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Abstract 

In this manuscript we present the strategy for modeling photoswitch properties (maximum absorption wavelength 
and thermal half-life of photoisomers) of visible-light azo-photoswitches using structural data. We compile a compre-
hensive data set from literature sources and perform a rigorous benchmark to select the best feature type and mod-
eling approach. The fragment counts have demonstrated the best performance in the benchmark for both properties. 
We validate the models in cross-validation and on an external set. The predictions of absorption wavelengths for this 
set are highly accurate; on the other hand, the model for thermal half-life is less reliable, likely due to the modest 
size of the data set related to half-life of photoisomers, although consensus modeling approach allows to improve 
the predictivity. We also provide an interpretation of the modeling results using ColorAtom approach and the insights 
into the chemical space covered by the data set.

Scientific contribution The paper provides a machine learning approach based only on structural features to predict 
two important photoswitch properties. Unlike previous studies, we do not use any quantum chemical features which 
accelerates the modeling procedure, while the accuracy of models remains high. Moreover, the fragment counts offer 
unique approach to model interpretation that is useful for rational design of photoswitches with desired properties.

Keywords  Photoswitches, Azobenzene, Quantitative structure–property relationship, Machine learning, Molecular 
descriptors

Introduction
Photoswitches are a category of compounds whose chem-
ical structures and properties can be changed by light 
irradiation [1]. The photochemically generated species 
(photoisomers) are less stable and hence can be reverted 
to more stable species thermally or via a reverse photoi-
somerization. In the field of photoswitches, the wave-
length with the maximum light absorption (λmax) and the 
thermal half-life of a metastable photoisomer (t1/2) decide 
their use in various applications in material science and 
biology [2]. For instance, the well-known azobenzene 
photoswitch has λmax of 320 nm and hence requires UV 
light for light-induced changes (trans to cis photoisomer-
ization). However, the UV light is harmful to the living 
beings as it damages biological cells and its penetration 
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ability to the deep tissue is very low compared to green 
and yellow lights in the visible region. Thus, for biological 
applications such as photopharmacology, where the drug 
action is controlled by the light, visible-light responsive 
photoswitches are required [3]. Moreover, photoswitches 
having long λmax and long t1/2 of meta-stable photoiso-
mers are useful for various applications. However, some 
studies [4, 5] show that introducing particular substitu-
tion patterns may lead to inverse proportionality of λmax 
and t1/2, thus, the design of visible-light photoswitches 
would require careful consideration of structural patterns 
to avoid this effect. So far, experimentalists heavily rely 
on the time-consuming density functional theory calcu-
lations to estimate the λmax and t1/2 properties of pho-
toswitches [6–8]. We envisioned to develop a machine 
learning model to accurately predict the λmax and t1/2 
properties focusing on the visible-light photoswitches.

Previously constructed machine learning (ML) models 
were focused on the broad category of azo-dyes with the 
prediction of single parameter such as λmax [9]. Another 
important parameter of photoswitches is the photoi-
somerization quantum yield, which can be predicted 
by a neural network machine learning model [10]. Very 
recently, ML-based model also developed for the pre-
diction of thermal half-lives of azobenzene derivatives, 
though the authors used the data obtained in quantum 
mechanical calculations as a training set [11]. In the cate-
gory of photoswitches, prediction of multiple parameters 
such as λmax at two electronic excitations (π → π* transi-
tion of trans and cis isomers) has been investigated using 

a multi-output Gaussian process model and molecular 
fingerprints (FP) [12]. Such structural descriptors derived 
directly from 2D representations of molecules allow for a 
significant acceleration of the modeling process. Indeed, 
the authors report to have achieved comparable predic-
tive accuracy to time-dependent density functional the-
ory (TD-DFT) calculation with reduced inference time 
on a curated data set consisting of the λmax of trans and 
cis isomers of various photoswitches.

However, to the best of our knowledge, accurate pre-
diction of two different parameters such as λmax and t1/2 
properties in a standalone machine learning model based 
on structural features has not been achieved. In this 
paper, we present a computational study on visible-light 
photoswitches, employing quantitative structure–prop-
erty relationship (QSPR) modeling to predict two crucial 
properties, λmax and t1/2 (Fig. 1). We compile a compre-
hensive data set from literature sources and perform a 
rigorous benchmark study in order to select the struc-
tural descriptors that would be the most appropriate to 
predict these properties. The accuracy of obtained ML 
models is also validated externally on a pre-selected test 
set. We also discuss the interpretability and the applica-
bility domains of these models, as well as the challenges 
the endeavors of such modeling face.

Data and methods
Data collection and curation
The basis for the predictive models in this work is liter-
ature data. The data on the absorption properties is the 

Fig. 1  General workflow of the study. Literature data set of azobenzenes and azoheteroarenes is used for the benchmark of models built 
on a variety of molecular fingerprints and fragment count descriptors. The best performing model is selected via cross-validation and validated 
on an external test set
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most abundant; on the other hand, there are no large 
publicly available datasets that contain curated experi-
mental data on the isomerization of azo-photoswitches. 
Following entries make part of the integrated data set: (1) 
191 azobenzene dyes reported in [13, 14]; (2) 212 vari-
ous heteroaryl dyes with spectra measured in ethanol, 
reported in [9]; (3) 91 heteroaryl dyes with spectra meas-
ured in acetonitrile, reported in [15–21]; (4) 80 molecules 
with both λmax and half-life time measured, reported in 
[5, 22, 23]; (5) photoswitch data set reported in [12], con-
taining azo-photoswitches with a variety of experimen-
tally measured properties, including absorption maxima 
and isomerization rate. All data in the sources is anno-
tated by room temperature or explicitly 25 ℃. Moreo-
ver, while most data sources explicitly indicate the stable 
isomer, some entries lack this information. For modeling 
purposes, we assume that the E-isomer is the more stable 
form for all azo-photoswitches in the dataset. The struc-
tures where this is not explicitly stated are labeled as “E*”. 
More detailed description of sources and data is available 
in SI.

It should be noted that not all properties are reported 
for each compound in these sets. We have performed 
an additional curation to merge all available data into a 
single data set. For merging, chemical structures were 
compared between all sets. In the case of duplicates, 
the most recent or the most complete (containing more 
reported properties) data was kept. In total, there are 798 
unique compounds with measured λmax, and 134 with 
measured t1/2. We have divided our data based on their 
properties (wavelength and half-life) into two sets: 90% 
for cross-validation (CV), hyperparameter optimization 
and training (718 and 120 data points for λmax and t1/2, 
respectively), and 10% for external validation (80 and 14 
data points for λmax and t1/2, respectively). The separation 

of data sets was performed randomly, with stratification 
by property values, so that the full range of values would 
be present in both training and test sets (see Fig.  2 for 
the property distribution in each set). The full data set is 
available in Additional file 2.

Model hyperparameter optimization and modeling
To build a robust QSPR model, compounds need to be 
represented as relevant numerical parameters—molecu-
lar descriptors. It is impossible to know in advance which 
descriptors will provide the best predictivity. Most often, 
the choice of the best descriptors is done via a rigor-
ous benchmark study. While prediction of photoswitch 
properties, especially the isomerization rate and half-life, 
would intuitively benefit from the knowledge of 3D struc-
tures, the data that is used in this work does not reflect 
any conformational information. Therefore, we only con-
sider several types of 2D structural descriptors, includ-
ing CircuS and ChyLine fragments [24], Morgan [25], 
Atom pairs [26], Avalon [27], and native RDKit FP [28]. 
Molecular FP are binary features (they only take values 
0 or 1) commonly used in QSPR modeling, especially for 
biological activities [29]. Morgan, or extended circular, 
fingerprints encode a structure by presence/absence of 
substructures of circular topology (atom and neigboring 
environment of a certain radius). It is also possible to gen-
eralize such representation further by using chemical fea-
tures (aromaticity, H-bond donor/acceptors, etc.) instead 
of atom symbols, herein called Morgan features. Native 
RDKit FP similarly encode the substructures of linear and 
branched topologies. Like Morgan FP, aditional degree of 
generalization may be introduced by “layering” the sub-
structures with different information (topology, aroma-
ticity, bond orders, ring sizes, etc.), further referenced as 
“RDKit FP layered”. Atom pairs generally contain the least 

Fig. 2  The histograms of the distribution of λmax and logt1/2 in the training and test sets
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information: only pairs of atoms with distances (num-
ber of bonds) between them are recorded. Avalon FP 
account for a variety of structural information, although 
this information is unavailable externally via the RDKit 
library. Fragment descriptors, like Circular Substruc-
tures (CircuS) and Chython Linear (ChyLine) fragments 
that we use here, improve on the information content of 
the features by recording the actual count of substruc-
tures that each descriptor represents. We have previously 
shown that CircuS descriptors outperform FP in other 
tasks [24]. Details on the parameters for each type of 
descriptors are available in Additional file 1. All models 
also include a preprocessing step that removes features 
with zero variance and scales the features to the range of 
0 to 1.

The machine learning algorithm of choice here was 
Support Vector Machines (SVM) [30], as it is capable 
of handling smaller data sets with high precision due to 
high customizability of the fitting function (for results 
of other methods in the benchmarks, see Additional 
file 1). However, such adaptability also requires rigorous 
optimization of method hyperparameters, including the 
descriptor space. To tackle this, we employ the in-house 
optimization library—DOPtools [31]—that uses well-
established optimization strategies to identify the optimal 
hyperparameters for the ML model. The construction 
and evaluation of these models adheres to best practices 
in cheminformatics [32]. A repeated 10-fold CV strategy 
was carefully applied during hyperparameter optimiza-
tion, serving as a robust means of assessing the model’s 
predictive performance. The performance is statistically 
evaluated by Root Mean Square Error (RMSE) and deter-
mination coefficient R2 on the test set predictions:

where N is the number of points in the set, yobs,i is the 
experimentally observed value of the ith data point, ypred,i 
is the predicted value of the ith data point, and ŷobs,i is the 
average observed value across the set.

The analysis of chemical space is performed using 
UMAP method [33] in Python 3.10. The interpretation 
of the model is done using ColorAtom method [34] as 
implemented in the DOPtools library. ColorAtom calcu-
lates the weights of fragments as partial derivatives of the 
model predictions. The atoms accumulate the weights 
of the fragments they participate in, which eventually 
are summed up to calculate the atomic contribution. 

RMSE =

1

N

∑

N

(
yobs,i − ypred,i

)2

R2
= 1−

∑
N

(
yobs,i − ypred,i

)2
∑

N

(
yobs,i − ŷobs,i

)2

The visualization of these atomic contributions allows 
to see which parts of the molecule have the highest con-
tribution to the prediction. The code for the analysis of 
benchmark and modeling results is available in GitHub 
repository.

Results and discussion
Prediction of λmax
The model for the prediction of λmax was based on the 
ensemble of data with experimentally measured spectra, 
798 compounds in total. The benchmark study on molec-
ular descriptors was performed along with the hyperpa-
rameter optimization, so that every type of descriptors 
achieves the best possible predictivity in CV. The results 
can be seen in the Fig. 3. Here, the CircuS and ChyLine 
fragments show the best performance. Both types are 
based on the fragment enumeration, with the difference 
in the substructure topologies. CircuS fragments count 
the number of occurrences of circular fragments, and 
ChyLine—of linear fragments, improving the informa-
tion content over molecular fingerprints. The accuracy 
of predictions here is on par with the state-of-the-art 
approaches reported elsewhere (e.g., Griffiths et al. [12], 
which is the largest model to-date, report RMSE of 
20.9  nm vs 21.6  nm in cross-validation for our model. 
Note that the scores are not directly comparable, as they 
report random train/test splits instead of CV).

Note that this model does not consider the physico-
chemical parameters of the solvents, although the sol-
vents may have a considerable effect on the absorption of 
photoswitches [35]. Since not all data points in the data 
set presented here are annotated by the solvent in which 
the measurements are performed, building a model with 
solvent parameters included would reduce the size of the 
data set significantly. Still, we have performed such mod-
eling, and the results are very similar to the model above 
(R2 = 0.907, RMSE = 21.7 nm in CV); the details are avail-
able in Additional file 1.

Prediction of t1/2
We use the half-life (in s) measurements in logarithmic 
scale in predictive models due to the extremely wide 
range of values in a non-logarithmic scale. The photos-
witch data set provides the values of the isomerization 
rate, which were transformed into t1/2 according to the 
first-order kinetic equation. The total number of data 
points for the model training was 134. Modeling followed 
the same protocol as described above. The benchmark 
was performed on models built only using structural 
parameters of the compounds, and the results are shown 
in Fig.  4 below. As the figure shows, the best model 
was built on linear ChyLine fragments, although the 
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performance is overall quite poor (R2 = 0.584 in CV and 
0.482 in external validation).

One way to overcome weak predictions by an individ-
ual model is using consensus modeling [32], i.e., averag-
ing the predictions made by several models. This allows 
to complement the initial model’s bad predictions by the 

insights of another model, thus, hopefully, reducing the 
errors of predictions for outliers. In this case, we have 
started by calculating consensus predictions of the best 
model (ChyLine) with the second best (RDkit layered FP) 
and have observed a great improvement of the results, 
especially for two notable outliers by the middle of the 

Fig. 3  Descriptor benchmark results (left) for the model predicting λmax. Each boxplot represents the distribution of scores (RMSE, in nm) for 10 
repeats of CV on the training set with random shuffling (white square for the mean score, the box for the interquartile range IQR, whiskers for 1.5 
IQR, other points are outliers). The best model was obtained on CircuS fragments, achieving R2 = 0.907 in CV and R2(test) = 0.905 on an external test 
set, the observed vs predicted plot (right) shows the CV and external results for this model. Error bar on the points indicated the standard deviation 
of the prediction across CV repeats

Fig. 4  Descriptor benchmark results (left) for the model predicting logt1/2. Each boxplot represents the distribution of scores (in log units of t1/2) 
for 10 repeats of CV on the training set with random shuffling (the boxplot elements follow the same designation as in Fig. 2). The best model 
was obtained on ChyLine fragments, the observed vs predicted plot (right) shows the CV results for this model. Error bar on the points indicated 
the standard deviation of the prediction across CV repeats
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property range (Fig. 5, center). Adding a model built on 
RDkit linear FP further improved the predictions for 
these molecules (Fig. 5, on the right), however, a notable 
outlier by the lower end of the property had worse pre-
dictions here. It should be noted that this molecule is 
the only thiazole derivative in the test set, and all other 
thiazole-based azo-dyes in the training set have a much 
higher logt1/2 value, indicating that this compound is 
most likely outside of the applicability domain of these 
models.

Interpretation of predictions and analysis of chemical 
space
The validation of the model’s accuracy on an external data 
set is supplemented by the interpretation of the model 
and the analysis of the chemical spaces of training and 
test sets for each property. Note that this is performed 
for the individual best model, as the descriptor space or 
a single hyperparameter setup for the consensus model 
cannot be defined. We have studied the chemical spaces 
of training and test set for both properties with UMAP 
method by projecting the descriptor spaces selected in 
the benchmark by the best model into a 2-dimensional 
space (see Fig.  6, on the left for both sets). The Fig.  6A 
shows that the large and diverse data set related to λmax 
covers the chemical space quite well, and the molecules 
of the test set are close to the clusters of the training set. 
On the other hand, the data set related to logt1/2 is rela-
tively small and, more importantly, less diverse. Most 
molecules of the test set are found outside of the initial 

clusters, thus, which increases the likelihood of them 
being outside of the applicability domain of the model.

The interpretation of the predictions here is done 
using ColorAtom methodology [34]. In ColorAtom, the 
weights of fragment descriptors are calculated as par-
tial derivatives of prediction and define the atomic con-
tributions of all atoms in a molecule. This allows to see 
how the presence of different functional groups affects 
the predicted values and guide the rational synthesis of 
compounds with desired properties. Generally speaking, 
the ColorAtom is applicable to one molecule at a time; 
however, here (Fig. 6) we have scaled the atomic contri-
butions to the maximum in the subset, so that all mol-
ecules can be compared (full tables with the whole test 
set are available in SI, Additional files 1 and 3). It should 
be noted, however, that some limitations should be con-
sidered for ColorAtom. First, it is limited to fragments 
descriptors (CircuS, ChyLine, etc.) and would not work 
with fingerprints; luckily, the best models in both cases 
were based on fragments. Second, the algorithm that cal-
culates the weights of descriptors assumes linear, or at 
least monotonous, relationship, as a partial derivative is 
used, so the interpretations should be used with caution. 
Finally, although it is true for any ML model, interpre-
tations of the predictions are limited to the model and, 
thus, to the training data, meaning that if some effects are 
not accounted for in the data, they would not be relevant 
in the atomic contributions.

As far as the interpretations go here, we can observe 
some trends that are reported in literature. Functional 
groups (e.g., NO2, CN, OMe) in their role of chromophore 

Fig. 5  Comparison of performance of the individual best model and its consensus with other models. Observed vs predicted are shown 
in each plot, with the vertical lines on the consensus plots showing improvement (in green) or deterioration (in red) of prediction compared 
to the individual model. Consensus models improve the predictions for most outliers of the test set, except the molecule with the lowest logt1/2 
value which is most likely outside of the applicability domain
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or auxochromes on the azo-dye affect λmax and logt1/2 of 
a photoisomer [17, 23]. For example, interpreting the 
model for λmax, we observed high positive contribution 
of functional groups (e.g., NO2 and NEt2 in entries 541 
and 317, Fig. 6A) for the prediction, which is consistent 
with previous reports [36, 37]. Similarly, introducing het-
eroarenes (entries 738, 805, Fig. 6A) into a dye has a posi-
tive, albeit smaller, effect [38, 39]. It should be noted that 
these effects are often associated with the push/pull char-
acter of interaction between electron-donating and with-
drawing groups or other electronic effects; our models, 
however, only consider the structural descriptors, which 

may only implicitly contain such information. Similarly, 
logt1/2 can be increased by the presence of heteroarenes 
[40] (entries 60, 68, Fig.  6B) or by substitution patterns 
(e.g., F in ortho position has been reported to increase 
half-life [38, 41], as in entry 50). Sometimes, however, 
ColorAtom may omit the expected effect from functional 
groups (e.g., OMe in entry 780, Fig. 6B), likely due to rela-
tively small contribution compared to other fragments in 
a molecule.

An important limitation of the presented models is the 
omission of the solvent effects. While these are important 
for both λmax and t1/2, the currently collected dataset does 

Fig. 6  Interpretation of models for prediction of (a) λmax and (b) logt1/2 by ColorAtom (on the right) and visualization of chemical space of each 
model (on the left). In ColorAtom, the contributions of atoms are coded blue for negative contributions and red for positive, with the intensity 
of color indicating the scale of the effect. White-coded atoms have virtually no contribution to the prediction. The contributions are scaled 
to the maximum in the test set for each property, to allow the comparison of the effect; the scale is indicated as a colorbar. Visualization 
of the chemical space is made by UMAP on the descriptor shown to be the best in the benchmark; molecules are colored red for training set 
and blue for test set. IDs are given for some molecules used for model interpretation; they follow the indexing in the Additional file 2
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not contain sufficient data to account for them. Specifi-
cally, some of the data sources for λmax lack solvent anno-
tations. On the other hand, while all data points in the set 
related to half-life have those, their distribution is highly 
uneven, with the majority (95 entries) measured in ace-
tonitrile. We report the models following different strate-
gies—either isolating the dataset of the majority solvent 
or using solvent properties as descriptors—in SI (see 
Additional file 1). Neveretheless, netiher approach led to 
a significant improvement of predictions. We believe that 
a more systematic dataset is required to assess solvent 
effects properly and encourage the community to con-
tribute to its creation and collection.

Conclusions
In this manuscript we outline the modeling strategies 
for prediction of both λmax and t1/2 of photoisomers of 
visible-light azo-photoswitches. The structural features 
(molecular fingerprints and fragment counts) that we 
investigate provide a solid base for the accurate and fast 
modeling and virtual screening. Moreover, model inter-
pretation by the ColorAtom approach allows for the 
rational design of new compounds, by pinpointing the 
structural motifs leading to the desired property values. 
The predictions of the model were validated on an exter-
nal set of 80 and 14 for λmax and t1/2, respectivelly. The 
data for λmax of azobenzene and azoheteroarene families 
of photoswitches is abundant, and the accuracy of pre-
dictive models, even built on purely 2D representations 
of molecules without any electronic information, is quite 
high, as we demonstrate here. The external test set of 
photoswitches has demonstrated relatively small errors 
of prediction of λmax, despite the property not being 
directly correlated to the structural features we employ. 
On the other hand, the lack of data on the t1/2, as well as 
the general complexity of the mechanism of isomeriza-
tion in azo-photoswitches lead to not quite satisfactory 
performance of such models. While generally we observe 
quite good predictivity in the external set, several outli-
ers with quite large prediction errors (up to 2 log units 
for t1/2) are found. We would like to note that the chemi-
cal space covered by the data set for t1/2 is quite narrow, 
which may lead to a limited reliability of predictions in 
the higher range of the property. Moreover, the applica-
tion of consensus modeling allows to significantly reduce 
the error of prediction for most outliers. We provide the 
full integrated data set to encourage further investiga-
tions using other machine learning methods or features, 
including quantum chemical calculations, and the expan-
sion of the chemical space of photoswitches. A more sys-
tematic data set for the half-life, incorporating a variety 
of both structural features and measurement conditions 

such as solvents, would benefit the future efforts in mod-
eling this property with machine learning methods.
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