assists 
users in interpreting the prediction score relative to 
established thresholds for hepatotoxicity classification.

On the left side of the page, the compound structure 
is displayed, with each atom’s importance score depicted 
in contours. A detailed table at the bottom of the fig-
ure specifies the importance score for each atom, high-
lighting the primary atom responsible for predicting the 
hepatotoxicity score. The lower part of the subpage pre-
sents the toxicophores result, accompanied by a detailed 
table on the right side. This table outlines the identified 
patterns of the toxicophore in SMARTS format, includ-
ing the origin of SMARTS patterns, numerical identifiers, 
and a summation score derived from atom importance 

scores. Multiple toxicophores may correspond to the 
same SMARTS pattern, each identified with a distinct 
numerical identifier. Users can conveniently verify the 
location of each pattern highlighted on the compound by 
clicking the respective rows in the table.

Discussion and conclusions
The HepatoToxicity Portal (HTP) represents a pioneering 
effort in consolidating comprehensive hepatotoxicity 
data and advancing predictive modeling using state-of-
the-art techniques. Both the knowledgebase (HTP-KB) 
and prediction modules (HTP-Pred) are designed to 
address critical gaps in understanding and predicting 
drug-induced liver injury. HTP-KB stands out for 
its extensive content and expert curation, classifying 
evidence into clinical, in vivo, and in vitro categories. A 
unique hepatotoxicity scoring system aggregates data 
from multiple sources into a unified metric, providing 

Fig. 5 HTP‑KB result of queried compound. a Users can expand the compound’s property information on the left side. A question mark icon 
next to the overall score explains score calculation, with a yellow triangle indicating its relative position on the color bar. Colored blocks in the main 
database table denote available curation sources. Selection of a database highlights it in yellow, revealing detailed information in distinct formats 
on subpages. b InvitroDB in CSV format, and c LiverTox in PDF format
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researchers across disciplines with a comprehensive 
overview of hepatotoxic compounds.

HTP-Pred leverages the pre-trained GIN model, Mol-
CLR, which is trained on approximately 10 million unla-
beled molecular data from PubChem and fine-tuned 
on the curated HTP-KB dataset. Comparative evalua-
tion demonstrates superior performance compared to 
traditional ML-based baselines and other web servers 
for hepatotoxicity prediction. Additionally, HTP-Pred 
supports the identification of toxicophores, enabling 
researchers to pinpoint specific molecular features con-
tributing to hepatotoxicity predictions, thereby aiding 
informed decision-making in drug design and optimiza-
tion. However, the model may face intrinsic biases aris-
ing from the merged databases and the model itself. 

Quantifying and distinguishing aleatoric and epistemic 
uncertainties would provide deeper insights into the 
hepatotoxicity prediction results.

The HTP web interface provides intuitive access to 
curated data and predictive models, facilitating seam-
less navigation for users seeking detailed compound 
information on hepatotoxicity. It includes robust search 
functionalities and offers comprehensive curated infor-
mation from HTP-KB along with prediction results from 
HTP-Pred.

Looking forward, ongoing updates and enhancements 
to HTP promise to refine predictive capabilities and 
expand database coverage, meeting evolving research 
needs in toxicology and pharmacology. HTP is poised 
to make a lasting impact on pharmaceutical research by 

Fig. 6 Result page of HTP‑Pred. The HTP‑Pred result pages illustrate the predicted toxicity score and the contribution of each atom to toxicity 
assessment. a The HTP‑Pred score is displayed with the distribution plot in the upper section. Additionally, the atomic importance scores are visually 
represented on the compound structure plot. b The toxicophore list is accessible through the table with visual representation on the compound 
structure. Columns include the SMARTS pattern, its source database, and the overall importance score of the substructure. The ‘Number’ column 
enumerates instances where multiple substructures correspond to a single SMARTS pattern. Users can interactively highlight specific substructures 
on the compound plot by selecting corresponding rows in the table
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providing critical insights into liver toxicity mechanisms 
and facilitating the development of safer and more effec-
tive therapeutic agents.

In conclusion, HTP represents a significant advance-
ment in toxicology and drug development. By inte-
grating curated data from multiple databases and 
employing cutting-edge predictive models, HTP offers 
a comprehensive resource for assessing hepatotoxic-
ity risks associated with chemical compounds. Its abil-
ity to merge sophisticated data curation with advanced 
deep learning methodologies underscores its potential 
to enhance drug safety evaluation and accelerate thera-
peutic innovation. In summary, HTP exemplifies the 
transformative potential of integrating curated data and 
advanced computational techniques, paving the way 
for enhanced drug safety assessment and biomedical 
research.
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