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Abstract 

Metabolites serve as crucial biomarkers for assessing disease progression and understanding underlying pathogenic 
mechanisms. However, when the metabolic pathway category of metabolites is unknown, researchers face challenges 
in conducting metabolomic analyses. Due to the complexity of wet laboratory experimentation for pathway identi-
fication, there is a growing demand for predictive methods. Various computational approaches, including machine 
learning and graph neural networks, have been proposed; however, interpretability remains a challenge. We have 
developed a neural network framework called MotifMol3D, which is designed for predicting molecular metabolic 
pathway categories. This framework introduces motif information to mine local features of small-sample molecules, 
combining with graph neural network and 3D information to complete the prediction task. Using a dataset of 5,698 
molecules that participate in 11 metabolic pathway categories in the KEGG database, MotifMol3D outperformed 
state-of-the-art methods in precision, recall, and F1 score. In addition, ablation study and motif analysis have demon-
strated the effectiveness and usefulness of the model. Motif analysis, in particular, has shown motif information can 
actually characterize the main features of specific pathway molecules to a certain extent and enhance the interpret-
ability of the model. An external validation further corroborates this observation. MotifMol3D is an open-source tool 
that is available at https://​github.​com/​Irena-​Zhang/​Motif​Mol3D.​git. 

Scientific contribution MotifMol3D integrates motif information, graph neural networks, and 3D structural data 
to enhance feature extraction for small-sample molecules, improving the precision and interpretability of metabolic 
pathway predictions. The model outperforms state-of-the-art approaches in precision, recall, and F1 score. This work 
reveals how motif information characterizes pathway-specific molecules, offering novel insights into molecular prop-
erties within metabolic pathways.
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Introduction
Metabolites play a crucial role in cellular metabolism, 
serving as vital biomarkers for assessing disease 
progression and understanding the underlying 
pathogenic mechanisms [1]. They regulate enzyme 
activity to maintain physiological homeostasis, and are 
essential for human functionality [2]. In order to gain 
deeper insights into disease mechanisms, metabolomics 
has emerged as a widely embraced methodology. 
Through experimental design, sample collection, LC–MS 
analysis, and subsequent statistical and pathway analyses, 
metabolomics reveals the biological pathways in which 
metabolites participate [3]. In the enrichment analysis 
of differentially expressed metabolites, it is crucial to 
map them to known biological pathways. If differentially 
expressed metabolites are not in known biological 
pathways, they are often ignored. Therefore, there is a 
growing demand for methods capable of predicting the 
potential involvement of unknown metabolites in specific 
biological pathways.

To delve deeper into biological metabolism, several 
metabolic pathway databases have been developed for 
the representation, qualitative analysis, and visualization 
of biological pathways. These databases include the Kyoto 
Encyclopedia of Genes (KEGG) database [4], MetaCyc 
database [5], and The Small Molecule Pathway Database 
(SMPDB) [6]. In the KEGG database [4], the metabolic 
network has been categorized into eleven groups, such 
as Carbohydrate Metabolism, Glycan, Xenobiotics, etc., 
based on molecular interactions, reactions, and relational 
networks. However, due to the complexity of biological 
systems, there are still many undiscovered cryptic 
biological pathways and latent enzymes or molecular 
compounds within existing pathways. Additionally, it is 
important to note that a single molecule may participate 
in multiple biological pathways, while different molecules 
may also participate in the same pathway [7]. Therefore, 
in order to predict the metabolic pathways of molecules 
accurately, it is crucial to understand the role of the 
chemical structure and physical properties of molecules 
in different pathways.

Currently, various approaches have been developed 
to address metabolic pathway-related problems, 
encompassing topology-based [8, 9], genome 
information-based [10, 11], machine learning-based 
[12–16], and deep learning-based methods [1, 17, 18]. 
These diverse methods are designed to handle tasks 
such as predicting metabolic pathways, reconstructing 
metabolic pathways, and predicting missing enzymes in 
these pathways. For identifying the metabolic pathway 
categories of a given molecule based on interaction 
information, Hu et  al. proposed a multi-target model 
utilizing chemical-chemical interactions [15]. Building 

upon this, Gao et  al. further integrated compound-
protein interaction and protein–protein interaction to 
identify pathway categories of proteins [14]. However, 
due to limited molecular interaction information, there 
is a need for more general methods. TrackSM is a tool 
that predicts the pathway categories of unknown small 
molecules by matching molecular structures [8]. Jia et al. 
developed a similarity-based Random Forest (RF) model 
to identify the metabolic pathways to which molecules 
belong [16].

Recently, graph neural networks have gained attention 
in the field of pharmacy and show promising applications 
in molecular structure and drug discovery [19]. 
Baranwal et  al. constructed a multi-class model based 
on graph convolutional networks to directly predict 
the metabolic pathway class of molecules [1]. Yang 
et  al. trained a graph attention network to extract local 
features of molecules for metabolic pathway prediction 
[18]. Du et  al. improved the predictive performance 
of the model by incorporating additional information 
on interdependent metabolic pathways [17]. Liu et  al. 
developed a multi-label learning method using attention 
mechanisms for pathway inference [20]. Bao et  al. used 
transfer learning with a Graph Transformer and CNN for 
plant metabolic pathway prediction [21]. Another study 
by Liu et  al. introduced a multi-scale neural network 
with a graph enhancement strategy for better pathway 
prediction [22]. Although current methods have achieved 
a relatively good predictive performance, they still lack 
interpretability in their predictions, which prevents 
further analysis of the unique characteristics of molecules 
in different pathways.

In this study, we developed a prediction strategy 
based on a graph neural network, namely MotifMol3D, 
for effectively discerning the categories of molecular 
metabolic pathways. The MotifMol3D framework 
integrates motif information, graph neural networks, 
and 3D information to extract local features. It captures 
molecular characteristics of specific pathways from 
small molecular samples, enhancing the model’s 
interpretability. The development of this model 
contributes to researchers’ preliminary analysis of 
molecular mechanisms underlying unknown metabolic 
pathways.

Methods
A hybrid framework for multi‑label classification
We proposed a hybrid framework for metabolic pathway 
prediction (Fig. 1), combining motif features and a graph 
attention network (GAT) [23]. The framework includes 
two feature extraction blocks and a fully connected (FC) 
layer. In the two feature extraction blocks, one block is 
responsible for extracting molecular features from 2 and 
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3D levels, and the other block introduces the graph atten-
tion network and combines the bond and node informa-
tion of the graph to extract the overall features of the 
molecule. The molecular characteristics derived from the 
two blocks are concatenated and input into the feedfor-
ward network layer, facilitating the extraction of graph 
features for the categorization of output molecules’ path-
ways. Finally, the graph features are input to XGBoost for 
the final molecular pathway category prediction.

Feature vector V1
The feature vector V1 consists of the motif descriptor, 
TDB descriptor, and seven molecular property descrip-
tors. Motifs are functional substructures within chemi-
cal compounds that can be identified using SMILES 
strings. These motifs represent specific arrangements of 
atoms and bonds that are significant for the compound’s 

properties and behavior [24]. Topological Distance Based 
3d Descriptors (TDB descriptors), also known as 3D 
autoregressive descriptors, provide important 3D struc-
tural information by considering the relationship between 
topology and spatial distance of molecules. These 
descriptors were generated using seven atomic proper-
ties: mass, van der Waals volume, Sanderson electronega-
tivity, polarizability, first ionization potential, I-state, and 
covalent radius [25]. To generate the TDB descriptor for 
a compound, its three-dimensional structure was sam-
pled by the Cyndi software [26] and then input into the 
PaDEL software to calculate the descriptors [27]. Addi-
tionally, seven molecular property descriptors related to 
molar refractivity, rotational bond, aromaticity, and lipo-
philicity were generated by the RDKit software [28]. The 
formula for calculating TDB descriptors is:

Fig. 1  The structure of MotifMol3D framework for metabolic pathway prediction. The framework comprises four sections: (1) The model takes 
the SMILES representation of small molecules as input; (2) In the molecular feature extraction module, a heterogeneous motif graph network 
containing motifs and molecular nodes is established to learn motif features. Additionally, global features of molecules are obtained by introducing 
a graph attention network; (3) In the multi-label classification module, the features from the output layer are merged and fed into a fully connected 
(FC) layer, which is then trained with labels from the training set. Finally, XGBoost is employed to predict the molecular pathway categories; (4) The 
model’s ultimate output indicates participation (1) or non-participation (0) in each of the 11 metabolic pathway categories
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where n refers to the number of atoms in the molecule, 
and Dij and Tij are the Euclidean distance and topological 
distance between atoms i and j, respectively. Xi and Xj 
represent the corresponding atomic properties, while 
k(d) indicates the number of atom pairs within the 
given topological distance d. Seven molecular property 
descriptors related to refractive index, rotational bonds, 
aromaticity, and lipophilicity were generated by RDKit. 
The TDB descriptors and molecular property descriptors 
were concatenated to generate a 14-dimensional feature 
vector.

Yu et  al. proposed a heterogeneous motif graph 
network model for molecular graph representation 
and verified that the relationship at the motif level may 
contribute to the feature representation of molecular 
graphs to a certain extent [29]. Inspired by this model, 
we thought that the motif information of a molecule may 
characterize the molecule in a small sample dataset to 
some extent. We divided the compound into bonds and 
rings, but with a different approach than the previous 
model. We distinguished the bond directly attached to 
the aromatic ring from the same bond in the side chain of 
the aromatic ring. For example, when cleaving pyridoxal 
phosphate, we obtained three parts: a, b, and c in Fig. 1. 
Aromatic pyridine is in box a, the carbon–carbon bond 
and carbon–oxygen bond directly connected to the 
aromatic ring are in box b, and the carbon–oxygen bond, 
phosphorus-oxygen bond, and phosphorus-oxygen 
double bond on the side chain of the aromatic ring are 
in box c. We employed the term frequency inverse 
document frequency [30] (TF-IDF) value as an index to 
sort and screen the motifs of compounds. The formula 
for calculating the TF-IDF value corresponding to the 
motifs of compounds is

where C(i)j is the number of times that the motif i 
appears in the molecule j, M is the number of molecules, 
and N(i) is the number of molecules containing motif i. 
The TF-IDF values of motifs were calculated based on 
their frequency within molecules and their occurrence 
across all molecules. By ranking the TF-IDF values 
and utilizing grid search, the optimal number of 
motifs was determined based on multiple evaluation 
metrics, including accuracy, precision, recall, and F1 
score. Ultimately, the top seven motifs were selected to 
characterize each compound. These motifs were then 
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converted into word embeddings using the Transformer 
encoder block. The multi-head self-attention mechanism 
was employed to capture the interactions between the 
word embeddings. The calculation formula for the multi-
head self-attention mechanism is:

where Attention(q, k , v) = softmax

(

qkT√
dk

)

v.

The number of attention heads (I) was set to 4. The 
word embedding V, represented by q = k = v, was 
processed through a Position-wise Feed-Forward 
network [31] within each attention head. W represents 
the learnable weight parameters. Layer normalization 
was then applied to generate seven feature vectors 
V’(v’1, v’2, …, v’7). Finally, V’ was linearly transformed 
to produce a 10-dimensional feature vector V. The 
specific calculation formula for this conversion process 
is:

The symbol l is the sequence length (the number of 
motifs), where this study set l = 7. Motif descriptor, 
TDB descriptor, and molecular property descriptor are 
concatenated to generate the 24-dimensional feature 
vector V1. V1 incorporates information on both the 
two-dimensional and three-dimensional structure 
of the compound, enabling the identification of the 
compound’s metabolic pathway.

Feature vector V2
The graph attention network [23] utilized an attention 
mechanism to learn the local environment of nodes, 
enabling better feature extraction for compounds. This 
attention mechanism also provides interpretability 
when applied to chemical compounds. In a network 
framework proposed for predicting the synthetic 
accessibility of organic compounds, a graph attention 
network was employed [32]. This framework 
incorporates both point representation and bond 
information to enhance the feature information of 
molecules. To generate suitable inputs for the graph-
level neural network, the nodes and edges of the 
molecular graph were processed, resulting in 10 types 
of atomic features and 4 types of bond features. Unlike 
the "one-hot" encoding method used in the reference 
model, the point and edge features of molecular graphs 
were randomly transformed into word embeddings. In 
the subsequent two hidden layers, the output feature of 
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the target point in the first hidden layer was updated 
by aggregating neighbor information by weighted 
aggregation. The bond information in the second 
hidden layer was then combined with the updated 
node features to enrich the structural information. 
The calculation formula for this merged information 
propagation method [32] is

where σ is the activation function elu [33], v is the target 
node, u is the first-order neighbor of the target node, K 
denotes the number of attention heads, Wl represents the 
learnable weight matrix at level l, and α is the normalized 
attention coefficient between node v and node u, hl 
means the updated node features. The updated nodes 
then go through two graph attention layers and one graph 
readout layer to obtain the graph-level feature vector V2, 
see [32] for more details.

Output layer
The graph feature vector was generated by concatenating 
feature vector V1 and feature vector V2. This combined 
vector was then fed into a fully connected layer with a 
SoftMax activation function to classify the pathway cat-
egories of molecules. The output of the fully connected 
layer was an 11-dimensional feature vector. In the model, 
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a threshold of 0.5 was used to determine whether a com-
pound belongs to a specific pathway.

XGBoost optimization
Referring to XGraphBoost [34], we used the graph 
feature vector obtained from model training as input 
for XGBoost. This helped address data label imbalance 
by using a voting mechanism with multiple weak 
classifiers. After obtaining graph features using a feed-
forward neural network, XGBoost was trained to predict 
the metabolic pathway category of molecules. The 
parameters for XGBoost were a maximum tree depth 
of 60, 30 decision trees, and default values for other 
parameters.

Results and discussion
Metabolic pathway dataset
In the KEGG database [4], the manually curated meta-
bolic pathway maps related to metabolism are divided 
into 11 categories: Carbohydrate metabolism (0), Energy 
metabolism (1), Lipid metabolism (2), Nucleotide 
metabolism (3), Amino acid metabolism (4), Metabo-
lism of other amino acids (5), Glycan biosynthesis and 
metabolism (6), Metabolism of cofactors and vitamins 
(7), Metabolism of terpenoids and polyketides (8), Bio-
synthesis of other secondary metabolites (9), Xenobiot-
ics biodegradation and metabolism (10). A total of 5764 
compounds that participate in metabolic pathways were 
collected from the KEGG database (March 2022). After 

Fig. 2  A Distribution of molecules in each metabolic pathway. The data in parentheses correspond to the number of metabolic pathways. 
B Dimensionality reduction visualization of the Morgan fingerprints of small molecules in the metabolic pathway dataset shows overlap 
in the coverage of chemical space for the pathways
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excluding macromolecular substances (proteins, glycans, 
wax esters), compounds with free radicals, and polymers, 
finally our dataset contains 5698 molecules. The statis-
tical calculation of small molecule distribution in each 
pathway (Fig. 2A) revealed that the Biosynthesis of other 
secondary metabolites (9) pathway contained the larg-
est number of compounds (1374 compounds), while the 
Nucleotide metabolism (3) pathway harbored the small-
est number of compounds (156 compounds). We used 
the t-SNE method to perform dimensionality reduc-
tion visualization of the Morgan fingerprints (radius = 2, 
nbits = 1024) of small molecules in the dataset (Fig. 2B). 
The results indicate that the 11 different metabolic path-
ways do not exhibit a clear clustering trend, suggesting 
that utilizing the complete structural information from 
small molecules for pathway clustering may not be opti-
mal. Therefore, in this study, we avoided examining asso-
ciations between molecules and pathways and instead 
shifted our focus to elucidating the correlations between 
specific molecular features and pathways. For model 
building, the molecules in the dataset were randomly 
divided into training set (80%), validation set (10%), and 
test set (10%).

Setting the parameters of motifs
To establish a motif dictionary for molecules, we frag-
mented them into motifs based on predefined rules. The 
TF-IDF values of specific motifs can be calculated using 
formula 1, which reflects their uniqueness in the mole-
cule (Fig.  3A). Most molecules (approximately 85.7% or 
4885 molecules) contain 3–9 types of motifs. Some mol-
ecules have a single motif type (34 molecules), while a 

few have 16 or more types of motifs. The molecule with 
the highest number of motif types contains 18 different 
motifs (Fig. 3B).

After sorting the motifs based on their TF-IDF values, 
we conducted a grid search (motif numbers: 4, 5, 6, 7, 8, 
9) to determine the optimal number of motifs for rep-
resenting each molecule. The model’s performance was 
evaluated using accuracy, precision, recall, and F1 score 
(Fig.  4). The accuracy remained relatively stable as the 
number of motifs increased, reaching its highest value 
at a motif number of 7. The recall and precision exhib-
ited opposite trends with increasing motif numbers. The 
recall initially decreased and then increased, reaching its 
lowest value at a motif number of 6. On the other hand, 
precision initially increased and then decreased, reaching 
its peak at a motif number of 7. The F1 score followed a 
similar pattern, peaking at a motif number of 7. Consid-
ering precision, recall, and F1 score, the optimal motif 
number was determined to be 7.

Model performance evaluation
We compared the performance of MotifMol3D with 
two traditional machine learning models (RF, XGBoost), 
and four state-of-the-art deeping learning models 
(GCN-based, GAT-based, MLGL-MP, and Baranwal 
et  al. (2020)). RF and XGBoost were implemented fol-
lowing Du et  al. [17]. GCN-based [1] and GAT-based 
[18] models incorporated local and global features, 
whereas MLGL-MP [17] utilized GCN and GAT to learn 
molecular feature representations and pathway inter-
relationships; meanwhile, Baranwal et  al. (2020) [1] fur-
ther enhances prediction accuracy by combining GCN 

Fig. 3  Construction (A) and distribution (B) of the motif dictionary
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with RF. MotifMol3D* is the framework of MotifMol3D 
without XGBoost. Default parameters from the original 
papers were used for reproduction.

All methods underwent tenfold cross-validation. 
MotifMol3D was implemented on Centos Linux using 
Python 3.7.11 and PyTorch 1.8.1, running on a GPU 
server with 5 NVIDIA Tesla V100-PCLe-32 GB.

The comparison results of different methods are listed 
in Table 1. Compared with the classic traditional machine 
learning methods, MotifMol3D* was superior to RF and 
XGBoost in precision and F1 indicators. RF and XGBoost 
were more balanced in precision and recall, while Motif-
Mol3D* had a large difference in precision and recall. 
Precision rate and recall rate were a pair of contra-
dictory indicators. MotifMol3D* has achieved better 

performance in precision rate, but poor performance in 
recall rate. This may be attributed to the ensemble learn-
ing nature of XGBoost, where multiple classifiers con-
tribute to a balanced trade-off between accuracy and 
recall. In the case of class imbalance, models tend to 
favor the prediction of the majority class, as it dominates 
the sample distribution, allowing the model to achieve 
higher accuracy by focusing on the majority class. 
XGBoost improves the prediction accuracy of the minor-
ity class by aggregating multiple weak classifiers and pro-
gressively correcting errors made by individual trees. In 
contrast, deep learning models may converge to local 
optima during training, leading to a larger discrepancy 
between accuracy and recall. MotifMol3D, enhanced 
with XGBoost, effectively combines the strengths of 

Fig. 4  Model performance under different motif numbers

Table 1  Comparison results of different methods on the metabolic pathway dataset

MotifMol3D*: MotifMol3D* is the framework of MotifMol3D without XGBoost. Default parameters from the original papers were used for reproduction. The best 
results are highlighted in bold

Model Accuracy (%) Precision (%) Recall (%) F1_score (%)

RF 95.70 ± 0.23 73.32 ± 1.26 72.45 ± 1.67 72.88 ± 0.61

XGBoost 95.41 ± 0.29 74.05 ± 1.54 73.3 ± 1.61 73.67 ± 1.52

GCN_based 95.07 ± 0.32 78.22 ± 1.12 70.66 ± 0.72 74.25 ± 0.89

GAT_based 95.25 ± 0.33 79.32 ± 1.09 70.78 ± 0.56 74.81 ± 0.72

MLGL_MP 95.97 ± 0.51 81.37 ± 2.20 77.12 ± 1.82 79.19 ± 1.69

Baranwal et al. (2020) 96.08 ± 0.21 82.37 ± 1.08 78.23 ± 1.16 80.01 ± 1.00

MotifMol3D* 95.42 ± 0.42 82.60 ± 1.23 69.67 ± 1.25 75.59 ± 1.02

MotifMol3D 95.72 ± 0.41 82.86 ± 0.96 79.62 ± 0.87 81.21 ± 0.53
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both XGBoost and deep learning, resulting in superior 
performance in precision, recall, and F1 score compared 
to other deep learning methods. Baranwal et  al. (2020), 
however, performs best in terms of accuracy. Overall, 
MotifMol3D* was an available graph feature extraction 
method, and the model performance was better after 
being combined with XGBoost.

Ablation study
In this section, we evaluated the contribution of each 
component of MotifMol3D* to the model perfor-
mance through an ablation study (Fig.  5). Three vari-
ants of MotifMol3D* were defined, with the first variant 
removing the feature vector V1 (denoted as V), the sec-
ond variant removing the motif descriptors (denoted as 
M), and the third variant removing the TDB descrip-
tors (denoted as T).

In addition to recall, MotifMol3D* significantly 
outperformed V in accuracy, precision, and F1 score. 
Compared to V, MotifMol3D* improved accuracy by 
0.96%, precision by 16.94%, and F1 score by 7.2%, while 
recall decreased by 1.05%. Feature vector V1 included 
both 2D and 3D information of molecules, indicating 
that additional dimensional information could improve 
the predicted metabolic pathways to some extent.

Furthermore, the inclusion of either TDB descriptors 
(T) or motif information (M) resulted in an improve-
ment in the model’s predictive performance. Com-
pared with V, T increased accuracy by 0.42%, precision 
by 2.03%, recall by 6.43%, and F1 score by 4.20%; M 

increased accuracy by 0.53%, precision by 5.48%, recall 
by 5.46%, and F1 score by 5.43%. When comparing T 
and M, M increased accuracy by 0.11%, precision by 
3.39%, decreased recall by 0.93%, and increased F1 
score by 1.21%. T and M provided TDB descriptors 
and molecular motif information, respectively, both of 
which to some degree improved the model’s predictive 
capability.

Compared with M and T, MotifMol3D* showed 
improvement in accuracy, precision, and F1 score, 
except for a decrease in recall. Overall, the simultaneous 
incorporation of TDB descriptors and motif information 
improved MotifMol3D*’s predictive performance in 
metabolic pathways.

Motif analysis
Motifs can be statistically evaluated for the uniqueness 
of a particular molecule. After selecting the motif 
number parameter as 7, we investigated the relationship 
and biological significance between molecular motifs 
and pathway categories. We calculated the cumulative 
TF-IDF values of motifs for molecules in each pathway 
category and sorted them in descending order. Table  2 
displays the top 7 motifs for each of the 11 biological 
metabolic pathway categories.

Energy metabolism plays a crucial role in maintaining 
normal metabolic enzyme activity, which is vital for the 
growth, development, and reproduction of organisms. It 
is well-established that dysregulation of energy metabo-
lism is closely associated with various diseases, including 

Fig. 5  Ablation study. V is the variant removing the feature vector V1, M is the variant removing the motif descriptors, T is the variant removing 
the TDB descriptors
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obesity [35], type 2 diabetes [36], and cancer [37]. In 
addition to their roles in DNA and RNA synthesis, energy 
transfer and storage, signal transduction, and enzyme 
regulation, nucleotides also serve as essential compo-
nents of the coenzymes NAD + and ATP, contributing to 
a wide range of cellular responses [38]. In energy metabo-
lism pathways, the degree of substrate phosphorylation 
level is closely related to the amount of energy provided. 
As one of the sub-pathways of the energy metabolism 
pathway, the oxidative phosphorylation pathway is an 
efficient source of energy for maintaining growth in many 
organisms, and its pathway components are sensitive to 
specific chemical inhibitors [39]. In addition, the unique 
role of sulfur in organisms is mainly related to redox reac-
tions, and its functions include cell protection and energy 
metabolism [40]. Therefore, ’OP’ and ’OS’ have higher 
weight in energy metabolism. In the nucleic acid meta-
bolic pathway, ’c1cncnc1’ and ’c1c[nH]cn1’ are two of the 
top three motifs. These two motifs are the main structural 
components of pyrimidine and purine, respectively, and 
the base composed of pyrimidine or purine determines 
the type and function of nucleotides. Amino acids are 
the basic structural units of proteins, and their metabo-
lism is closely related to various physiological and path-
ological conditions. Abnormal amino acid metabolism 
is associated with various types of cancer, and targeting 
amino acid metabolism has become a promising strategy 
for cancer treatment [41]. In the category of amino acid 
metabolic pathways, the motifs ’CN’ and ’C=O’ are key 

groups that characterize the amino and carboxyl groups 
in amino acids (–NH2 and –COOH, respectively). These 
two groups regulate amino acid metabolism by adjusting 
the pH of the cell environment [42]. Glycans are high-
molecular-weight compounds composed of multiple 
monosaccharides, and their metabolism mainly involves 
modifications of functional groups on the monosaccha-
rides by various enzymes. Common functional groups in 
glycans biosynthesis and metabolism include hydroxyl 
(–OH), amino (–NH2), carboxyl (–COOH) and phos-
phate (–PO4) groups [43]. These groups can participate 
in various chemical reactions, such as glycosylation, 
phosphorylation and deamination, forming different 
polysaccharide structures. The motifs ’OP’, ’CN’, ’O=P’ 
and ’CO’ in the category of polysaccharide biosynthesis 
and metabolism are related to these functional groups. In 
general, motif information can characterize the molecu-
lar characteristics under a specific pathway to a certain 
extent.

External validation
KEGG database added a new pathway of pinene, cam-
phor and geraniol degradation pathways under the ter-
pene and polyketone metabolic pathways (map00907) 
and a new pathway of flavonoid degradation pathway 
under the other secondary metabolites biosynthesis path-
way (map 00946). We collected molecular information 
from these two pathways and deduplicated it with refer-
ence to the training samples. Finally, 14 small molecules 

Table 2  The top 7 motifs within each pathway

Pathway Smiles

Carbohydrate ’OP’ ’CO’ ’O=P’ ’C1CCO
CC1’

’CC’ ’C=O’ ’CN’

Energy ’OP’ ’O=S’ ’CS’ ’CN’ ’OS’ ’[N+]=O’ ’SS’

Lipid ’C1CC
CCC1’

CC’ ’OP’ ’C1CCC​
C1’

’C=C’ ’[2*]c’ ’CN’

Nucleotide ’OP’ ’c1cnc
nc1’

’c1c[nH]
cn1’

’CN’ ’O=P’ ’C1CC
OC1’

’cN’

Amino ’CN’ ’OP’ ’c1cccc
c1’

’cO’ ’cC’ ’CC’ ’C=O’

Other amino ’CN’ ’C[Se]’ ’OP’ ’CP’ ’[C-]#
[N+]’

’CC’ ’O[Se]’

Glycan ’OP’ ’CN’ ’O=P’ ’C1CCO
CC1’

’c1cn
cnc1’

’CC’ ’CO’

Cofactor/ vitamin ’cC’ ’OP’ ’c1ccnc
c1’

’CC’ ’CN’ ’c1cn
cnc1’

’cO’

Terpenoid/PK ’C=C’ ’C1CC
CCC1’

’CC’ ’OP’ ’cO’ ’c1cc
ccc1’

’C1=CC
CCC1’

Other secondary metabolite ’c1cc
ccc1’

’cO’ ’c1ccoc
c1’

’CN’ ’cC’ ’C1CC
NCC1’

’c1c
[nH]cc1’

Xenobiotics ’c1cc
ccc1’

’cCl’ ’CCl’ ’cO’ ’cC’ ’cN’ ’CN’
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involved in the terpenoid and ketone metabolic path-
way and 22 small molecules involved in the other sec-
ondary metabolic biosynthetic pathways were obtained. 
These small molecules are fed into the model to predict 

the metabolic pathway outcomes in which they may be 
involved (Table 3).

In the degradation pathway of pinene, camphor and 
geraniol, the model accurately predicted the molecular 
pathways for 12 out of 14 molecules. By looking at the 

Table 3  Results of the external validation

a  Yes(Y)/No(N) means that the metabolic pathway of the small molecule is correctly/incorrectly predicted

Label Smiles Yes(Y)/No(N)a

Pinene, camphor and geraniol degradation pathway

T0 CC1(C)[C@@H]2CC[C@@]1(C)C(=O)C2 Y

T1 CC1(C)[C@@H]2CC[C@@]1(C)C(=O)C2 Y

T2 CC1(C)[C@H]2CC(=O)O[C@]1(C)CC2=O Y

T3 CC1(C)[C@H]2CC(=O)[C@]1(C)CC2=O Y

T4 CC1(C)[C@H]2CC(=O)[C@]1(C)C[C@H]2O Y

T5 CC1=CC(=O)[C@H](CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)
COP(=O)(O)OP(=O)(O)OC[C@H]2O[C@@H](n3cnc4c(N)ncnc43)
[C@H](O)[C@@H]2OP(=O)(O)O)C1(C)C

Y

T6 CC1=CC(=O)[C@H](CC(=O)O)C1(C)C N

T7 CC12C(=O)CC(CC1=O)C2(C)C Y

T8 CC1=CC(=O)O[C@H](CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)
(C)COP(=O)(O)OP(=O)(O)OC[C@H]2O[C@@H](n3cnc4c(N)ncnc43)
[C@H](O)[C@@H]2OP(=O)(O)O)C1(C)C

Y

T9 CC1(C)C2CC(=O)[C@]1(C)C(O)C2 Y

T10 CC1C(=O)C[C@@H](CC(=O)O)C1(C)C N

T11 CC1(C)[C@@H]2CC(=O)[C@@]1(C)CC2=O Y

T12 CC1(C)[C@@H]2CC(=O)O[C@@]1(C)CC2=O Y

T13 CC1(C)[C@@H]2CC(=O)[C@@]1(C)CC2O Y

Flavonoid degradation pathway

O0 O=C(O)Cc1ccc(O)cc1 N

O1 O=C(O)Cc1ccc(O)c(O)c1 N

O2 O=C(O)CCc1ccc(O)cc1 N

O3 Oc1cc(O)cc(O)c1 N

O4 O=C(O)CCc1ccc(O)c(O)c1 N

O5 O=c1c(c2ccc(O)cc2)coc2c([C@@H]3O[C@H](CO)[C@@H](O)[C@H]
(O)[C@H]3O)c(O)ccc12

Y

O6 CC(=O)/C=C/c1ccc(O)cc1 Y

O7 Oc1ccc([C@H]2COc3cc(O)ccc3C2)cc1 Y

O8 O=C1c2c(O)cc(O)cc2OCC1c1ccc(O)cc1 Y

O9 O=C1c2c(O)cc(O)cc2OC1(O)Cc1ccc(O)c(O)c1 N

O10 O=C1c2c(O)cc(O)cc2OC1(O)Cc1ccc(O)cc1 N

O11 O=C1c2ccc(O)cc2OC[C@H]1c1ccc(O)cc1 Y

O12 O=C1c2ccc(O)cc2OC[C@@H]1c1ccc(O)cc1 Y

O13 Oc1ccc([C@H]2COc3cc(O)ccc3[C@@H]2O)cc1 Y

O14 CC(C(=O)c1ccc(O)cc1O)c1ccc(O)cc1 N

O15 CC(C(=O)c1c(O)cc(O)cc1O)c1ccc(O)cc1 N

O16 O=C(CCc1ccc(O)c(O)c1)c1c(O)cc(O)cc1O Y

O17 O=C1CC(c2ccc(O)cc2)Oc2c(O)c(O)cc(O)c21 Y

O18 O=C(O)/C(O)=C\C(O)=C1\C(=O)CC(c2ccc(O)cc2)OC1=O N

O19 O=C1CC(=O)OC(c2ccc(O)cc2)C1 N

O20 O=C(O)CC(=O)CC(O)c1ccc(O)cc1 N

O21 CC(=O)CC(O)c1ccc(O)cc1 N
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structure of these molecules (Fig. 6), we found that eight 
compounds, numbered T0, T1, T3, T4, T7, T9, T11, and 
13, have the same camphor skeleton, distinguished by the 
presence or absence of carbonyl and hydroxyl groups on 
the ring, and the relative positions between the carbonyl 
and hydroxyl groups. The two compounds, numbered T2 
and T12, have the same chemical structure, but their chiral 
conformation is different. The two compounds, numbered 
T5 and T8, differ only in the chemical groups on the right 
(see green box in Fig. 6), both are acetyl-CoA on the left. 
Compounds T6 and T10 (see orange box in Fig.  6) were 
predicted incorrectly. They were compounds obtained by 
ring-opening cleavage of camphor compounds, and their 
structures were relatively simple and lacked the character-
istics of original terpenoids, which might be the reason for 
their failure in prediction by the model.

In the flavonoid degradation pathway, the metabolic 
pathway categories of 9 molecules were successfully and 
accurately predicted by the model. The precursor fla-
vonoid molecules of the flavonoid degradation pathway 
are derived from isoflavone biosynthesis (map00943), 

flavone and flavonol biosynthesis (map00944), flavonoid 
biosynthesis (map00941) and puerarine (Fig.  7). It can 
be seen from the figure that most of the molecules suc-
cessfully predicted have the basic skeleton of flavonoids 
(see grey box in Fig. 7), while the molecules that have not 
been successfully predicted are degraded by the flavonoid 
molecules after subsequent enzyme reactions, and their 
molecular structures are significantly different from those 
of the molecules involved in other secondary metabo-
lites in the biosynthetic pathways where model training 
is focused. This may be the cause of the failure of model 
predictions. Similarly, by analyzing the prediction results 
of each pathway, we found that successfully predicted mol-
ecules have higher fragment similarity, while failed pre-
dictions have lower similarity to successful molecules or 
higher similarity to molecules from other pathways (Addi-
tional file 2: Table S1). In a given pathway, more frequent 
similar motif combinations in training data lead to higher 
prediction success, while novel structures have lower suc-
cess rates.

Fig. 6  Compounds in the degradation pathway of pinene, camphor and geraniol. The orange box marks the molecules that failed to predict, 
and the two groups in the green box are the main differences between the two compounds numbered T5 and T8
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Overall, this model effectively captures the main 
structural features associated with specific metabolic 
pathways in the molecule, so as to identify the classes of 
metabolic pathways that the molecule may be involved 
in.

Conclusion
In the article, we propose a hybrid neural network archi-
tecture, MotifMol3D, to predict the metabolic pathway 
categories in which small molecules may participate. 
Through motif analysis, it was revealed that partial motif 
information associated with specific pathways in the 
small-sample dataset can characterize key molecular fea-
tures within these pathways, thereby enhancing the mod-
el’s interpretability. Furthermore, external validation also 
confirmed that MotifMol3D effectively captures the pri-
mary structural features in molecules related to specific 
metabolic pathways. Compared to existing approaches, 
MotifMol3D exhibited superior performance in terms of 

precision, recall, and F1-score, establishing itself as the 
leading model in the field.

In terms of practical applications, the MotifMol3D 
model can be applied to the pathway analysis of 
differential metabolites in metabolomics studies 
(Additional file  1: Figure S1). By effectively predicting 
the KEGG metabolic pathway categories of compounds, 
metabolites lacking clear pathway information can 
be included in further analyses rather than being 
discarded. Although MotifMol3D cannot directly 
provide specific reaction or enzyme information, 
once pathway category information is obtained, we 
can further explore the potential roles of metabolites 
using other analytical methods, such as by comparing 
structurally and functionally similar metabolites in 
this pathway or combining with other omics analyses 
to indirectly infer their possible biological functions. 
Therefore, our model is capable of playing a key role 
in filling the gaps in metabolic pathway information, 
aiding further biological exploration.

Fig. 7  Compounds in the degradation pathway of flavonoids. The molecules marked in the grey box are those that were successfully predicted, 
and the molecules not marked are those that were not successfully predicted. The structure in the orange box is the basic skeleton
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However, the model does have certain limitations. 
When the chemical structure of a predicted molecule 
significantly diverges from the training set, predic-
tion accuracy may decline. This is primarily due to the 
model relying on structural features in the training 
data, any gaps in this coverage may impair the model’s 
ability to generalize to unseen compounds. To address 
this issue, expanding the diversity of the training set by 
incorporating a wider range of relevant compounds is 
necessary.

For future improvements, we plan to integrate 
additional metabolic pathway-related information, such 
as reaction types, enzyme catalysis characteristics, and 
upstream/downstream relationships of metabolites, to 
enhance the model’s understanding and generalizability. 
By exploring these directions, we aim to continually 
optimize the model’s performance and applicability in 
metabolic pathway prediction.
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