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Abstract 

Our study investigates polyphenol-protein interactions, analyzing their structural diversity and dynamic behavior. 
Analysis of the entire Protein Data Bank reveals diverse polyphenolic structures, engaging in various noncovalent 
interactions with proteins. Interactions observed across crystal structures among diverse polyphenolic classes reveal 
similarities, underscoring consistent patterns across a spectrum of structural motifs. On the other hand, molecular 
dynamics (MD) simulations of polyphenol-protein complexes unveil dynamic binding patterns, highlighting the influx 
of water molecules into the binding site and underscoring limitations of static crystal structures. Water-mediated 
interactions emerge as crucial in polyphenol-protein binding, leading to variable binding patterns observed in MD 
simulations. Comparison of high- and low-resolution crystal structures as starting points for MD simulations dem-
onstrates their robustness, exhibiting consistent dynamics regardless of the quality of the initial structural data. 
Additionally, the impact of glycosylation on polyphenol binding is explored, revealing its role in modulating interac-
tions with proteins. In contrast to synthetic drugs, polyphenol binding seems to exhibit heightened flexibility, driven 
by dynamic water-mediated interactions, which may also facilitate their promiscuous binding. Comprehensive 
dynamic studies are, therefore essential to understand polyphenol-protein recognition mechanisms. Overall, our 
study provides novel insights into polyphenol-protein interactions, informing future research for harnessing polyphe-
nolic therapeutic potential through rational drug design.

Scientific contribution: In this study, we present an analysis of (natural) polyphenol-protein binding conforma-
tions, leveraging the entirety of the Protein Data Bank structural data on polyphenols, while extending the binding 
conformation sampling through molecular dynamics simulations. For the first time, we introduce experimentally 
supported large-scale systematization of polyphenol binding patterns. Moreover, our insight into the significance 
of explicit water molecules and hydrogen-bond bridging rationalizes the polyphenol promiscuity paradigm, advocat-
ing for a deeper understanding of polyphenol recognition mechanisms crucial for informed natural compound-based 
drug design.
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Introduction
Polyphenols, classified as secondary plant metabo-
lites, are ubiquitously present in a wide range of food 
sources, including vegetables, fruits, grains, and vari-
ous beverages [1]. Nevertheless, the scientific literature 
often grapples with the precise definition and chemical 
structure of polyphenols, leading to some ambiguity in 
their characterization [2]. Strictly speaking, polyphe-
nols consist of one or more aromatic rings adorned with 
hydroxyl group(s). Despite this shared characteristic, 
they encompass a wide array of molecules with diverse 
chemical structures. Growing evidence underscores the 
significance of polyphenols for human health, attribut-
ing to them antioxidant, anti-inflammatory, and anticar-
cinogenic properties, as well as with protective effects 
against metabolic disorders and chronic diseases [3].

Numerous benefits associated with polyphenols con-
cerning human health have historically been ascribed to 
their antioxidant properties [4, 5]. However, contempo-
rary perspectives have shifted away from this hypothesis, 
as compelling evidence now supports the idea that poly-
phenols can exert their effects through specific interac-
tions with protein targets, irrespective of their redox 
properties [6, 7]. These interactions, in turn, enable poly-
phenols to modulate signalling and metabolic pathways 
implicated in various diseases [8, 9]. Moreover, recent 
findings provide evidence that polyphenols can interact 
with protein targets within microorganisms, endow-
ing polyphenols with antimicrobial properties. Nota-
bly, their ability to inhibit crucial viral [10–12], bacterial 
[13], or fungal [14] enzymes highlights their potential in 

combating microbial threats. The multifaceted interac-
tions with both human and microbial proteins position 
polyphenols as promising bioactive compounds with 
diverse therapeutic implications.

In this study, our objective was to leverage the wealth 
of information within the Protein Data Bank (PDB) data-
base [15] to discern the intricacies of polyphenolic inter-
actions within protein binding sites. By doing so, we 
aimed to identify a characteristic set of interactions that 
each class of polyphenols establishes with proteins. This 
endeavour tried to shed light on the well-documented 
promiscuity of polyphenols, a phenomenon widely 
acknowledged but whose precise molecular mechanisms 
remain largely unexplored.

Building upon our prior investigations, wherein 
extensive molecular dynamics (MD) simulations were 
conducted on three distinct protein systems binding 
polyphenols extracted from rosemary (carnosic acid, car-
nosol, rosmanol, and rosmarinic acid), we made a nota-
ble observation regarding the pivotal role played by water 
molecules in stabilizing their binding [16] (Fig.  1a). It 
became evident that the investigated polyphenols formed 
a significant number of hydrogen bonds with water mol-
ecules, and our findings underscored the significance of 
water-mediated interactions in the intricate interplay 
between polyphenols and proteins. We hypothesized 
that the inherent tendency of polyphenols to engage in 
interactions between their numerous hydroxyl groups 
and conserved water molecules within protein bind-
ing sites of diverse configurations could offer a plausible 
explanation for their promiscuous binding behavior. This 

Fig. 1  Polyphenols form water-mediated H-bonds in static as well as dynamic structures. a A prototypical snapshot from an MD simulation 
where rosmarinic acid (ROA, carbons denoted as dark-green sticks) binds to the factor X enzyme [16]. We observe several water-mediated H-bond 
bridges (red lines) within the active binding site that stabilize ROA binding. b The crystal structure (PDB ID: 7B3E) of flavonoid myricetin (MYC, 
carbons denoted as light-green sticks) covalently bound to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. MYC 
forms several water-mediated H-bond bridges (red lines) within the binding site. MYC also forms direct H-bonds, which are shown as purple lines
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observation gains additional support from the preva-
lence of water-mediated H-bond interactions between 
polyphenols and amino-acid residues, as evidenced by 
numerous high-resolution structures in the PDB. A case 
in point represents the recently published high-resolu-
tion structure of the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) main protease, where flavo-
noid myricetin binds to the protease binding site through 
several water-mediated H-bond bridges (Fig.  1b) [12]. 
Similar water-mediated interactions are present in addi-
tional structures such as resveratrol-3-O-glucuronide 
bound to transthyretin [17], rosmarinic acid bound to 
myotoxin II [18] or catechol bound to urease [19].

The utility of high-resolution protein structures is 
emphasized in this context, as structures solved at lower 
resolutions often lack structural waters and may under-
estimate the internal hydrogen bond networks of pro-
teins [20]. Given the relative scarcity of high-resolution 
structures involving polyphenols bound to proteins in 
the PDB, in silico approaches are essential for locat-
ing bridging water molecules. An example of such an 
approach represents MADE (and ProBiS H2O) applica-
tions, which have been developed to identify conserved 
water molecules in macromolecular systems [21, 22]. 
The MADE workflow scans available experimental PDB 
data to identify binding sites structurally similar to the 
binding site of the query protein. These identified simi-
lar binding sites are then superimposed, facilitating a 
transfer of water molecules within such sites to the query 
protein. The resulting water location data is clustered to 
identify discrete spaces exhibiting a high conservation of 
water molecules, providing a powerful visualization tool 
in the context of the studied protein system. MADE thus 
represents a rapid method that harnesses existing experi-
mental data to place conserved water molecules within 
protein binding sites.

Moreover, as already emphasized earlier, the inclusion 
of explicit water molecules in MD simulations is impera-
tive when investigating water-mediated polyphenolic 
interactions. This approach proves essential in discerning 
potential bridging water molecules that play a pivotal role 
in polyphenolic binding [13, 18].

The focus of this work is directed towards globular 
proteins characterized by well-defined binding cavities, 
notably enzymes and receptors, where strong binding 
constants and specific interactions between polyphenols 
and proteins can be anticipated [23–25]. This stands in 
contrast to conformationally open proteins with multiple 
binding sites, exemplified by proline-rich salivary pro-
teins, where small polyphenols can be expected to exhibit 
a weak binding.

In the initial phase of our study, we meticulously exam-
ined polyphenol-protein interactions across the entire 

PDB, categorizing polyphenoles into distinct classes 
for a systematic analysis. Exploration of the entire PDB 
revealed a wide array of polyphenolic structures, each 
engaging in noncovalent interactions with proteins. 
Across crystal structures representing different classes of 
polyphenols, we observed common interaction patterns, 
indicating a consistent behavior across various structural 
motifs.

However, subsequent extensive MD simulations of 
polyphenol-protein complexes uncover dynamic binding 
patterns, emphasizing the influx of water molecules into 
the binding sites and exposing the limitations of static 
crystal structures. Notably, water-mediated interactions 
emerge as pivotal in polyphenol-protein binding, con-
tributing to the variable binding patterns observed in MD 
simulations. Moreover, comparing high- and low-resolu-
tion crystal structures as initial points of MD simulations 
demonstrates their robustness. Furthermore, we explored 
the influence of glycosylation on polyphenol binding, 
shedding light on its role in modulating interactions with 
proteins.

The work presented here marks the initial phase of a 
comprehensive project aimed at constructing a database 
delineating polyphenol-protein interaction profiles, uti-
lizing known structures deposited in the PDB. An estab-
lishment of such a database holds immense value for 
future endeavors in target identification and drug design. 
Specifically, it provides a practical means of validating 
pose predictions derived from classical- and inverse-
docking procedures. If a given docking pose of a poly-
phenol aligns with the interactions identified in this study 
for a particular polyphenolic class (e.g., stilbenes), there 
is an enhanced confidence in the accuracy of such a pose.

Moreover, by harnessing existing polyphenol-protein 
interaction data, we aspire to formulate in the future a 
knowledge-based scoring function tailored to polyphe-
nolic structures. This scoring function would system-
atically capture specific interactions within a queried 
protein binding site, considering distances between 
specific atom types. The scoring mechanism would be 
informed by existing polyphenol-protein interactions 
observed in crystal structures deposited in the PDB. Such 
an approach promises to enhance the precision and reli-
ability of scoring in the context of polyphenol-protein 
interactions, thereby contributing to the advancement of 
rational natural-drug design strategies.

Methods
Mining publicly available databases
To identify protein structures within the PDB that bind 
polyphenols, we initiated the process by retrieving a 
comprehensive list of polyphenols from the Phenol-
Explorer online database [26–28], which encompasses 
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approximately 500 polyphenols and around 380 metabo-
lites identified in biofluids following the consumption of 
polyphenol-rich sources. To compile a thorough catalog 
of polyphenol-protein interactions, we utilized the list 
of corresponding Simplified Molecular Input Line Entry 
System (SMILES) strings for polyphenols (including their 
metabolites) from the PhenolExplorer to query the entire 
PDB.

Employing OpenBabel [29] each polyphenol SMILES 
string was systematically compared to the entirety of 
ligands deposited in the PDB (PDB database obtained 
on September 1st 2023), generating Tanimoto-expressed 
similarities based on FP2 fingerprints. We then extracted 
each PDB structure containing a ligand that exhibited 
a Tanimoto coefficient of 0.90 or higher. Subsequently, 
based on its molecular structure, each polyphenol was 
manually classified into one of the 12 distinct classes, as 
depicted in Fig. 2.

Following the procedure outlined for identifying 
ligands with Tanimoto coefficients of ≥ 0.90, a manual 
curation step was implemented. Structures deemed 
excessively simple, including phenol and benzoic acid, 
were removed. On the other hand, certain structures 
that did not fit the strict definition of polyphenols were 
retained. Notably, cinnamic acid was retained due to its 
widespread occurrence, recognized significance in plant-
based medicine, and due to its role as a parent compound 
for other essential hydroxycinnamic derivatives such as 
caffeic acid [30, 31]. Similarly, specific monoterpenes like 
thymol or carvacrol were also retained for identical rea-
sons. Compounds featuring aromatic ether moieties in 
lieu of hydroxy groups were also preserved.

The final database comprises of 939 entries from the 
PDB first biological assemblies (Supporting Information 
Table S1). Notably, each alternative conformation, when 
present, is considered a separate entry, resulting in a total 
of 1431 structures. Within these protein structures, 193 
unique polyphenolic ligands have been identified. We 
emphasize that polyphenols containing covalent interac-
tions with the protein targets were also retained in our 
study, as covalently bound polyphenols still maintain 
noncovalent interactions, which typically facilitate initial 
recognition and binding events [32].

Interaction identification and analysis
Interaction analysis of variable types using PLIP
Each polyphenol-ligand complex from the PDB under-
went analyses using the automated version of the Pro-
tein-Ligand Interaction Profiler (PLIP) algorithm [33, 34]. 
PLIP employs a meticulous approach to identify major 
noncovalent interactions at the single-atom level between 
small molecules and proteins. The algorithm detects 
seven interaction types: hydrogen bonds, hydrophobic 

contacts, π-stacking, π-cation interactions, salt bridges, 
water bridges, and metal complexes. It is worth noting 
that PLIP also identifies halogen bonds; however, they 
are not expected to be present in polyphenols and are not 
discussed in this paper.

Before identifying interactions, the input structure 
undergoes hydrogenation, and the ligand is extracted 
along with its binding site. Subsequently, the algorithm 
characterizes ligand atoms and functional groups by dis-
cerning hydrophobic regions and identifying acceptor/
donor functional groups crucial for hydrogen bonds. 
Moreover, PLIP identifies aromatic rings and charge 
centers, essential for the formation of π-stacking, π-cat-
ion interactions, or salt bridges.

The interaction profile of each polyphenol-protein 
complex will be discussed based on the classification of 
the polyphenol itself (e.g., flavonoid, stilbene, etc.), pre-
sented in Fig.  2. This approach streamlines the identifi-
cation of possible characteristic interactions that each 
polyphenolic class can establish with proteins.

Additionally, PLIP was utilized to generate time-
dependent interaction contact maps through an in-house 
Python script that executed the PLIP analysis on each 
frame of the MD simulations.

Atom type classification and radial distribution analysis 
of polyphenol‑protein interactions
To facilitate the future development of a polyphenol-
specific scoring function, each heavy atom and polar 
hydrogen of the polyphenol and protein was also cat-
egorized into specific types, reflecting their topology 
and hybridization states (e.g., C.3-sp3-hybridized carbon, 
O.2-sp2-hybridized oxygen, etc.). For each polyphenolic 
atom, we tallied the number of ligand and receptor atom 
types in contact with each other (e.g., the hydroxyl O.3 
of the polyphenol and the N.am of the Gln sidechain). 
Close intermolecular interactions between specific atom 
types that occur more frequently than expected in a ran-
dom distribution are likely to be energetically favorable 
and, therefore, contribute positively to the binding affin-
ity within the scoring function [35]. The key advantage 
of such knowledge-based potentials, to be developed in 
the future, lies in their ability to circumvent the need to 
balance multiple opposing contributions to the bind-
ing, such as desolvation and entropy, as these factors are 
treated implicitly.

The atom types used for this purpose are defined in 
Supporting Information Table  S2 and are based on Tri-
pos SYBYL mol2 atom types, with additional discrimina-
tion based on the location of the atom within the binding 
site (e.g., protein backbone, sidechain, or cofactor/ion/
water) [36]. The interactions were evaluated using pair 
distribution function gi,j(r) with normalization based on 
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the total number of pair observations and the volume of 
shells corresponding to each bin of the histogram:

where pi,j is the occurrence of atom type pairs i and j 
within each histogram bin, N is the total occurrence of 
protein-polyphenol atom pairs within a 7.5 Å distance, r 

(1)gi,j(r) =
pi,j(r)

4πr2bN
− gab(r),

is the average distance value for each histogram bin, and 
b is the width of the histogram interval. The term gab(r) 
represents the normalized radial distribution between 
all polyphenol-protein atom pairs, independent of their 
type.

Normalizing with the shell volumes 4πr2b and with 
the radial distribution of all atom types gab(r) eliminates 
the “non-interacting” background distribution from the 

Fig. 2  Our classification of polyphenols known to bind to proteins sourced from the PDB, with each class represented by a prototypical compound
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protein-polyphenol systems, facilitating a faster conver-
gence to zero at large distances [36–38]. The selected 
maximal distance of 7.5 Å aligns with the default cutoff 
of PLIP [33, 34].

Molecular dynamics
To comprehensively understand the impact of polyphe-
nol binding, it is essential to consider the conformational 
changes experienced by the protein targets. To attain an 
atomistic view of how polyphenols interact with proteins 
and influence their structural dynamics, we conducted 
MD simulations on a carefully selected subset of protein 
PDB structures bound to polyphenols.

We specifically observed how the binding patterns 
evolved during MD simulations, providing insights into 
the stability of polyphenolic poses within the protein 
binding site. This approach is particularly crucial for 
identifying water-mediated H-bond bridges, given their 
well-known transient nature [39–41].

The protein-ligand complexes were prepared for sub-
sequent MD simulations using the Chemistry at Har-
vard Macromolecular Mechanics graphical user interface 
(CHARMM-GUI) [42], utilizing structures obtained 
from the PDB. Prior to commencing MD simulations, 
the complexes underwent solvation in rectangular 
TIP3P water boxes (with a 15 Å padding using periodic 
boundary conditions) including 0.15 M NaCl. To main-
tain system electro neutrality, the appropriate number of 
Na+ or Cl− ions was added. Protonation states of ioniz-
able amino-acid residues followed standard conventions 
in Chemistry at Harvard Macromolecular Mechanics 
(CHARMM), where Asp/Glu residues are negatively 
charged, Arg/Lys residues are positively charged, and 
His residues are singly protonated at the N1δ atom. The 
CHARMM36 forcefield parameters were employed 
for proteins [43, 44], augmented by the CHARMM36-
WYF set to enhance the description of π-cation inter-
actions [45]. Forcefield parameters for all polyphenols 
were developed using the automated ParamChem web 
server [46]. While acknowledging the limitations of auto-
mated methods in parameter determination for drug-like 
small molecules, our decision was informed by the low 
reported nonbonded penalties for most sterically acces-
sible ligand atoms and by the relatively low penalties for 
bonded interactions corresponding to flexible moieties, 
thus providing confidence in the suitability of developed 
parameters for our study.

The coordinate files of polyphenols, proteins and 
water molecules were combined, and 50 steps of steep-
est descent and 50 steps of adopted basis Newton–Raph-
son energy minimization were carried out to remove 
any potential steric clashes that may occur, as well as to 
optimize the atomic coordinates of the complexes. The 

complex was then equilibrated using NAMD [47, 48] at 
310.15 K using the HOOVER thermostat and an integra-
tion timestep of 1 fs during a brief MD simulation. The 
NVT ensemble’s (constant number of particles, volume 
and temperature) equilibration molecular dynamics took 
0.125 ns to complete. This was followed by two independ-
ent production runs (the main and replica simulations) 
of 1 µs , again performed using NAMD. Production runs 
were carried out in the NPT ensemble, with the timestep 
of 2 fs and the HOOVER thermostat and barostat set to 
310.15 K and 1 bar, respectively. Van der Waals interac-
tions were cut off between 10 and 12 Å using the force 
switch method (VFSWIt). The electrostatic potential 
used the force shifting method (FSHIft) with a cutoff 
of 12 Å. The particle mesh Ewald summation [49] was 
applied to address long-range electrostatic interactions. 
Bonds involving hydrogen atoms were constrained using 
the SHAKE algorithm.

Root-mean-square deviations (RMSD) were calcu-
lated with the MDAnalysis Python library [50, 51], and 
direct, as well as water mediated H-bonds were analyzed 
implementing the recently developed Bridge2 software 
[52, 53]. Each simulated system was also carefully visu-
ally inspected in order to confirm the accuracy of the 
predictions.

Hydrogen‑bond network analysis via Bridge2
All graph calculations were performed using Bridge/
Bridge2, a graph-based algorithm with a user-friendly 
graphical interface that efficiently computes both direct 
and water-mediated H-bond interaction networks [52, 
53]. H-bonds were identified using geometric criteria, 
which included either the donor-acceptor distance (from 
PDB structures) or, if hydrogen atom coordinates were 
available from MD simulations, a combination of dis-
tance and H-bond angle criteria. The H-bond angles are 
computed using an optimized implementation of the Ein-
stein summation convention, applied to the position vec-
tors of the donor, acceptor, and hydrogen atoms.

In H-bond graphs provided by Bridge/Bridge2, nodes 
represent protein groups involved in H-bonds, while 
edges denote either direct or water-mediated H-bonds. 
Bridge/Bridge2 is particularly efficient in calculating 
water-mediated bridges between protein groups. To 
identify potential H-bond donors and acceptors, the pro-
gram uses a k-d tree approach, which scales as n× log(n) , 
where n is the number of spatial data points, providing 
substantial efficiency compared to the naive method of 
calculating all pairwise distances, which scales as n2.

We applied a distance criterion of ≤  3.5  Å between 
donor and acceptor atoms. For H-bonds identified from 
atomic-level MD simulations containing hydrogen atom 
coordinates, we also applied an additional H-bond angle 
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cutoff of ≤  60°. Water-mediated bridges involving up 
to three water molecules were included in the H-bond 
graph analysis.

Water density clustering using MADE (ProBiS H2O)
Water density clustering was performed using MADE 
software (ProBiS H2O). The MADE (Macromolecu-
lar Density and Structure Analysis) software basically 
supersedes previous ProBiS H2O (MD) approach. Imple-
mented as a user-friendly PyMOL plugin, is a tool for 
identifying water/heteroatom conserved locations in 
proteins using experimental structural data, AlphaFold 
models or MD trajectories. The approach first performs 
structure alignment superimposed onto a query, where 
suitable protein chains are identified based on used align-
ment and superposition algorithm (e.g., PyMOL’s align 
and super, TM-align, DeepAlign, ProBiS, GANGSTA+). 
Then, 3D clustering follows using 3D-DBSCAN to locate 
dense regions where specific species (e.g., metal ions, 
water molecules, etc.) occur across the examined struc-
tures or trajectories. High conservation clusters signify 
biologically relevant sites. The  last step is the predic-
tion/identification of studied species conserved posi-
tions across MD trajectories or structural clusters with 
visualization in PyMOL. The approach is robust and can 
successfully generalize beyond waters and ions to other 
molecular species and can be used for water network 
analysis, dynamic binding events, and protein binding 
site elaboration.

For further structure validation, we examined the epi-
catechin-3-gallate bound to glutamate dehydrogenase 
protein conformation with the highest occupancy (main 
trajectory 0-600 ns; also found in a replica from 226 ns 
to the end). We collected 10 ns equidistant MD snap-
shots (took care to designate the chain on the protein and 
ligands, e.g., chain P, and set the HETEROATOM flag 
for corresponding atoms in the snapshot PDBs) and per-
formed alignment using PyMOL’s align sequence-aware 
method on 61 snapshots alltogether. Then, all TIP3P 
waters were collected and subjected to 3D-DBSCAN 
using ε = 0.9 parameter and exploring all possible clus-
ters. TIP3P water clusters with 16 or more molecules and 
conservation above 0.26 were visualized for the reader 
[22, 54].

Results and discussion
Diversity and characteristics of polyphenol‑protein 
complexes in the extracted database
The extracted database encompasses proteins from all 
six biological kingdoms: animals, plants, fungi, protista, 
bacteria, and archaea, and also includes viral proteins 
(Fig. 3a). Bacterial proteins constitute the largest portion, 
representing 48% of the database, followed by human 

proteins at 22%. Non-human animals constitute approxi-
mately 8% to the database. The plant kingdom is repre-
sented by 13%, fungi by 6%, viruses by 2%, protists by 1%, 
and archaea by less than 1%.

The predominance of human and bacterial proteins 
highlights that the majority of research efforts related to 
polyphenols have been concentrated on their benefits in 
human health, as receptor/enzyme modulators or as anti-
bacterial agents. The plant kingdom category contains 
a variety of enzymes involved in the synthesis of poly-
phenols, exemplified by the structure of chalcone syn-
thases complexed with naringenin (PDB ID 7VF0). This 
enzyme catalyzes the condensation of one molecule of 
p-coumaroyl-CoA with three molecules of malonyl-CoA, 
forming naringenin chalcone, the precursor of all flavo-
noids [55].

The most frequently represented ligand in the data-
base is p-coumaric acid, an isomer of hydroxycinnamic 
acid (Fig. 3b). This is followed by simpler structures such 
as salicylic acid and 4-hydroxybenzoic acid. More com-
plex compounds like stilbene resveratrol and flavonoid 
quercetin are also prevalent. Hydroxycinnamic acid 
derivative ferulic acid follows, showcasing a diverse rep-
resentation of polyphenols, ranging from low molecular 
mass structures to larger, more complex molecules.

The classification of ligands reveals that the majority 
belongs to the phenolic acids class, followed by flavonoids 
and hydroxycinnamic acid derivatives, hydroxybenzenes, 
stilbenes, and coumarins (Fig. 3c). Phenolic acids mostly 
include simple structures with a carboxylic group directly 
bound to a phenol ring, encompassing salicylic acid 
and gallate. Flavonoids cover various subclassifications 
such as flavanols, flavons, anthocyanidins, and isoflavo-
noids. Hydroxycinnamic acid derivatives feature typical 
structures like ferulic and caffeic acid, their esters (e.g., 
rosmarinic acid), and reduced derivatives like coniferal-
dehyde. Hydroxybenzenes describe simple structures, 
including all benzenediols and benzenetriols, along with 
typical essential oil constituents like eugenol and thymol. 
Other classes, such as stilbenes and lignans, maintain 
stricter definitions. 27 complexes containing polyphe-
nols are classified under the “others” category due to the 
absence of an appropriate classification, with ellagic and 
mandelic acids forming notable examples.

The database is predominantly composed of enzymes, 
with oxidoreductases, transferases, and hydrolases form-
ing the most represented classes (Fig.  3d). A relatively 
high number of structures also consists of photorecep-
tors, more specifically photoactive yellow protein, which 
contains p-coumaric acid as a chromophore [56].

Classifying crystal structures with a resolution of 2.0 
Å or better as high resolution, approximately two-thirds 
of them meet this criterion (Fig. 3e). The importance of 
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high resolution becomes evident when distinguishing 
ordered water molecules involved in ligand binding from 
free water molecules not engaged in binding interactions. 
High-resolution structures can facilitate the precise 
identification of individual ordered water molecules [57, 
58]. In contrast, low-resolution structures may lack the 
detailed information necessary to discern fine hydrogen 

bonds and interactions between water molecules and 
surrounding atoms. The influence of resolution on the 
number of identified waters is well-established [20, 59].

On average, we found that structures with a resolu-
tion lower  or equal to 2.0 Å exhibit approximately 1.9 
water molecules in proximity to polyphenolic ligands, 
while strctures with resolution larger than 2.5 Å have 

Fig. 3  The main properties of the constructed protein-polyphenol database. a Classification of polyphenol-protein complexes into biological 
kingdoms. b The most represented polyphenols within the database. c Number of polyphenols in each class. d Classification of proteins containing 
polyphenolic ligands. e Distribution of polyphenol-protein complexes based on the resolution of the solved crystal structures. In all cases, 
alternative conformations are not counted separately
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only 0.6 water molecule on average around the ligand. 
The average number of detected bridging waters across 
all structures is 1.7. This underscores the significance of 
resolution in elucidating the water-mediated interactions 
crucial for understanding polyphenol-protein complexes, 
which we further explore in this work.

Atom type preferences of polyphenols in binding 
to proteins and metals
We analyzed 272 protein-polyphenol atom pairs within 
a cutoff distance of 7.5 Å, utilizing SYBYL mol2 types 
(Supporting Information Table  S2). Among these pairs, 
94 occurred more than 1000 times (Supporting Infor-
mation Table S3). The most prevalent pairs, constituting 
43% of all cases, involved aromatic ligand carbons (C.ar) 
and various protein atoms, including sp3-hybridized 
side chain carbons (C.3sc ), aromatic side chain carbons 
(C.2sc ), and backbone atoms (C.3bk , N.ambk , O.2bk , and 
C.2bk ). However, it is crucial to note that the abundance 
of these atom types is at the source of the high occur-
rence of these pairs, potentially reflecting general atom 
type prevalence rather than specific interactions.

The sp3-hybridized hydroxy groups (O.3) of poly-
phenols play a crucial role in their binding to proteins 
(Fig.  1). Strong H-bond interactions were observed 
between polyphenolic O.3 and side chain oxygens (O.3sc ) 
of Ser, Thr, and Tyr residues, denoted by a distinct peak 
in the radial distribution function (RDF) at approximately 
2.8 Å (Fig. 4a) [60]. Additionally, H-bond and polar inter-
actions were identified between polyphenolic O.3 and 
side chain carboxylate oxygens (O.co2) of Asp and Glu 
residues, as evidenced by the two peaks in the RDF at 
around 2.8 Å and 4.5 Å, respectively (Fig. 4b). Somewhat 
similar interaction motifs were detected between poly-
phenolic O.3 and side chain nitrogens (N.arsc and N.3sc ) 
of Asn, Gln, and Arg residues (Fig. 4c and d). Moreover, 
polyphenolic catechols formed water bridges with water 
oxygens at around 2.8 Å, agreeing with the expectations 
of H-bond interactions [61] (Fig.  4e). Consistent inter-
action profiles were obtained when reversing the atom 
types between protein atoms and ligand atoms, affirming 
the reciprocity of these interactions (Fig. S1).

A distinctive three-peak profile is evident in instances 
where the side chain of arginine (N.pl3) interacts with 
the carboxylic acid group (O.co2) of polyphenolic com-
pounds, exemplified by hydroxycinnamic and rosmarinic 
acids (Fig. 4f ). The peaks, situated at around 2.7, 3.5, and 
4.8 Å, likely signify different types of interactions: a peak 
at 2.7 Å could correspond to strong hydrogen bonds, the 
peak at 3.5 Å to weak hydrogen bonds, and the peak at 
4.8 Å to salt bridges, demonstrating the multifaceted 
nature of interactions involved in polyphenol-protein 
binding [62].

The aromatic rings of polyphenols exhibit interac-
tions with the aromatic side chains of His, Phe, Trp, and 
Tyr residues (Fig. 1), involving π-stacking, π-cation, and 
hydrophobic interactions (Fig. 4g). The distance distribu-
tion between the aromatic carbons of the polyphenols 
(C.ar) and the side chains (C.arsc ) displayed a broad peak 
ranging from around 3.0 to 6.5 Å, indicating a spectrum 
of possible distances for π-stacking interactions. Weaker 

Fig. 4  Radial pair distribution functions (RDFs) illustrating the spatial 
relationships between selected pairs of protein and polyphenolic 
atoms. The RDFs depict the distance distributions between: a O.3sc 
and O.3, b O.co2sc and O.3, c N.arsc and O3, d N.pl3sc and O.3, e 
O.3w and O3, f N.pl3sc and O.co2, g C.arsc and Car, h O.2bk and O.3, 
(i) metal ions (M) and C.ar, and (j) metal ions (M) and O.3 atom types. 
In all cases, the left-hand atom-type corresponds to a protein atom, 
while the right-hand atom corresponds to a polyphenolic atom. 
Each pair is present more than 1000 times, except for the M - O.3 pair, 
which is present 575 times. RDFs of other atom pairs that are present 
more than 1000 times are displayed in Fig. S1
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and less specific interactions were also observed between 
aromatic carbons and sp3 or sp2 carbons, which can 
correspond to hydrophobic interactions (Fig. S1), con-
tributing to the overall diversity and adaptability of poly-
phenol-protein interactions.

Certain protein backbone atoms, specifically the amide 
oxygen (O.2bk ) or nitrogen (N.ambk ), displayed a nota-
ble preference for binding to specific polyphenolic atoms, 
such as O.3 or carboxylic oxygens (O.co2), at approxi-
mately 2.7 Å.  The observed proximity of these atoms 
suggests the formation of strong H-bonds between them 
(Fig. 4h, Supporting Information Fig. S1).

The most frequent interaction between metals and 
polyphenols primarily involved the aromatic carbons 
(C.ar) of the ligands, although this was largely influ-
enced by the abundance of these ligand atoms. The 
RDF between metals and C.ar displayed three peaks: a 
prominent one at around 2.7 Å and two smaller ones at 
around 4.5 and 5.5 Å, respectively. These peaks suggest 
the attraction of metal ions to the π-systems of the ben-
zene rings and the shift of π-carbons towards metal ions, 
particularly due to the binding of catecholic OH groups 
to metals (Fig.  4i). A more representative interaction 
between metals and polyphenols focused on the hydroxyl 
oxygens (O.3) of the ligands, occurring in 575 cases. The 
distance distribution between metals and O.3 exhibited a 
sharp peak at around 2.4 Å, followed by a rapid drop to 
zero (Fig. 4j), indicating a strong preference for metal-O.3 
coordination. This preference highlights the significance 
of hydroxyl oxygens in mediating metal-ligand interac-
tions within polyphenol-protein complexes.

All pair-pair RDF  profiles that occur more than 1000 
times are displayed in Supporting Information Fig. S1.

Interaction analysis across polyphenol classes
The non-covalent interactions between polyphenols 
and proteins primarily involve hydrogen bonds, hydro-
phobic interactions, metal coordination, π-stacking, 
π-cation interactions, and salt bridges (Fig.  5, Tables 
S4-S15). Hydrogen bonds are typically formed between 
the amino, amide, and hydroxyl groups of amino acid 
residues and the hydroxyl groups of polyphenols. The 
phenolic hydroxyl group acts as both a hydrogen bond 
donor (via the H-atom) and acceptor (via the O-atom). 
Keto moieties, found in certain flavonoids (e.g., flavon-
ones, flavanones), chalcones, coumarins, coumestans, 
curcuminoids, and naphthoquinones, also contribute as 
H-bond acceptors. Naturally, glycosyl moieties in glyco-
sylated polyphenols are common contributors of hydro-
gen bonds.

Direct H-bonds commonly form between these 
groups and amino acid side chains or backbone atoms, 
with average donor-acceptor distances ranging from 

approximately 3.1–3.4 Å and donor-hydrogen-accep-
tor angles around 135–145°. The average distances and 
standard deviations of direct H-bonds exhibit slight 
variations among different polyphenol classes, which 
suggests a consistent distribution and a pivotal role 
in complex stability (Fig.  6). Tyrosine and serine resi-
dues frequently participate in hydrogen bonding with 
polyphenols.

Water-mediated H-bonds are prevalent across all 
classes, especially in compounds with a larger number 
of hydroxyl groups, like stilbenes and flavonoids (Fig. 7, 
Tables S5 and S8), enhancing their interaction networks 
within protein binding sites. The average distances of 
water bridges are generally similar across most polyphe-
nol classes, although they are notably lower in coumarins 
(Fig. 6, Table S9), which is likely an artifact of low statisti-
cal sampling rather than specific structural properties.

Polyphenols, particularly those with gallol or catechol 
groups, are known for their strong metal-chelating 
properties, effectively coordinating metal ions such as 
iron and copper within metalloprotein binding sites 
[63]. Metal coordination generally involves the binding 
of polyphenol oxygen atoms (from hydroxyl or carboxyl 
groups) to metal ions. Phenolic acids and hydroxyben-
zenes frequently coordinate with metals, especially 
iron, forming complexes with average ligand-metal dis-
tances of around 2.1 Å (Fig.  6, Tables S4 and S7). Fla-
vonoids also participate in metal coordination, binding 
ions such as Mn2+ , Ni2+ , Zn2+ , Mg2+ , or Fe2+ , with 
average distances of 2.2 Å and coordination numbers 
typically ranging from four to six, often adopting octa-
hedral or trigonal bipyramidal geometries.

Stilbenes and coumarins generally do not engage in 
metal coordination within the observed PDB struc-
tures. The variability in metal coordination observed 
across different polyphenol classes may be attributed to 
differences in sampling size rather than inherent varia-
tions in metal-binding potential.

Fig. 5  Representative noncovalent interactions commonly formed 
by standard polyphenolic compounds
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All classes of polyphenols form hydrophobic interac-
tions with proteins, primarily through their aromatic 
rings and, in some cases, aliphatic linkers. Notably, cin-
namic acid derivatives, stilbenes, lignans, chalcones, and 
curcuminoids possess significant aliphatic linkers con-
necting their aromatic rings, which enhance hydrophobic 
interactions with proteins (Tables S3, S8, S11, S13, S14). 
The average distance for these interactions is around 3.6−
3.8 Å, once again indicating an overall stable interac-
tion pattern across all classes (Fig. 6). Leucine and phe-
nylalanine are the most commonly involved amino acid 
residues, interacting with polyphenols in a consistent 
manner across classes.

The aromatic systems of polyphenols are capable of 
forming geometrically varied π-stacking interactions 
with the side chains of phenylalanine, tyrosine, trypto-
phan, and histidine. These interactions typically involve 
either face-to-face (parallel) or edge-to-face (T-shaped) 

configurations. Among the more represented polyphe-
nol classes-flavonoids, hydroxybenzenes, and stilbenes-
both T-type and P-type π-stacking interactions are 
observed in roughly equal proportions (Table  S5, S7, 
S8).

In contrast, phenolic acids and cinnamic acid deriva-
tives generally adopt T-shaped stacking, with slightly 
larger distances of 4.7−5.1 Å and angles near 77–79° 
(Fig. 6, Tables S4 and S6). The increased propensity for 
T-stacking configurations observed for phenolic acids 
and hydroxycinnamic acid derivatives is likely due 
to the electron-withdrawing effects of their carboxyl 
groups, which alter the electronic properties of the 
aromatic ring. T-type stacking configurations generally 
have longer distances compared to P-type, contributing 
to the variation seen in average distances across these 
interactions (Fig. 6). The observed variations in average 
distances and standard deviations appear to be influ-
enced by the inherent structural characteristics of each 
polyphenol class and reflect differences in their ability 
to participate in π-stacking.
π-cation interactions involve the attraction between 

the electron-rich aromatic rings of polyphenols and 
positively charged side chains of lysine, arginine, and 
histidine. Flavonoids and stilbenes display relatively 
more π-cation interactions compared to other classes, 
primarily with lysine and arginine residues, facilitated 
by their multiple aromatic rings and electron-rich sys-
tems (Fig. 7, Tables S5 and S8).

Salt bridges are formed only by polyphenols contain-
ing a carboxylate group capable of ionic interactions 
with positively charged residues lysine and arginine. 
Phenolic acids and cinnamic acid derivatives frequently 
form salt bridges due to their carboxylic acid moieties, 
with average heavy atom distances around 3.9 Å (Fig. 6, 
Tables S4  and S6). Hydroxybenzenes possessing a car-
boxyl group, such as hydroxyphenylacetic acids, also 
engage in salt bridge interactions. In contrast, flavo-
noids, stilbenes, and coumarins generally lack charged 
groups in their aglycone forms and thus rarely form salt 
bridges unless modified or conjugated with additional 
acidic groups.

For detailed discussions and notable examples of 
polyphenol-protein complexes with high representa-
tion in the PDB, please refer to the Supporting Infor-
mation Section S1 and corresponding Fig. S2–S7. There 
we also provide the analysis of less represented classes 
(coumestans, lignans, naphthoquinones, curcuminoids, 
chalcones, and nonclassified polyphenols) in Section 
S2 and Fig. S8. These compounds engage in similar 
non-covalent interactions; however, caution  is advised 
due to low data availability, when drawing definitive 
conclusions. 

Fig. 6  Overview of the average interaction distances and their 
standard deviations based on polyphenol classes. PA phenolic 
acids, F flavonoids, HAD hydroxycinnamic acid derivatives, HB 
hydroxybenzenes, S stilbenes, C coumarins
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Assessing the impact of crystallographic resolution 
and resolved waters on hydrogen bond networks
MD simulations of epicatechin‑3‑gallate binding to 
glutamate dehydrogenase solved at a low resolution: the role 
of water molecules and flexible binding modes
We employed MD simulations to explore the potential 
existence of water-mediated H-bonds in a low-resolution 
structure of the open conformation of bovine glutamate 
dehydrogenase (GDH, PDB ID 6DHL, resolution of 3.624 
Å) bound to the flavonoid epicatechin-3-gallate (PDB ID: 
XEG) [64]. GDH represents an enzyme that catalyzes 
the oxidative deamination of glutamate to 2-oxogluta-
rate using NAD(P)+ as a cofactor. It plays a crucial role 
in amino-acid metabolism and cellular energy produc-
tion. Additionally, GDH is implicated in the regulation of 
insulin secretion by pancreatic beta-cells, and mutations 
in GDH can lead to hyperinsulinism/hyperammonemia 
syndrome, a rare genetic disorder affecting glucose and 
ammonia levels in the blood [64].

This structure was selected as it represents one of the 
lowest-resolution protein-polyphenol complex in the 
PDB. Our objective was to assess whether MD simula-
tions  could elucidate potential water-mediated H-bond 
network within the protein binding site, since the experi-
mental crystal structure does not contain resolved water 
molecules.

In the initial crystal structure, epicatechin-3-gallate 
binds to the same allosteric site as the regulator ADP, 
with the interaction primarily driven by polar contacts 
(Fig. S9). Due to the absence of experimentally resolved 
water molecules and the likely dynamic nature of the 
binding mode, we used MD simulations to gain further 
insights into the interaction landscape of this complex, 
specifically focusing on the role of water molecules and 
the flexibility of the binding modes.

RMSD analysis of the main trajectory revealed two sig-
nificant conformational transitions (Fig. S9a). Initially, 
the protein remained in a stable conformation for up to 
0.5 µs, after which it transitioned to a new conformation 
around 0.75 µs and remained stable until the end of the 
simulation. Qualitatively, similar behavior was observed 
in the replica trajectory (Fig. S9b). By analysing the struc-
tural changes in the helical regions of XEG bound to 
GDH, we revealed two distinct conformations with nota-
ble transitions and moderate helical displacements while 
preserving the integrity of the binding site as elaborated 
in SI - Section S3, and Fig. S10.

To further characterize the distinct conformational 
states sampled during the simulations, we conducted 
hierarchical clustering based on RMSD matrices derived 
from 1,000 snapshots of both the main trajectory and 
the replica. In the main trajectory, the clustering analysis 

Fig. 7  Relative frequency distributions of non-covalent interactions identified with PLIP, categorized by polyphenol classes with high 
representation in the PDB
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identified three conformational ensembles: the first span-
ning from 0 to 598 snapshots, the second from 599 to 
745 snapshots, and the third from 746 to 1,000 snapshots 
(Fig. S9a). The replica trajectory showed two conforma-
tional states: the first spanning from 0 to 226 snapshots, 
and the second continuing until the end of the simulation 
(Fig. S9b). These observations indicate that the system 
samples distinct conformational ensembles, with the rep-
lica trajectory eventually settling into the same ensemble 
observed in the main trajectory.

In addition to RMSD and clustering analyses, we per-
formed a time-dependent analysis of protein-ligand 
interactions to investigate the evolution of key interac-
tions during the simulation. Interaction fingerprints 
plotted over time demonstrated distinct interaction pro-
files that correlated with the observed conformational 
changes. In the main trajectory, an initial interaction pat-
tern was observed up to approximately frame 500. This 
was followed by a transition that was completed around 
frame 750, correlating with the shift to a new conforma-
tional ensemble (Fig.  8a). In the replica trajectory, the 
initial stabilization phase involved consistent interactions 
with Asp119 and Tyr382, after which the system adopted 
a conformational ensemble similar to the beginning of 
the main trajectory (Fig.  8b), characterized by interac-
tions involving Val120, Pro121, Phe122, Asn388, Lys488, 
and Val492.

Utilizing Bridge2 [52, 53], we examined the water-
mediated hydrogen bond formation between XEG and 
the protein residues in the initial and subsequent time-
frames based on the above-described clustering analysis 
throughout the MD simulation. Our analysis revealed the 
entry of numerous water molecules into the binding site, 
participating in  dynamic H-bond networks involved in 
ligand binding, with observable changes over the course 
of the simulation.

Based on Bridge2 calculations, we observe in the ini-
tial crystal structure that the ligand XEG establishes 
direct H-bonding interactions with the side-chain atoms 
of Arg387A, Ser393A, Arg396A, Arg459B, Lys488B, and 
Arg491B (Fig. S9c-e). Additionally, two H-bonds are 
formed with backbone atoms of Cys115B and Val120B. 
During main MD simulations the three cluster-based 
water networks (snapshots at 0-598, 599-745, and 746-
1,000 ps) are overall similar at high occupancy (more 
than 75%), with slight differences in the residues involved 
and the complexity of the water-mediated interactions. A 
similar water network was also identified throughout the 
entire simulation using the MADE approach as TIP3P 
waters persisted as conserved clusters at key bridging 
locations between XEG and also Asp119, Glu487, His85, 
Arg86, Lys387, Asn388, His209 and Ser393 (Section S4 
and Fig. S11).

The water-mediated hydrogen bond networks across 
the simulations (Fig. 8c–k and Fig. S9f,g) reveal a dynamic 
and adaptable system, with a core set of residues-Asp119 
and RArg86 from chain B and His209 from chain A-con-
sistently participating in interactions. The initial cluster 
(frames 0-598, (Fig.  8c–e) contains the fewest residues, 
while the second cluster (599-745, (Fig.  8f–h) adds 
His391 and Ile203 from chain A, expanding the network. 
The third cluster (746-1000, (Fig. 8i–k) demonstrates sig-
nificant rearrangements, losing interactions with F122 
(chain B) and Ser393, Lys387, Asn388 (chain A) but gain-
ing new ones with Val120, Arg491 (chain B) and His391, 
Ser204, Gln205 (chain A). Replica simulations show fur-
ther evolution, with the first replica network (0-226, Fig. 
S9f ) incorporating additional residues such as His85 and 
Tyr382 (chain B) and His195, His391, Ser204, Ser393 
(chain A), resembling the second cluster of the main sim-
ulation. The second replica network (227-1000, Fig. S9g) 
adds Pro121 and Phe122 (chain B) and Gln205 (chain 
A), while losing His391 and Asn388, reflecting contin-
ued structural adaptation. These observations highlight a 
possibility of a highly dynamic water-mediated network, 
with residues and water molecules rearranging to accom-
modate structural and environmental demands.

Overall, this analysis underscores the crucial role of 
MD simulations in revealing binding water molecules. 
Our MD simulations shed light on the indispensable 
involvement of water molecules in the binding of poly-
phenols to proteins, a fact frequently disregarded in in 
silico studies, especially when dealing with low-reso-
lution X-ray or cryo-EM structures. Additionally, they 
underscore that the crystal structure does not necessarily 
grasp the most representative pose of the protein-poly-
phenol complex, revealing the flexible nature of polyphe-
nol binding observed in MD simulation.

Despite inherent limitations and uncertainties asso-
ciated with MD simulations, such as the choice of force 
field, solvent model, simulation time, and sampling 
method, our consistent observation of dynamic and flex-
ible polyphenol binding (Fig.  1), mediated by several 
water molecules, reinforces the robustness of these find-
ings [16].

Influence of crystallographic resolution on water binding 
dynamics: comparative analysis of transthyretin‑resveratrol 
complexes
We performed a comparative analysis of two TTR-res-
veratrol structures, one resolved at high resolution (PDB 
ID 7Q9O, R = 1.35 Å) and the other at lower resolution 
(PDB ID 1DVS, R = 2.00 Å), using 1 µs MD simulations 
to evaluate how crystallographic resolution impacts 
structural completeness. This analysis focused particu-
larly on water-mediated hydrogen-bond networks and 
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Fig. 8  Interaction contact maps between glutamate dehydrogenase residues and XEG for the main a and replica b simulations, 
depicting the presence of hydrophobic (yellow), hydrogen bonds (green), and rare π-cation (purple) interactions. c–k Dynamic binding 
of epicatechin-3-gallate (XEG) to glutamate dehydrogenase (GDH). Analysis of the water-mediated binding for the first cluster (snapshots 0-598) 
simulation, showing the c entire medoid (409) snapshot, d zoomed-in binding site, and e the Bridge2 output of water-mediated H-bonding 
interactions. f–h panels corresponding to the second cluster (snapshots 599-745) and i–k panels corresponding to the third cluster (snapshots 
746-1000). Blue cartoons in panels represent the backbone of GDH and sticks with grey carbons the amino-acid residues forming H-bonding 
interactions (cyan lines) with XEG. Sticks with green carbons represent the XEG ligand.The numbers on the edges represent the average number 
of water molecules bridging the H-bonding interaction
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assessed the ability of MD simulations to compensate 
for any missing hydration details in lower-resolution 
structures.

In the high-resolution structure (PDB ID 7Q9O, R 
= 1.35 Å), six water oxygen atoms are identified within 
three hydration layers around the resveratrol ligand, 
whereas in the lower-resolution structure (PDB ID 1DVS, 
R = 2.00 Å), only two such water oxygens are present 
(Fig. 9a, b). In the lower-resolution structure, one of the 
water molecules bridges further toward the side chain 
atoms of Glu54A.

Despite relatively high RMSD values in certain regions 
during the MD simulations, likely due to the inherent 
flexibility of the loop regions and peripheral domains 
(Fig. S12a-d), the core structure and ligand-binding 
interactions remained stable throughout the simulations 
(Fig.  9c–e). Time-dependent analyses of H-bond net-
works and key interaction patterns further confirmed 
this stability (Fig. S12e-k). Interaction contact maps for 
both high- and low-resolution starting structures across 
main and replica simulations revealed consistent and 
conserved interaction profiles over time.

This highlights the robustness of the TTR-resveratrol 
complex in maintaining critical ligand interactions, even 
amidst structural flexibility or when derived from lower-
quality experimental data. Specifically, in both high- and 
low-resolution starting structures, the two direct hydro-
gen bonds with Ser117 and hydrophobic interactions 
with residues such as Leu108 and Ala110 were preserved, 
while additional water molecules entered the binding site 
during the simulations (Fig. 9c–e, S11e-k). Using a hydro-
gen-bond cutoff occupancy of ≥50%, the same symmetri-
cal water-mediated network, involving Ser117, Thr106, 
Glu54, and Lys15, was consistently observed across all 
main and replica simulations, with minimal variation in 
the average number of bridging water molecules (Fig. 9e 
and S12i-k).

It is important to note that our pose selection positions 
the catechol moiety of resveratrol facing outward from 
the protein, a deliberate choice based on the existence of 
multiple poses documented for this complex (Fig. 9a, b) 
[65].

Moreover, a back-mapping approach was employed to 
analyze the observed water molecules in the high-res-
olution electron density map of the complex (PDB ID: 
7Q9O). By superposing MD snapshots with the electron 
density map, it was possible to validate the placement 
of discussed water molecules in relation to the crystal 
structure. The electron density map, carved within 5 Å 
of the resveratrol ligand, revealed that the modelled crys-
tal water locations were consistently occupied by waters 
from the MD simulation, underscoring the relevance 
of these molecules in the binding and stabilization of 

the complex. These findings elaborate on the functional 
importance of water molecules in mediating interactions 
between transthyretin and resveratrol, adding to a cohe-
sive picture of their structural and dynamic contributions 
to complex stability.

In conclusion, our results demonstrate that starting 
from a lower-resolution structure, MD simulations are 
capable of reproducing the same water-mediated bond-
ing patterns observed with high-resolution structures. 
This highlights the ability of MD simulations to provide 
reliable and reproducible insights into protein-ligand 
dynamics and molecular interactions, even when initial 
crystallographic data are of lower quality. It reinforces 
the value of MD simulations as a robust tool for investi-
gating biomolecular systems under varying experimental 
conditions.

MD simulation of the binding of quercetin 
and isoquercetin to sirtuin 6: the effect of glycosylation 
on dynamic polyphenol binding
Glycosylation plays a pivotal role in modulating the bind-
ing of polyphenols to proteins, influencing their biologi-
cal activities and bioavailability [66, 67]. It serves as a 
natural mechanism for plants to regulate the activity and 
availability of polyphenols in response to environmental 
changes or stress conditions. Given the rapid metabolism 
of polyphenols upon their absorption, understanding the 
impact of glycosylation on polyphenol binding becomes 
crucial. Moreover, glycosylation emerges as a valuable 
biotechnological tool for modifying the properties and 
functions of polyphenols [68].

In general, glycosylation tends to diminish the binding 
affinity of polyphenols to proteins through a reduction in 
hydrophobicity and an increase in steric hindrance [69, 
70]. Nevertheless, glycosylation may, in certain cases, 
elevate the binding affinity of specific polyphenols to par-
ticular proteins. This enhancement can occur through 
increased solubility, improved stability, heightened selec-
tivity, and the formation of specific interactions with 
amino-acid residues within the protein structure [68].

Sirtuin 6 (SIRT6) stands out as a critical NAD+

-dependent protein deacylase homodimeric enzyme, 
playing a crucial role in metabolic regulation and main-
taining chromatin homeostasis. Its activation has been 
linked to the protection against a spectrum of metabolic 
and age-related diseases, while its inhibition is associated 
with anticarcinogenic effects. The activation of SIRT6 has 
been attributed to quercetin, a polyphenol that binds to 
the isoform-specific acyl-binding channel of the protein. 
The complex formed between SIRT6 and quercetin (PDB 
ID 6QCD) represents a rare instance where the structures 
of both the polyphenol itself and its direct glycosylated 
derivative, isoquercetin (PDB ID 6QCE), are available in 
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Fig. 9  Water-mediated H-bonds were observed during the MD simulations of a TTR-resveratrol structure. a, b The lower-resolution crystal structure 
(1DVS) contains two water molecules within the binding site. One forms a water-mediated H-bond to Glu54A. c, d During MD simulations, 
an extensive water-mediated H-bond network was formed within the binding site, including residues from chains A and C. A frame from a 930th 
ns is chosen for visualization. e Bridge2 output of the resveratrol water-mediated H-bonding. Values on the edges represent the average number 
of bridging water molecules during the main MD simulation of the low resolution structure. Corresponding figures from remaining simulations 
are deposited in Supporting Information Fig. S11i-k. Blue cartoons represent the backbone of H-bonding amino-acid residues, and sticks with grey 
carbons their side-chains. Resveratrol (STL) is presented by sticks of green carbons, and waters by balls-and-sticks representation (red oxygens, 
white hydrogens). Direct H-bonds are shown with purple dotted lines, and water mediated ones with cyan dotted lines. f 7Q9O in yellow-colored 
cartoon model with green stick model ligand is overlaid with 2fo-fc electron density map in light-blue mesh. Crystal-modelled waters that were 
fitted to the electron density are emphasized by dark-blue spheres. Our MD snapshot is superposed (rose-colored cartoon model with light-pink 
stick model ligand) with MD TIP3 waters of the inspected snapshot in element-colored stick model (red oxygen and white hydrogens). It can clearly 
be observed that all modelled crystal water locations are also occupied by MD TIP3 waters
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the PDB [71]. Isoquercetin, a glycosylated derivative of 
quercetin, has demonstrated a heightened selectivity as 
an activator of SIRT6 due to the sugar moiety prevent-
ing its binding to alternative sites in remaining SIRTs. 
Notably, in the crystal structure, the aglyconic part of 
isoquercetin retains an identical binding pose as the par-
ent molecule, while the glycoside is oriented towards the 
cofactor in the isoquercetin (HW2) molecule, forming an 
H-bond with the ribose moiety [71].

To explore the influence of glycosylation on polyphenol 
behavior and activity, MD simulations again emerge as a 
vital tool. By comparing the structural dynamics of agly-
con and glycon structures through MD simulations, we 
sought to elucidate how glycosylation affects the binding 
of polyphenols. In our simulations, both dimers of SIRT6 
were considered, with each dimere binding the corre-
sponding flavonoid.

Specific RMSD values (Fig. S13a-d) for this simulated 
system appear large due to the inclusion of the entire 
dimer in the simulation, with structural contributions 
from 81 residues in β-sheets, 166 in α-helices, and 324 
in loop regions. The N-terminal and C-terminal ends 
also span 17 and 28 residues, respectively, which impacts 
RMSD values. Moreover, for protein-only RMSD plots, 
all backbone-C atoms were used, while other RMSD 
plots included all atoms. For example, the average RMSD 
for a 100 ns backbone calculation (main aglycone trajec-
tory) was 4.58 Å ± 0.61, whereas considering only helical 
structures reduced the RMSD to 3.94 Å ± 0.52. Overall, 
we therefore consider the SIRT6 systems stable, and con-
firm this with the below described time-dependent inter-
action analyses.

Performing a time-dependent analysis of protein-ligand 
interactions, the simulations of the aglycone (quercetin) 
system showed notable consistency, with key hydropho-
bic residues such as Phe82, Phe86, Val115, and Phe86, 
maintaining high occupancies and substantial frame 
overlap across the main and replica simulations (Fig. 
S13e,f ). Hydrogen bonding interactions, particularly with 
Pro62 and Leu186, were also present in both simulations, 
although their occupancies and timing displayed some 
variability. In contrast, the glycone (isoquercetin) simu-
lations displayed greater variability. Interactions with 
residues like Val115, Ile185 and Leu186, but additional 
interactions, such as those involving Glu74, emerged in 
the glycone system (Fig. S12g,h). H-bonding of e.g. the 
main chain of Phe64 showed more fluctuations, likely 
due to the introduction of heightened flexibility by the 
glycone moiety.

To complement the above analysis, Bridge2 was used 
to investigate water-mediated H-bonding networks in 
the last 400 ns of the simulation. This analysis revealed 
a high number of water-mediated interactions between 

the flavonoid ligands and the receptor, many of which 
showed frequent occupancy ( ≥50%) (Fig. 10). While com-
paring the water-mediated H-bond networks formed in 
the main and replica simulations, we observed deviations 
from the strong correspondence observed in previous 
TTR-resveratrol simulations. This suggests a more pro-
nounced transient nature of water-mediated H-bonds, 
resulting in rapid fluctuations of H-bonding patterns.

Interestingly, in simulations containing isoquercetin, 
we did not observe frequent interactions between the 
glycan moiety and the AR6 cofactor, as observed in the 
static crystal structure. However, our analysis revealed 
the formation of intricate water-mediated H-bond net-
works involving the polar sugar moiety, indicating the 
potential for glycosylation to introduce new interactions 
with proteins, primarily mediated by water molecules 
(Fig.  10e–h). This underscores the role of glycosylation 
in modulating protein-ligand interactions and empha-
sizes the significance of water-mediated H-bonds in fine 
tuning the protein interactions with polyphenols. For 
instance, in the main isoquercetin-SIRT6 MD simulation, 
we observed the formation of an extensive water-medi-
ated H-bond network with the glycan moiety, encom-
passing amino-acid residues around Asp187 (Fig.  10c, e, 
g). In the corresponding replica MD simulation, a water 
network was formed between the glycan moiety and 
Phe86, Asp116, and Arg121 (Fig. 10d, f, h).

Here we, therefore, observe, that glycosylation can play 
a pivotal role in influencing the binding pose and ori-
entation of the aglyconic polyphenol portion within the 
protein binding site, through altered formation of non-
covalent interactions and especially through water-medi-
ated networks by its polar glyconic part.

Conclusion
Our study was initiated by analyzing polyphenol-protein 
interactions within the entire Protein Data Bank (PDB), 
which revealed a diverse array of polyphenolic struc-
tures encompassing smaller hydroxybenzenes and phe-
nolic acids, to larger and distinct flavonoids, stilbenes, 
and lignans (Fig. 2). Across all these classes, polyphenols 
engage in a variety of noncovalent interactions with their 
protein targets - predominantly in hydrophobic interac-
tions with aromatic rings or linkers, as well as in direct or 
water-mediated H-bonds with aromatic hydroxyl groups 
or, when present, carboxylic acid moieties (Fig. 7). Addi-
tionally, negatively charged carboxylic acids often form 
salt bridges. Frequent interactions also include π-stack-
ing and π-cation interactions formed with aromatic rings. 
The catechol moiety of numerous polyphenols further 
facilitates metal complexation (Fig.  2). While similar 
overall interaction patterns are present among differ-
ent polyphenolic classes, exceptions exist (Fig.  6); for 
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Fig. 10  Water molecules mediate a large number of interactions between flavonoids and SIRT6 as observed during MD simulations. a 
Water-mediated H-bonds formed with quercetin (QUE) in the main MD simulation. b Water-mediated H-bonds formed with QUE in the replica MD 
simulation. c Water-mediated H-bonds formed with isoquercetin (HW2) in the main MD simulation. d Water-mediated H-bonds formed with HW2 
in the replica MD simulation. e, g 3D view of the formation of a frequent (occupancy ≥ 50%) water-mediated H-bond network involving the sugar 
moiety of HW2 as observed in the main MD simulation. f, h 3D view of the formation of a frequent (occupancy ≥ 50%) water-mediated H-bond 
network involving the sugar moiety of HW2 as observed in the replica MD simulation
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instance, salt-bridge interactions are specific for charged 
moieties such as phenolic acids and hydroxycinnamic 
acid derivatives. Water-mediated hydrogen bonds are 
notably prevalent in larger polyphenols with abundant 
aromatic hydroxyl groups arranged in a planar and rigid 
structure (flavonoids, stilbenes). Another exception is the 
occurrence of π-stacking interactions, which are less fre-
quent in phenolic acids compared to remaining polyphe-
nols, likely due to the electron-withdrawing effects of the 
carboxylic acid moiety (Fig. 6).

In the second part of our study, we explored various 
polyphenol-protein complexes using MD simulations to 
uncover the intricate dynamics of their interactions. Our 
exploration revealed dynamic binding patterns charac-
terized by the initial influx of water molecules into the 
binding site, prominently observed in the XEG-GDH 
complex, as well as in the binding of QUE and HW2 to 
SIRT6. These findings underscore the limitations of static 
crystal structures in capturing the most representa-
tive poses of protein-polyphenol complexes. Notably, 
water-mediated interactions emerge as crucial in poly-
phenol-protein binding due to the presence of multiple 
polyphenoloic polar groups, rendering the overall inter-
action patterns highly dynamic. Water molecules actively 
participate in mediating transient H-bonds between the 
ligand and protein residues via established water net-
works. The latter possibly contributes to the remarkable 
variability in the binding pattern of polyphenols, as well 
as to their promiscuous binding. The observed flexibility 
therefore advocates water-mediated H-bond and con-
served water molecule analysis in polyphenol-protein 
interaction study.

Conversely, the comparison between high and low-
resolution crystal structures of TTR-resveratrol, coupled 
with extensive MD simulations, highlights the robustness 
of carefully curated MD simulations. These simulations 
reveal consistent dynamics, despite the difference in res-
olution of the initial structural data.

Our investigations into the influence of glycosylation 
on polyphenol binding hint to its role in modulating 
interactions with proteins. Glycosylation, functioning as 
a natural polyphenolic regulatory mechanism in plants, 
can impact the overall binding of the aglyconic part of 
the polyphenol by facilitating the formation of intricate 
water-interaction networks between the glyconic part 
of the polyphenol and the protein, either promoting or 
abolishing the activity.

In contrast to synthetic drugs, which frequently exhibit 
stable and specific binding modes [72], polyphenol bind-
ing seems to lack the typical stability seen in ligand-pro-
tein complexes representing synthetic actives. Instead, 
the dynamic nature of polyphenol interactions, primar-
ily driven by the propensity to form water-mediated 

interactions, underscores the intricate interplay among 
the ligand, protein, and solvent environments. This 
emphasizes the necessity for comprehensive dynamical 
studies aimed at elucidating the molecular mechanisms 
underlying polyphenol-protein recognition.

In essence, our comprehensive analyses contrib-
ute to a deeper understanding of the nuanced interplay 
between polyphenols and proteins. This knowledge not 
only enhances our grasp of the molecular mechanisms, 
but also provides a foundation for future studies aimed 
at harnessing the therapeutic potential of polyphenols 
through informed drug design.
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