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Abstract 

Spleen tyrosine kinase (Syk) is a crucial mediator of inflammatory processes and a promising therapeutic target 
for the management of autoimmune disorders, such as immune thrombocytopenia. While several Syk inhibitors are 
known to date, their efficacy and safety profiles remain suboptimal, necessitating the exploration of novel com-
pounds. The study introduces a novel deep reinforcement learning strategy for drug discovery, specifically designed 
to identify new Syk inhibitors. The approach integrates quantitative structure–activity relationship (QSAR) predictions 
with generative modelling, employing a stacking-ensemble model that achieves a correlation coefficient of 0.78. 
From over 78,000 molecules generated by this methodology, we identified 139 promising candidates with high pre-
dicted potency, binding affinity and optimal drug-likeness properties, demonstrating structural novelty while main-
taining essential Syk inhibitor characteristics. Our approach establishes a versatile framework for accelerated drug 
discovery, which is particularly valuable for the development of rare disease therapeutics.

Scientific contribution
The study presents the first application of QSAR-guided reinforcement learning for Syk inhibitor discovery, yielding 
structurally novel candidates with predicted high potency. The presented methodology can be adapted for other 
therapeutic targets, potentially accelerating the drug development process.
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Introduction
Spleen tyrosine kinase (Syk) is an intracellular nonre-
ceptor protein that belongs to the tyrosine kinase fam-
ily. Its expression is observed in various immune cells 
involved in mediating inflammatory responses, includ-
ing B and T cells, fibroblast-like synoviocytes, and tissue 
macrophages [1, 2]. Activated Syk triggers a cascade of 
intracellular signalling pathways, leading to the activation 

of transcription factors and the expression of genes that 
perform various biological functions [3, 4].

Syk hyperactivation is observed in many autoimmune, 
allergic and autoinflammatory diseases, as well as some 
types of cancer and cardiovascular diseases [3, 5, 6]. This 
broad involvement in disease pathology makes Syk an 
attractive therapeutic target for the development of novel 
drugs [7, 8]. One of the diseases most in need of new Syk 
inhibitor structures is immune thrombocytopenia (ITP). 
ITP is a rare autoimmune disorder characterized by a low 
platelet count in the blood [9]. Although various treat-
ment options exist, Syk inhibitors represent one of the 
most promising and potentially long-term effective ther-
apeutic approaches [10].

*Correspondence:
Andrei Dmitrenko
dmitrenko@scamt-itmo.ru
1  Center for AI in Chemistry, ITMO University, Lomonosova St. 9, St. 
Petersburg 197101, Russia

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-025-00998-2&domain=pdf


Page 2 of 11Zavadskaya et al. Journal of Cheminformatics           (2025) 17:52 

Currently, several Syk inhibitors are undergoing vari-
ous stages of clinical trials [6]. Despite their potential, the 
development of potent Syk inhibitors poses certain chal-
lenges ranging from avoiding off-target effects on related 
kinases to the lack of efficacy seen in clinical trials [8, 11]. 
Clinical trials have reported instances of hypertension, 
neutropenia, and diarrhea associated with its use [12]. To 
date, the only Syk inhibitor approved for the treatment of 
ITP is fostamatinib  [13]. However, its development and 
clinical application have been hindered by safety con-
cerns and inconsistent efficacy data [14]. These challenges 
underscore the need for further optimization of Syk inhib-
itors, including improving selectivity, enhancing drug-like 
properties, and advancing our understanding of disease 
mechanisms. In this regard, the search for more effective 
and safer Syk inhibitors is still underway [3].

In recent years, various computational methods and 
machine learning approaches have become indispensable 
tools in biomedical research and pharmaceutical devel-
opment  [15–19]. Advancements in these methods have 
led scientists to focus on the search for new molecules 
through techniques such as quantitative structure–activ-
ity relationship (QSAR) modelling, pharmacophore mod-
elling and molecular docking  [20–23]. These methods 
significantly accelerate the development of novel com-
pounds for targeted therapy by enabling the prediction of 
the biological activity of untested molecules [18].

Broadly, there are two main computational approaches 
for identification of new compounds with potential bio-
logical activity: screening existing drug-like databases or 
data-driven generative design of small molecules with 
desired properties [24] These approaches are closely 
interrelated since the models utilized for screening 
chemical databases are also leveraged for the in  silico 
assessment of generated structures for the presence of 
the desired biological activity [25]. In particular, gen-
erative molecular design leverages a variety of machine 
learning methodologies, including generative adversarial 
networks (GANs), variational autoencoders (VAEs), and 
transformer-based approaches  [19, 26–28]. Each one 
offers unique  advantages: GANs generate structurally 
diverse molecules, VAEs enable latent space manipu-
lation, and recurrent neural networks (RNNs) excel at 
sequence-based molecular generation [29].

A special place in this field is occupied by the rein-
forcement learning (RL) strategy. This approach is par-
ticularly effective for developing targeted inhibitors, 
as it facilitates the fine-tuning of molecular proper-
ties to meet the desired criteria [30]. Recent advance-
ments in RL-based de novo molecular generation, such 
as the fragment-based RL forward synthesis approach 

proposed by Cai et  al. [31], have underscored the 
potential of RL in drug discovery. This method opti-
mizes molecular candidates by growing them fragment-
by-fragment via curated reaction templates, ensuring 
the synthetic feasibility, drug-likeness, and target affin-
ity of the generated molecules. Notably, this approach 
successfully identified new drug molecules that were 
successfully synthesized and exhibited improved activ-
ity compared with known compounds.

Available data on recognized Syk inhibitors enables 
the application of the approaches described above for 
the development of novel compounds exhibiting inhibi-
tory activity towards Syk  [32]. Previously, researchers 
have conducted several virtual screenings of current 
drug-like databases via pharmacophore modelling 
and molecular docking [33–35]. For example,  Wang 
et  al.  [35] combined computer-based screening with 
in vitro tests to identify substances from the traditional 
Chinese medicine database. This effort led to the dis-
covery of Tanshinone  I, a promising compound that 
is now undergoing further study  [36, 37]. In another 
study, Xie  et  al.  [38] created a 3D pharmacophore 
model based on known Syk inhibitors and filtered 
potential candidates using Lipinski’s rule and molecu-
lar docking. Among the 30 tested substances, 6 showed 
good ability to block Syk activity. Additionally, classical 
machine learning approaches for identifying Syk inhibi-
tors were also considered [39].

Despite these advancements, the generative de 
novo design of Syk inhibitors has not been previously 
employed. Inspired by the success of RL-based method-
ologies, this study presents an approach to the design of 
new Syk inhibitors by enhancing the FREED +  + deep 
reinforcement learning model (Fig.  1). We used 
FREED++ as the baseline generative model because of 
its multiparameter optimization capabilities, specifi-
cally its ability to incorporate docking scores – a criti-
cal metric for effective inhibitor design. Furthermore, 
the model’s fragment-based molecular construction 
strategy substantially increases the likelihood of syn-
thetic accessibility, another important factor for later 
stages of drug development. We adapted the reward 
function of FREED++ to explicitly consider the target 
properties of Syk inhibitors, advancing the capabilities 
of the original generative approach. For that, we trained 
several machine learning models to predict the nega-
tive log of the IC50 and implemented a stacking ensem-
ble to achieve R2 = 0.78 on the test set. Notably, these 
results establish a new state of the art for the predic-
tion of Syk inhibitor biological activity. Our research 
not only demonstrates the application of cutting-edge 
generative models to Syk inhibitor design but also 
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introduces a methodology for adapting and improving 
generative algorithms to address specific therapeutic 
targets, thereby pushing the boundaries of computa-
tional drug discovery.

Materials and methods
Data collection and processing
A dataset of 3,513 Syk inhibitors with an experimen-
tally determined half maximal inhibitory concentra-
tion value (IC50) was obtained from the ChEMBL 
database [40] (target identifier: CHEMBL2599). 
Within this dataset, 71% of the samples were retrieved 
from the BindingDB database [41], mainly compris-
ing patent literature, while the remaining 29% were 
drawn from scientific literature. After preprocessing, 
including duplicate and outlier removal and inaccurate 
activity data filtering, a total of 3176 molecules were 
retained. Duplicated compounds were identified on 
the basis of SMILES representations. For duplicates 
with multiple IC50 measurements, the values were 
averaged if all were within 10% of the median. If the 
variance exceeded 10% of the median, the lowest IC50 
was retained for each compound to avoid the exclusion 
of potentially potent inhibitors. For machine learn-
ing model development, IC50 values were converted 
to pIC50 values by applying the negative logarithm, 
ensuring a normalized data distribution suitable for 
predictive modelling. The distribution of pIC50 values 
in the final dataset is provided in Sect. 1 of the Supple-
mentary Materials.

This curated dataset comprises unique mol-
ecules, of which 1,642 are highly potent inhibi-
tors (IC50 < 50  nM), 999  are moderately active 
(50  nM < IC50 < 500  nM), and 535 are lowly active 
(IC50 > 500  nM). To represent molecular structures, 
various methods, both novel and generally accepted, 

were evaluated via the Pycaret autoML framework to 
identify the optimal approach. The obtained struc-
ture‒activity data formed the foundation for develop-
ing a machine learning regression model to predict 
pIC50 values.

Bioactivity prediction
The following classical machine learning models have 
been employed to predict the inhibitory ability of drug 
molecules: Random Forest Regression (RFR), Hist Gradi-
ent Boosting  (HGB), eXtreme Gradient Boosting  (XGB) 
and Support Vector Regression  (SVR). These models 
were selected due to their proven efficacy in addressing 
regression tasks within the pharmaceutical industry [42, 
43]. Parameter optimization for these models was con-
ducted utilizing the Optuna framework [44]. A compre-
hensive description of this process is provided in Sect.   
3 of the Supplementary Materials.

RFR, HGB and XGB refer to the ensemble learning 
methods. These methods involve constructing multiple 
decision trees and combining them to achieve improved 
predictive performance compared with individual deci-
sion trees. SVR, a regression analysis method based on 
support vectors, is adept at handling non-linear depend-
encies and high-dimensional data  [45], making it well-
suited for accurately predicting efficacy based on long 
binary vectors – molecular fingerprints.

To further improve the predictive performance, we 
implemented a stacking ensemble approach. This method 
combines multiple base models into a meta-regressor 
leveraging the individual strengths of each model to cre-
ate a more robust and accurate predictive framework. 
The top-performing algorithms from our initial evalua-
tion were selected as the base models, while a standard 
linear regression model was employed as the final esti-
mator in the ensemble. By aggregating the predictions of 

Fig. 1  Computational workflow
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diverse models, the stacking approach enhances overall 
accuracy and robustness.

To evaluate and compare the predictive performance of 
all models, individual models (RFR, HGB, XGB, SVR) as 
well as a stacking ensemble with fivefold cross-validation 
(CV) were applied to ensure robust performance estima-
tion. The performance metrics used for evaluation were 
the coefficient of determination (R-squared) and the 
mean squared error (MSE).

Molecules generation
We adopted an RL approach for de novo drug molecule 
generation, prioritizing desired chemical space and 
multi-property optimization [46, 47]. This was achieved 
by incorporating docking score, drug-likeness, and bioac-
tivity (specifically pIC50) into the RL reward function.

3fqs protein from the PDB database [48] was selected 
as the target for generation of new inhibitor molecules. 
This protein is known to be complexed with R406, an 
active metabolite that previously served as the basis for 
the most commonly used agent for inhibiting Syk, Fos-
tamatinib [13].

Potential ligand binding sites within the protein struc-
ture were identified using the following procedure: 
first, the three-dimensional structure of the ligand was 
extracted from the corresponding PDB file; then, the 
centroid of the bounding parallelepiped was calculated 
by averaging the coordinates of all ligand atoms. The 
dimensions of the parallelepiped along each coordinate 
axis were estimated by adding the maximum deviation 
of the ligand atom coordinates from the respective cen-
troid coordinate plus 4 Å. A similar method for preparing 
potential ligand binding sites was used by the authors of 
FREED++ [49].

The CReM-ZINC fragment library from FREED++ was 
used as the source library of molecular fragments. The 
reward functions used for structure generation employed 
the following parameters: lipophilicity in the form of 
octanol–water partition coefficient (logP), the number 
of heavy atoms in the molecule (HeavyAtomCount), the 
number of hydrogen bond acceptors (NumHAcceptors) 
and donors (NumHDonors), as well as filters to exclude 
potentially toxic and undesirable pharmacophoric groups 
and fragments (PAINS, SureChEMBL, Glaxo). The num-
ber of epochs was set to 200, which consistently resulted 
in around 13 thousand generated molecules.

To ensure the generation of potent Syk inhibitor struc-
tures, we upgraded the reward function in a way that it 
takes into account compound bioactivity. This adapta-
tion, which uses the pretrained pIC50 prediction model, 
was incorporated into the FREED++ reward function as 
an additional objective parameter.

Evaluation metrics for the generated molecules
After generation, a comprehensive assessment and filter-
ing process was applied. First, any structures that caused 
errors in the RDKit software were eliminated to ensure 
data integrity. For the remaining molecules, several key 
properties were calculated to evaluate their potential as 
drug candidates: synthetic accessibility score  [50] (SAs-
core < 6), quantitative estimate of drug-likeness [51] 
(QED > 0.67), and absence of toxic fragments (the num-
ber of toxic groups equals 0). SAscore estimates the ease 
of molecule synthesis, with lower scores indicating sim-
pler synthetic routes. QED score reflects how closely a 
compound’s properties match those of known drugs, 
with higher scores indicating greater drug-likeness. 
Finally, the absence of toxic fragments ensures the exclu-
sion of molecules containing substructures associated 
with known toxicity, thus enhancing the safety profile of 
potential drug candidates. The thresholds for these selec-
tion criteria  were established based on the parameters 
utilized in the ADMETLAB 3.0 platform [52].

To evaluate the effectiveness of the generated mol-
ecules, the developed predictive model for Syk inhibi-
tion efficiency (pIC50) was applied. A pIC50 threshold 
of 7.40 was chosen to prioritize molecules with greater 
inhibitory potency than existing marketed drugs  [53]. 
Furthermore, the docking score (DS), calculated during 
the generation process, was used as an additional filter-
ing criterion, with only molecules achieving DS values 
below -7  kcal/mol being retained. This threshold aligns 
with established literature, where effective Syk inhibi-
tors consistently show DS values between -7  kcal/mol 
and -10 kcal/mol [54–57], and represents a standard cut-
off for identifying compounds with promising binding 
affinity.

Results and discussion
Predictive QSAR model
We developed a machine learning regression model to 
predict the inhibitory potency from molecular structure. 
This approach, known as QSAR modelling, utilizes the 
half-maximal inhibitory concentration value (pIC50) as 
a quantitative measure of inhibitory potency. The dataset 
was split into training and test sets in a 4:1 ratio, ensur-
ing similar distributions of molecular structures and 
pIC50 values, as detailed in Sect. 2 of the Supplementary 
Materials.

To construct the QSAR model, we evaluated five 
molecular representation methods using the PyCaret 
autoML framework. Among these, extended-connectivity 
fingerprints (ECFPs) demonstrated the best performance 
metrics (Table 1). Molecular structures were encoded as 
ECFPs using the RDKit cheminformatics software pack-
age. This encoded structure–activity data formed the 
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foundation for QSAR modelling, where pIC50 values are 
used as the target variable to quantify inhibitory potency.

Four most robust and widely used ML models were 
chosen for constructing the predictive model, namely, 
HGB, RF, XGB and SVR. Initially, all models were trained 
with their default parameters. Subsequently, hyperpa-
rameter optimization using the Optuna library signifi-
cantly improved the performance of all four algorithms. 

The performance metrics of the optimized models are 
outlined in Table 2.

Based on the optimization results, the top-perform-
ing models—RF, XGB, and SVR—were selected as base 
learners for the stacking ensemble.  We implemented a 
stacking ensemble technique by combining these base 
models. A meta-regressor, specifically a standard linear 
regression model, was used as the final estimator in the 
stacking ensemble (Fig.  2). The stacking regressor was 
implemented using the StackingRegressor class from 
scikit-learn, with fivefold CV applied during training to 
ensure robust performance estimation. After CV, the 
stacking regressor was trained on the entire training set, 
achieving the best predictive performance on the test set: 
the lowest MSE equal of 0.27, and the highest R-squared 
of 0.78. Based on these results, we opted for StackingRe-
gressor as our primary model for estimating pIC50 values 
of novel Syk inhibitors.

Generation of new Syk inhibitors
Experiments on the generation of new Syk inhibi-
tors involved three distinct approaches: (1) baseline 

Table 1  Comparison of molecules representation methods using PyCaret autoML framework

The bold values highlight the best results within each column, corresponding to the specific model and evaluation metric

Method Fingerprint category LightGBM Random Forest SVR

Q2 MSE CV Q2 MSE CV Q2 MSE CV

ECFP [58] Circular 0.71 0.37 0.70 0.38 0.72 0.34
Mol2vec [59] Substructure 0.64 0.46 0.60 0.51 0.47 0.66

MACCS [60] 0.63 0.47 0.61 0.50 0.60 0.49

PubChem fingerprints 
[61]

0.66 0.44 0.65 0.45 0.62 0.47

MAP4 [62] String 0.64 0.46 0.61 0.50 0.69 0.38

Table 2  Performance metrics of the base models on the test 
and train dataset with optimized hyperparameters

The bold values highlight the best results within each column, corresponding to 
the specific dataset and evaluation metric

Models Train dataset Test dataset

MSE CV Q2 MSE R2

HistGradientBoosting 0.38 ± 0.04 0.70 ± 0.03 0.37 0.71

RandomForestRegressor 0.38 ± 0.04 0.69 ± 0.03 0.35 0.73

SupportVectorRegression 0.34 ± 0.03 0.72 ± 0.03 0.36 0.72

eXtremeGradientBoosting 0.32 ± 0.05 0.74 ± 0.04 0.32 0.75

StackingRegressor 0.33 ± 0.02 0.74 ± 0.02 0.27 0.78

Fig. 2  Development of machine learning models. A Stacking regressor architecture. B Scatter plot of the stacking regressor on the train and test 
sets
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FREED++ model with standard reward function param-
eters, (2) our approach incorporating the pre-trained 
pIC50 prediction model into the FREED++ reward func-
tion, and (3) the utilization of starting fragments regard-
less of the aforementioned generative models  (Fig.  3A). 
The selection of starting fragments was based on a data-
set of known inhibitors, as described in Sect.  4 of the 
Supplementary materials.

We compared the outcomes of the generation experi-
ments by assessing the number of molecules passing the 

screening criteria (Sect. “Evaluation metrics for the gen-
erated molecules”) after eliminating invalid and duplicate 
structures. The outcomes of this comparative analysis are 
summarized in Table  3. Incorporating the pre-trained 
pIC50 prediction model into the reward function not 
only preserved molecular uniqueness but also increased 
the number of valid molecules generated. Our approach 
demonstrated better performance across all evaluation 
criteria compared with the baseline version, yielding a 
greater number of molecules with drug-like properties 
and improved pIC50 and DS values. Notably,  the total 

Fig. 3  A Flowchart of our inhibitors generation strategy. Starting fragments used for molecule generation. The strategy for selecting fragments 
is described in more detail in Sect. 4 of the Supplementary materials. B Comparison of basic and improved FREED++ 
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percentage of recruited active molecules increased from 
3.56% in the baseline model to 13.21% with our approach.

Further analysis focused on the subset of valid, drug-
like molecules with pIC50 > 7.40 and DS < −  7  kcal/mol, 
which represent the most promising Syk inhibitors. The 
results from all six experiments are presented in Table 4. 
While the baseline FREED++ model generated a larger 
quantity of molecules with scaffold A, our approach 
increased the total number of promising inhibitors and 
significantly enhanced their structural diversity. This 
improvement was evidenced by the number of mol-
ecules of different scaffolds and the Tanimoto similarity 
between the molecular fingerprints of the generated mol-
ecules (0.274 by our approach vs. 0.354 by FREED++).

Comparing our approach to the baseline model, we 
also observed a clear shift in the pIC50 distribution 
toward higher values, regardless of the starting fragment 
(Fig.  3B). This shift highlights the improved potency of 
the generated molecules. The statistical significance of 
these results was confirmed by the Mann–Whitney tests 
(see Sect. 5 of the Supplementary materials).

The integration of the QSAR model in the reward func-
tion has proven effective for the de novo design of poten-
tial Syk inhibitors. In the future, this approach can be 
further refined: as more experimental data on selectivity 
and off-target effects become available, the reward func-
tion can be modified to include those additional desirable 

properties of Syk inhibitors. More generally, the flexibil-
ity of our approach allows for fine-tuning the generative 
process to produce molecules of specific therapeutic 
requirements.

Importantly, the proposed methodology is not lim-
ited to Syk inhibitors. In principle, it can be generalized 
to a wide range of therapeutic targets provided the bio-
logical activity data is available for training. However, it 
is important to recognize the fundamental limitations 
of this methodology. The quality of the generated mol-
ecules heavily depends on the accuracy of the underlying 
QSAR model and the ultimate structure of the reward 
function. For instance, the QSAR model’s performance is 
constrained by the composition and biases of the train-
ing data, which comprised patent-derived and literature-
derived data. Both sources primarily report successful 
molecules, as negative results are rarely published, lead-
ing to a model trained mostly on "successful" candidates. 
This bias may hinder generalization to less promising 
molecules, potentially causing overly optimistic predic-
tions. Furthermore, insights from the scaffold-clustering 
analysis conducted in this study (see Sect. 4 of the Sup-
plementary Materials) revealed that Syk inhibitors in 
the training data tend to share common structural frag-
ments. This structural homogeneity poses a challenge for 
the QSAR model, as it may struggle to make reliable pre-
dictions for molecules with significantly different scaf-
folds. Generative process may prioritize molecules with 
familiar scaffolds, potentially reducing the novelty and 
diversity of the generated candidates. Finally, predic-
tions made by the proposed methodology require com-
prehensive experimental validation, as no computational 
approach is capable of capturing all nuances of drug-tar-
get interactions.

To address these limitations, future work could focus 
on mitigating biases in the training data. For instance, 
providing models with essential negative examples 
could enhance their ability to predict properties across a 
broader range of molecular outcomes. Additionally, the 
reward function could be refined to encourage genera-
tion of molecules with novel scaffolds. Most importantly, 
we intend to conduct in vitro characterization of the gen-
erated compounds to assess their potential for therapeu-
tic applications.

Property analysis of potential inhibitors
Through a rigorous screening process of the 78,012 gen-
erated molecules, we successfully identified 139 com-
pounds    (see Sect.  6 of the Supplementary Materials) 
that satisfied the predefined selection criteria outlined in 
Sect. “Evaluation metrics for the generated molecules”.

Table 3  The generation performance of basic FREED++ and our 
approach

The bold values highlight the best results within each column, corresponding to 
the specific approach and comparison criterion

FREED++  Our approach

Valid molecules 17,689 20,313
DockingScore < -7 12,410 13,821
Drug-like properties passed 2249 3774
Active molecules
(pIC50 > 7.4 and DS < -7)

629 2684

Active ratio (%) 3.56 13.21

Table 4  The number of generated molecules passing screening 
thresholds

The bold values highlight the best results within each column, corresponding to 
the specific approach and evaluation metric

Valid drug-like molecules with pIC50 > 7.4 and 
DS < − 7 kcal/mol

Base Start. Fr. A Start. Fr. B Total Tanimoto 
similarity

FREED++  3 65 1 69 0.35 ± 0.12

Our approach 17 43 12 72 0.27 ± 0.11
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To further validate the molecular properties of the 
generated candidates, we compared them to known 
inhibitors with comparable potency (pIC50 > 7.4) from 
the dataset used to train the QSAR model. Key inves-
tigated parameters included the partition coefficient 
(LogP), molecular weight (MW), number of hydrogen 
bond acceptors and donors (HBA and HBD), topologi-
cal polar surface area (TPSA) and number of rotatable 
bonds (RotatableBonds). Distributions of most molecular 
descriptors for the generated molecules aligned well with 
those of experimentally confirmed compounds, except 
for the molecular weight and the number of rotatable 
bonds, which both shifted towards lower values (Fig. 4A–
F). However, this reduction may confer advantageous 
pharmacokinetic properties and enhanced bioavailability 
for potential drug candidates [63, 64].

To assess the structural novelty of the generated can-
didate molecules in comparison with previously reported 
compounds, a set of 122 molecules was selected based on 
the criteria employed for candidate screening. The analy-
sis of Tanimoto similarity between the two sets revealed 
that 98% of the molecular pairs showed similarity coef-
ficients lower than 0.3 (Fig. 4H). These findings highlight 
that the generated molecules exhibit structural novelty 
while maintaining drug-like properties comparable to 
those of known compounds.

One of the main concerns with Syk inhibitors undergo-
ing clinical trials is the risk of adverse events. To explore 
this issue, we assessed fostamatinib, a clinically tested Syk 
inhibitor, using the same criteria employed in the screen-
ing of the generated molecules. Our analysis revealed 

that fostamatinib has a low quantitative estimation of 
drug-likeness (QED) score of 0.256. In contrast, our set of 
generated molecules demonstrates favourable character-
istics in these aspects (Fig. 4G).

Conclusion
In this study, we successfully applied a novel approach 
combining deep reinforcement learning with QSAR 
predictive model to design new potential Syk inhibitors. 
This method enabled us to generate a set of 139 promis-
ing candidate molecules with high predicted potency and 
favourable drug-like properties. Importantly, the gener-
ated compounds exhibited structural novelty while main-
taining molecular characteristics similar to known Syk 
inhibitors, potentially addressing the limitations of exist-
ing drugs such as fostamatinib.

By incorporating QSAR predictions into the genera-
tive process, we effectively guided molecular genera-
tion toward the desired chemical space, resulting in an 
increased yield of high-quality drug candidates. This 
methodology not only accelerates the early stages of drug 
discovery for Syk inhibitors but also presents a versatile 
framework that can be adapted for other therapeutic tar-
gets. Its applicability is particularly promising for orphan 
diseases, such as immune thrombocytopenia, where 
novel therapies are urgently needed. Our future work 
will focus on experimental validation of the top candi-
date molecules and further refinements of the generative 
model. Additionally, we look forward to extending our 
approach to other therapeutic targets, such as Bruton’s 
tyrosine kinase or Forkhead box M1.

Fig. 4  Distribution of the calculated molecular properties of generated molecules (blue) and ChEMBL molecules (red): A Log P, B Molecular weight, 
C number of HBAs, D number of HBDs, E number of rotatable bonds, F TPSA, G QED, H Tanimoto similarity distribution between the generated set 
and known compounds
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