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COMMENT

AI/ML methodologies and the future-will 
they be successful in designing 
the next generation of new chemical entities?
Rachelle J. Bienstock1* 

Abstract 

Cheminformatics and chemical databases are essential to drug discovery. However, machine learning (ML) and artifi-
cial intelligence (AI) methodologies are changing the way in which chemical data is used. How will the use of chemi-
cal data change in drug discovery moving forward? How do the new ML methods in molecular property prediction, 
hit and lead and target identification and structure prediction differ and compare with previous computational meth-
ods? Will new ML methodologies improve chemical diversity in ligand design, and offer computational enhance-
ments. There are still many advantages to physics based methods and they offer something lacking in ML/ AI based 
methods. Additionally, ML training methods often give the best results when experimental assay measurements 
are fed back into the model. Often modeling and experimental methods are not diametrically opposed but offer 
the greatest advantage when used complementary.

Keywords Alphafold, Machine learning (ML), Drug design, Virtual screening, Generative design, Graph neural 
networks, Docking, Artificial intelligence (AI)

Introduction
If you survey symposium topics presented at the Division 
of Chemical Information (CINF) over the past several 
years at an American Chemical Society (ACS) meeting 
you will notice a significant change. Topics selected often 
highlight the “hot” and current topics of interest in the 
application of cheminformatics methods to drug discov-
ery. If we review the proposed symposia for the upcoming 
meeting, we will note topics such as “Machine Learning 
for Molecular Simulation and Design “, “Machine Learn-
ing and AI for Organic Chemistry”, “Ethical issues of AI” 
and “Generative Modeling for Chemistry Biology and 
Material Discovery”. Searching back only a few years ago 
in an ACS CINF program you would not find this focus 
on ML and AI methodologies. How are ML techniques 

having real and significant impact on cheminformatics, 
and dealing with chemical data in the drug discovery 
space? How much is “hype” versus significant improve-
ment in identifying new chemical entities and exploring 
chemical space more efficiently with greater diversity?

AI/ML techniques have impacted the field of chem-
informatics significantly, particularly with respect to 
applications and discussions within the fields of drug 
discovery. Molecular Databases and the representation, 
format, and treatment of small molecules for virtual high 
throughput screens, docking, modeling protein–ligand 
interactions, have changed and will continue to evolve 
with developments in the fields of graph neural net-
works, generative chemistry and alternative molecular 
representations [1] compatible with AI and ML meth-
ods. ML algorithms have impacted molecule property 
prediction, database searching, training datasets, and 
have brought about new methodologies such as active 
learning FEP; combined QSAR and FEP in cyclic active 
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learning workflows; AI workflows in mining data sources; 
augmenting AI in structure based drug design by feed-
ing back scoring in AI workflows and data imputation. As 
of Spring 2024, over 70 Investigational New Drug (IND) 
Applications have been filed with the Food and Drug 
Administration FDA which involve new chemical entities 
identified using AI/ML methods [2].

Discussion
In 2020 the BBC News ran a story “Artificial intelligence-
created medicine to be used on humans for first time” [3] 
to report on the development of DSP-1181, a serotonin 
5-HT1a receptor agonist, developed by Exscientia and 
Sumitomo Dainippon Pharma for the treatment of obses-
sive compulsive disorder (OCD). Chemical Abstract 
Services (CAS) [4] performed some background investi-
gations regarding this compound. In reviewing the pat-
ent data filed (Patent US10800755) presenting DSP-1181 
‘s molecular structure and the other novel AI disclosed 
molecules within the patent, it was revealed that they all 
shared a similar shape and molecular scaffold with halop-
eridol, an antipsychotic which has also been used to treat 
OCD, and that the majority of AI discovered molecules 
disclosed within this patent shared the same haloperidol 
scaffold. In this example, new ML techniques had not 
ventured into new chemical space or greater diversity, 
however, DSP-1181, using Exscientia’s methods took only 
12 months to develop, to phase 1 clinical trials.

Exscientia (together with Evotec) began Phase 1 clini-
cal trials, of another AI discovered drug EXS21546, an 
adenosine A2a receptor antagonist, again as reported [4] 
the scaffold was similar in shape to the previously FDA 
approved A2a antagonists disclosed in Janssen patents 
in the late 2000s. Another AI Exscientia identified drug, 
DSP-0038, a dual 5-HT1a receptor agonist and 5-HT2a 
receptor antagonist shared scaffolds with previously FDA 
approved drugs used to treat psychiatric illnesses as well. 
However, designing selective dual activity molecules is a 
significant challenge for traditional drug discovery meth-
ods. This is a challenge as usually the goal in drug design 
is to optimize a drug for high affinity to a single identified 
target. Designing a ligand to hit multiple targets requires 
considering the relative binding affinity of each ligand 
considered to each of the multiple targets.

There have been projects with AI/ML discovered 
targets, small molecules and biologics discovered or 
optimized by AI, and drugs repurposed through AI tech-
niques. Many claims have been made that AI/ML meth-
ods can strengthen and accelerate drug pipelines and 
impact target identification, hit finding and lead optimi-
zation [5].

What is the promise of new AI/ML methods for drug 
discovery in terms of taking us into new chemical space 

compared with the known currently used computational 
and medicinal chemistry methods?

How do AI/ML methods complement or compete with 
physics based methods, like absolute and relative free 
energy perturbation methods, MMGBSA and molecular 
dynamics studies? Can ML algorithms offer an assist to 
physics based methods?

One significant area where ML methods can play a 
role is in increasing chemical diversity in new chemical 
entities, not through searching or a virtual screen of the 
increasing larger databases (i.e. Enamine REAL Space, 
Wuxi Galaxi, OTAVA, ChemSpace, eMolecules and oth-
ers containing as many as  1014 or greater molecules) 
but rather finding ways to increase chemical diversity 
through novel algorithms or methodologies.

Let’s examine these different applications and see 
where ML algorithms have had a significant impact.

Areas where AI has successfully played a significant 
role in drug discovery:

(1) Predicting Properties and ADMET (absorption, dis-
tribution, metabolism)

(2) Hit identification (database searching methods)- 
small molecule ligand/chemical identification- 
neural networks, generative chemistry; AI enabled 
vHTS (virtual high throughput screening)

(3) Target identification and mechanism of action-
Target/Protein Modeling and Structure Prediction; 
OpenFold, AlphaFold2,3, Bolt-1

(4) Docking- AlphaFold3
(5) Drug Design and optimization-including macro-

molecules and new molecular entities

Property prediction: automatic prediction of molecular 
properties using substructure vector embeddings 
within a feature selection workflow
AI/ML methods can be very useful in predicting molecu-
lar properties. Unsupervised, self-supervised learning, 
graph based and geometric models are used for molec-
ular property prediction along with transformer-based 
language models. In this publication an example was 
given of the prediction of lipophilicity, logD, using a vec-
tor representation of molecular substructures so chemi-
cally similar substructures are aligned [6].

Problems of searching large databases
One way to make an ultra large database smaller for 
searching, while still achieving diversity is to search a 
small fragment database and then use combinatorics [7]. 
Chemical Space Docking is a method to accelerate the 
search through enormous “Chemical Spaces” starting 
with small fragments called “synthons”, which are small 



Page 3 of 6Bienstock  Journal of Cheminformatics           (2025) 17:46  

fragments of molecules that contain an extension vector. 
This vector features information on how the compound 
can grow through chemical reactions with other building 
blocks. Once these small fragments are docked at the tar-
get, they are expanded into larger, complete compounds. 
This happens through predefined chemical reactions that 
connect the initial synthon with other building blocks [8].

Thompson sampling is an active learning approach for 
virtual screening of large combinatorial libraries per-
forming a probabilistic search in the reagent space, with-
out full enumeration of the library. It can be applied to 
2D and 3D similarity search, and docking. In a published 
study, Thompson sampling identified more than half 
of the top 100 molecules from a docking-based virtual 
screen of 335 million molecules by evaluating only 1% 
of the data set. The methods sole requirement is that the 
library used is described as a set of building blocks that 
can be assembled into the final molecules [9].

Generative design, graph neural networks
Atomwise published an extensive initiative using their AI 
based AtomNet platform to demonstrate competitive-
ness with traditional virtual HTS methods. AtomNet is a 
graph convolution network architecture with atoms rep-
resented as vertices and pair-wise, distance-dependent, 
edges representing atom proximities. They used their 
platform to identify novel bioactive scaffold hits for a 
diverse set of 235 out of 318 targets without any previ-
ously known binding ligands or x-ray structures. Their 
molecular hits were novel and not similar to the ones 
found by conventional HTS using standard libraries or 
databases. Several of their hits were first in class novel 
scaffold binders for their targets. They were able to iden-
tify hits for even some of the challenging targets such 
as allosteric binders and protein–protein interactions. 
The AtomNet method did not require a previous known 
active ligand or a target specific binding training set data 
[10].

Insilico Medicine have used their generative AI plat-
form called Chemistry 42 to design lung fibrosis candi-
dates as well as candidates for other therapeutic areas. 
Insilico medicine designed ISM012-042 for treating IBS 
using their AI Chemistry 42 generative drug design plat-
form to identify a novel PHD inhibitor scaffold and it 
received approval for phase 1 clinical trials [11]. Insilico 
identified a target for idiopathic pulmonary fibrosis and 
designed novel compounds and completed preclini-
cal testing within only 18 months. Their small molecule 
TNIK inhibitor ISM001-055 completed a phase 2a trial 
successfully. Insilico indicated that they typically synthe-
size on average only 70 AI designed molecules for each 
program [12].

A group at MIT and the Broad trained a deep neural 
network to predict molecules with antibacterial activity 
and applied their predictions to several chemical librar-
ies to identify a novel compound, halicin, with antibac-
terial properties against Mycobacterium tuberculosis, 
Clostridoides difficile and carbapenem resistant Entero-
bacteriaceae. Examining the Zinc15 database, using the 
neural network model which they developed, they were 
able to identify 8 antibacterial compounds with novel 
scaffolds. Their training set was developed from a US 
FDA library screening for growth inhibition against E 
Coli BW25113 and a natural product library, training 
them as hit or no hit. After developing their model, 
they applied it to identify antibiotic candidates from 
the Drug Repurposing Hub, and then larger databases- 
the Wuxi antituberculosis library and Zinc15 database. 
They then curated and assayed the hits with the high-
est scores and retrained their model. The group felt that 
“the success of deep neural network model guided anti-
biotic discovery rests heavily on the coupling of these 
approaches to appropriate experimental designs. The 
first consideration should be the assay design for train-
ing” [13].

Targets and protein structure prediction with ligands: 
AlphaFold3
Isomorphic Labs and Google DeepMind jointly devel-
oped AlphaFold3 (AF3) which predicts protein com-
plexes including nucleic acids, ions, modified residues 
with ligands (small molecules) already bound within 
the complex. Alphafold3 directly predicts all these 
atom coordinates using a diffusion module [14].

So how do Alphafold3 predicted structures compare 
to a traditional cheminformatics approach of docking a 
database of ligands? PoseBusters is a benchmark data-
set composed of 428 protein–ligand structures released 
to the PDB in 2021 or later. The main problem with 
AF3 seems to be maintaining stereochemistry. The AF3 
model outputs do not seem to retain the proper chiral-
ity, even when reference structures with correct chi-
rality are given as input.  There frequently seem to be 
overlapping clashes seen in the AF3 models produced 
between the protein and ligand atoms. Clashes seem 
to frequently occur for nucleotides with the protein in 
protein-nucleic acid complexes. The modeled protein 
conformational states may not be correct for the speci-
fied ligands and other inputs. For example, E3 ubiqui-
tin ligases natively adopt an open conformation in an 
apo state and have been observed only in a closed state 
when bound to ligands, but AF3 exclusively predicts 
the closed state for both holo and apo systems [15].
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Other AI protein models, docking and virtual screening
The predictive protein structure field, advanced signifi-
cantly with ML models such as AlphaFold, where prior 
only homology models with significant (> 40%) sequence 
homology to the target were anywhere close to predict-
ing a correct protein structure, and other threading tech-
niques were poor performers. In 2021, David Baker’s, 
RosettaTTA was the first deep learning method to be 
successful at the CASP14 (Critical Assessment of Protein 
Structure) competition [16].

However, how good are AlphaFold, AlphaFold2 and 
other similar generated protein target models and are 
they good enough for high throughput ligand virtual 
screening and ligand docking studies for ligand design? 
Published studies indicate that using Alphafold2 for vir-
tual screening does not lead to optimum results and that 
some post-processing modeling may be required in order 
to have an accurate binding site suitable for docking and 
computational screening studies [17].

It has been shown in studies with AF2 generated pro-
tein target models that small errors present within the 
predicted structures can cause inaccurate ligand recogni-
tion and pose prediction. Unrefined AF2 models have dif-
ficulty recognizing ligands and producing correct poses. 
In a published study, Bryan Roth and Brain Shoichet [18] 
took as examples two receptors, σ2 (EXPERA protein 
family) and 5-HT2A (GPCR) for a prospective test of the 
AF2 models and ligand docking prior to the publication 
of their crystal structures with ligands.

In retrospective docking screens against the σ2 and 
5-HT2A receptors, the AF2 predicted structures had dif-
ficulties in selecting the same ligands that were found 
docking against the receptors’ experimental structures. 
Large library docking studies with the AF2 receptor 
models, yielded similar hit rates for both receptors as did 
docking against the experimentally-derived structures. 
Docking with the AF2 receptor models was success-
ful despite the differences in the binding pocket residue 
conformations for both of the receptor target models as 
compared with the experimental solved structures. The 
results were interpreted to suggest that the AF2 models 
may sample conformations that are relevant for ligand 
discovery, indicating that docking studies with the AF2 
models were no less effective than those against experi-
mental structures. The hit rates were high for both the σ2 
and the 5HT2A receptors across hundreds of molecules 
experimentally tested against each of the models for both 
targets, and were not significantly different between the 
modeled and experimental structures. For the σ2 recep-
tor, 54% of the AF2 model docking hits were active at 
1  µM, and for the crystal structure the docking hit rate 
was 51%. For the 5-HT2A receptor, 26% of the molecules 
from the AF2- derived model bound at 10  µM, while 

for the cryoEM experimental structure 23%.While in 
this particular example AlphaFold2 performed well, it is 
questionable whether AlphaFold models can be used for 
virtual screens and replace experimentally solved struc-
tures for all protein targets.

PoseBusters checks the quality of docked ligand struc-
tures using the RDKit Distance Geometry Module rules-
evaluating stereochemistry and inter and intramolecular 
measurements- bond lengths, planarity of aromatics and 
atom clashes. In the evaluation and comparison of five 
deep learning “AI” docking methods- DeepDock, Dif-
fDock, EquiBind, TankBind and Uni-Mol, compared 
with traditional physics based docking methods -Auto-
Dock Vina and CCDC Gold, the physics based docking 
methods limited the degrees of movement in the ligand 
to only the permissible rotatable bonds in the ligand and 
included penalties for protein and ligand clashes. The 
conclusion reached by this published study was that “no 
deep learning-based method yet outperforms classical 
docking tools”. And “molecular mechanics force fields 
contain docking-relevant physics missing from deep-
learning methods” [19].

Another published study indicated that the physics 
based methods Surflex-Dock, Glide, Vina, and Gnina 
all performed better than DiffDock (an RF diffusion AI 
model) on ligand re-docking studies in the known bind-
ing- site [20].

In comparing docking of ligands with Alphafold mod-
els to docking with homology models for trace amine–
associated receptor 1(TAAR1), a set of 30 and 32 highly 
ranked compounds from the AlphaFold and homology 
model screens, were experimentally evaluated. Of these, 
25 were TAAR1 agonists with potencies ranging from 12 
to 0.03 μM. The docking screen with the Alphafold model 
yielded a more than twofold higher hit rate (60%) than 
the homology model and discovered the most potent 
agonists. In this particular example, an AlphaFold mod-
eled structure was demonstrated to outperform a homol-
ogy model in a virtual screening application [21].

Protein–protein interactions; larger ligands 
(macromolecules) and new modalities (i.e. molecular 
glues)
One of the exciting new areas is the development of 
drugs targeting protein–protein interactions, molecular 
glues, and new modalities, e.g. PROTACS. An example of 
a new “fingerprinting” approach to address drug design 
in this space, is the use of geometric deep learning for 
molecular surface interaction fingerprinting (MaSIF). 
Developed through training neural networks on the 
interactions between proteins and ligands to character-
ize these interactions and create defined protein–ligand 
neosurfaces. These neosurfaces, surfaces from protein 
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ligand complexes, can then be used to predict and design 
new protein–protein interactions, for example, design-
ing molecular glues or new PPI (protein–protein inhibi-
tors). In some published studies, MaSIF has already been 
applied designing new drug-inducible protein binders 
recognizing the B-cell lymphoma 2 (Bcl2) protein in 
complex with the inhibitor venetoclax; progesterone-
binding antibody DB3 in complex with its ligand; and 
peptide deformylase1 (PDF1) protein from Pseudomonas 
aeruginosa in complex with an antibiotic, actinonin. The 
method works by finding surface patch descriptors (fin-
gerprints), so that patches with complementary geometry 
and chemistry have similar fingerprints, whereas non-
interacting patches have low fingerprint similarity [22].

AI Deep learning methods have also been used to 
design macromolecular drugs. The deep learning-based 
RFdiffusion method was used  to design antivenoms to 
target the short-chain and long-chain α-neurotoxins and 
cytotoxins from the 3FTx snake venom toxin family [23].

Conclusions
Cheminformatics and chemical data will be used differ-
ently in drug discovery and may require different repre-
sentations moving forward. Deep Learning, graphical 
neural networks, generative chemistry and other ML 
methods will call for different representations of ligands 
in addition to SMILES, and SELFIES. ML methods will 
be most effective when used in conjunction with experi-
mental data and physics based methods in cyclic retrain-
ing workflow methods. As experimental representative 
protein datasets increase, ML methods for protein struc-
ture prediction will improve. More ML methods will be 
developed like MaSIF and neosurfaces and applied to 
new motifs- PPIs (protein–protein inhibitors), PRO-
TACS, molecular glues and ADCs (antibody drug conju-
gates). ML methods and combinatorics will be used more 
as ultra large screening databases continue to increase in 
size. This will be an exciting time to see how increased 
computational power, quantum computing and other 
computational methods and advances will impact chem-
informatics and drug discovery.
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