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Abstract 

The development of robust artificial intelligence (AI)-driven predictive models relies on high-quality, diverse chemical 
datasets. However, the scarcity of negative data and a publication bias toward positive results often hinder accurate 
biological activity prediction. To address this challenge, we introduce InertDB, a comprehensive database comprising 
3,205 curated inactive compounds (CICs) identified through rigorous review of over 4.6 million compound records 
in PubChem. CIC selection prioritized bioassay diversity, determined using natural language processing (NLP)-based 
clustering metrics, while ensuring minimal biological activity across all evaluated bioassays. Notably, 97.2% of CICs 
adhere to the Rule of Five, a proportion significantly higher than that of overall PubChem dataset. To further expand 
the chemical space, InertDB also features 64,368 generated inactive compounds (GICs) produced using a deep 
generative AI model trained on the CIC dataset. Compared to conventional approaches such as random sampling 
or property-matched decoys, InertDB significantly improves predictive AI performance, particularly for phenotypic 
activity prediction by providing reliable inactive compound sets.

Scientific contributions
InertDB addresses a critical gap in AI-driven drug discovery by providing a comprehensive repository of biologically 
inactive compounds, effectively resolving the scarcity of negative data that limits prediction accuracy and model 
reliability. By leveraging language model-based bioassay diversity metrics and generative AI, InertDB integrates rigor-
ously curated inactive compounds with an expanded chemical space. InertDB serves as a valuable alternative to ran-
dom sampling and decoy generation, offering improved training datasets and enhancing the accuracy of phenotypic 
pharmacological activity prediction.

Keywords  Inactive compounds, Virtual screening, Synthetic negative data, Large-scale bioassay, Generative model, 
Predictive pharmacology

Introduction
Predicting the biological activity and toxicity of chemical 
compounds for drug discovery has been revolutionized 
by artificial intelligence (AI) and the availability of exten-
sive chemical datasets [1–5]. High-quality and sufficient 
bioactivity data on chemicals are crucial for developing 
accurate and reliable predictive AI models [6]. Bioas-
say databases like PubChem and ChEMBL, which com-
pile bioactivity data for chemicals from high-throughput 
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screening (HTS) assays and literature, have become 
indispensable resources for machine learning tasks in 
predictive modeling [7–9]. However, the application of 
these extensive datasets in AI-based predictive models 
for toxicology and pharmacology is often constrained 
by a lack of data on inactive compounds, i.e. negative 
data, and publication bias, as researchers predominantly 
report positive findings, skewing datasets towards bio-
logically active compounds [10–12].

To address this bias and the deficit of data on inactive 
compounds, researchers commonly use random sam-
pling from chemical databases such as PubChem [8], 
ChEMBL [9], or ZINC [13, 14]. This strategy supple-
ments or replaces the insufficient data on inactive com-
pounds with randomly sampled compounds, enhancing 
the robustness and accuracy of predictive AI models [15–
19]. Additionally, AI-generated property-matched decoy 
sets, which include potential inactive compounds, have 
been employed [20], as demonstrated by datasets like 
DUD-E [21], DEKOIS [22], and the DeepCoy model [23]. 
Although these decoy chemical sets were initially pro-
posed for structure-based virtual screening [24], such as 
molecular docking analysis, they have also been applied 
to various phenotypic pharmacological predictive models 
to incorporate inactive compounds in training datasets 
[25–28]. Currently, there are hardly any chemical data-
bases for inactive or negative results constructed based 
on real activity data [12].

To fill this gap, we here introduce InertDB, a curated 
database designed as a comprehensive resource of bio-
logically inactive small molecules, compiled from large-
scale bioassay data. InertDB includes 3,205 inactive 
compounds, referred to as curated inactive compounds 
(CICs), identified through extensive curation of all availa-
ble bioassay results in PubChem. Additionally, using deep 
generative AI model trained with the CICs, the chemi-
cal space of InertDB was expanded, resulting in 64,368 
generated inactive compounds (GICs). InertDB, the first 

database enriched with negative data, provides a valu-
able resource for various chemical bioactivity predictive 
models, significantly enhancing the performance of AI 
models.

Results
Selection of CICs
To construct a comprehensive dataset of biologically 
inactive small molecules, we analyzed over 260 million 
assay results from PubChem, the largest available data-
base for chemical bioactivity data [8, 29] (Fig. 1a). Each 
assay result was initially categorized as active, inactive, 
unspecified, or inconclusive (Fig.  1b). The majority of 
assay results were clearly labeled, with 2.8% identified 
as active and 91.4% as inactive. On average, 158 com-
pounds were tested per bioassay, and approximately 55 
different bioassay results were available for each com-
pound (Fig.  1c). In determining the inclusion criteria 
for InertDB, we conservatively interpreted PubChem 
assay results: if a compound was inconsistently anno-
tated as both active and inactive within the same bioas-
say, it was classified as active. Notably, literature-derived 
assay results, predominantly annotated as either unspeci-
fied (3.7%) or inconclusive (2%), required manual review 
for accurate classification [30]. During the review, com-
pounds showing 50% of maximal activity (AC50) values 
at concentrations ≤ 1,000  µM were classified as active; 
otherwise, they were considered inactive (Supplementary 
Fig. 1).

Importantly, we aimed to select chemicals that demon-
strated ineffectiveness across a sufficiently diverse range 
of bioassays. To ensure the reliability of the selected 
inactive compounds, we developed a metric to evalu-
ate the diversity of bioassays in which the compounds 
were tested, called Dassay (Fig.  2a). Relying solely on the 
number of bioassays (Nassay) can be biased; for example, 
5-methyldeoxycytidine (CID 1835) has 70 different bioas-
say results in PubChem, all derived from the cell growth 
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Fig. 1  Statistics of PubChem database. a, Overview of PubChem Bioassay. b. Annotation for assay results in PubChem database. c. Histograms 
describing the number of tested compounds per assay and the number of available bioassay results per compound in PubChem database
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inhibition assay performed using NCI-60 cell lines in the 
Human Tumor Cell Lines Screen project [31]. Such bias 
in a specific assay type does not adequately reflect true 
bioassay diversity. To address this, we employed a natural 
language processing (NLP)-based cluster analysis of bio-
assay names to determine assay diversity (Dassay) (Fig. 2b). 
Using NLP-based embeddings, 1,621,918 bioassay names 
in PubChem were categorized into 8,976 distinct clusters 
(Supplementary Fig.  2). In addition, each bioassay was 
classified into 17 unique assay types and 16,669 unique 
target IDs according to the PubChem annotations (Sup-
plementary Fig.  2). Based on the categorized bioassays, 
the Dassay of each chemical was determined by averag-
ing normalized Shannon entropy values for the cluster 
( Hcluster

norm  ), assay type ( Htype
norm ), and assay target ID ( Htarget

norm  ), 
thus assessing the information content as a measure of 
bioassay diversity [32, 33] (Fig. 2b). FDA-approved drugs, 
which undergo extensive biological testing, exhibited sig-
nificantly higher Dassay values (P < 0.0001) compared to 
randomly sampled PubChem compounds (Supplemen-
tary Fig. 3). In contrast, compounds with low Dassay values 
were predominantly screened within highly redundant 
assay sets, such as gene expression assays in a single cell 

type or viability assays in cancer cell lines (Supplemen-
tary Fig. 4). These findings demonstrate the reliability of 
assay diversity metric in identifying compounds assessed 
across a wide range of biological contexts.

In InertDB, both Nassay and Dassay for each chemical 
were used as inclusion criteria. The Nassay distribution per 
compound indicated that the 50th, 80th, 90th, and 99th 
percentiles were 4, 13, 65, and 790, respectively (Fig. 2c). 
The 93rd percentile (394 assays), representing the right-
most local maxima of the distribution, was selected as 
the Nassay threshold for inclusion. For Dassay, to include 
compounds tested across a diverse range of bioassays, 
the median value of 0.568 was chosen as the cutoff, rep-
resenting the significant diversity (Fig. 2d). Consequently, 
6.4% of the chemicals with assay results in the PubChem 
met this criterion (Fig. 2e). From this subset, 3,205 com-
pounds were determined to be inactive in all tested bio-
assays, referred to as curated inactive compounds (CICs) 
(Fig. 2a; Supplementary Fig. 1).

Upon exploring the chemical space of CICs with that of 
PubChem compounds, we observed a significant overlap 
(Fig.  2f ). Detailed analysis of chemical classes revealed 
that benzenoid and organic heterocyclic compounds 
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were the most prevalent among the CICs, accounting 
for 35.2% and 35.3% respectively (Fig. 2g). These classes 
were similarly predominant in PubChem, constituting 
36.7% and 41.5% of the database, respectively. However, 
organic acids and their derivatives were particularly over-
represented in the CICs, comprising 19.5% compared 
to 10.5% in PubChem (Fig.  2g). Additionally, organic 
nitrogen compounds, while representing a smaller pro-
portion, exhibited a slight increase in CICs (2.1%) rela-
tive to their presence in the entire PubChem database 
(1.6%). This subtle yet notable difference underscores the 
nuanced shifts in chemical class distributions between 
inactive compounds and the broader chemical entries in 
PubChem.

Chemical characteristics of CICs
We next compared the molecular properties of CICs with 
those of PubChem compounds and FDA-approved drugs 
to identify the potential biases in the chemical space of 
inactive compounds (Fig. 3). The physicochemical prop-
erties of CICs closely matched those of FDA-approved 
drugs, with no significant differences in molecular weight 
(MW) or topological polar surface area (TPSA) (Figs. 3a 
and f ). However, there were notable distinctions in the 
numbers of hydrogen bond (HB) acceptors and donors 
(both P < 2.22 × 10–16; Figs.  3d and e), which may influ-
ence the hydrophobicity of the compounds, as indicated 

by significant differences in calculated logP (XLogP) 
values [34] (Fig.  3b). These findings emphasize the 
importance of hydrogen-bonding interactions in modu-
lating enzyme functions and receptor activations by 
ligand binding [35]. When applying the Rule of Five (Ro5) 
for evaluating drug-likeness properties [36, 37], 97.2% of 
the CICs met the Ro5 criteria (Fig. 3g). The Ro5 compli-
ance among CICs was notably higher than that among 
randomly selected PubChem compounds (87.8%). This 
suggests that CICs exhibit promising drug-like character-
istics, enhancing their potential application in machine 
learning-based predictive models.

Pan-assay interference compounds (PAINS) are chemi-
cal entities that often produce false-positive results in 
HTS by affecting various bioassays through nonspecific 
mechanisms, including redox activity, aggregation, and 
fluorescence interference [38]. When we calculated the 
proportion of PAINS in each chemical set, approximately 
5.9% of the compounds in PubChem were identified as 
PAINS. In contrast, while only 1.2% of the 3,205 CICs fell 
into this category, suggesting effective filtering of PAINS 
during the collection of CICs. Furthermore, about 4.9% 
of FDA-approved drugs were PAINS, consistent with 
previous reports [39]. Notably, the PAINS found among 
FDA-approved drugs were identified in conventional 
low-throughput experimental settings rather than target-
based HTS [39]. These insights suggest that CICs can 
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improve the applicability of machine learning-based pre-
dictive models by minimizing risks of off-target effects 
and PAINS while preserving favorable physicochemical 
properties.

Generative AI for Inactive compounds
While CICs are curated from PubChem as biologically 
inactive small molecules, the chemical diversity asso-
ciated with them may be insufficient for broad applica-
tion in AI-based predictive modeling [12]. To expand 
the chemical space of the 3,205 CICs, we developed a 
generative AI model designed and trained to propose 
the potential inactive compounds (Fig.  4a). Recurrent 
neural network (RNN)-based generative models have 
shown success in virtually generating chemical librar-
ies of lead-like molecules [40] and psychoactive sub-
stance analogs [41], particularly in low-data regimes [42]. 

The RNN-based generative AI models predict the next 
SMILES character given a sequence of preceding SMILES 
characters (Fig. 4b). In this context, SMILES augmenta-
tion, which represents the same chemical structure using 
various SMILES strings, is crucial for training a robust 
and reliable generative AI model from a limited number 
of reference SMILES strings [43] (Fig. 4c).

To develop an optimal generative AI for inactive com-
pounds, we trained and evaluated RNN architectures 
with one or three layers, varying SMILES augmenta-
tion factor ranging from 2- to 500-fold. Notably, as the 
augmentation factor increased, the proportion of syn-
tactically valid SMILES strings improved, particularly 
in the three-layer networks (3-RNN) compared to the 
single-layer networks (1-RNN) (Fig.  4d). Syntactically 
valid SMILES strings can be correctly converted back 
into chemical structures, whereas insufficient training 
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may produce SMILES strings with incorrect molecular 
valency or improper ring closures, rendering them unin-
terpretable as valid chemical structures [43]. Interest-
ingly, even a tenfold augmentation exhibited a validity 
exceeding 80%, sufficient for generating SMILES strings 
(Fig. 4d; Supplementary Fig. 3).

Furthermore, the fraction of novel compounds in the 
chemical set generated by the 1-RNN was consistently 
higher across all levels of augmentation factors compared 
to that produced by the 3-RNN. Notably, the fraction of 
novel SMILES generated by the 3-RNN was comparable 
to that of the 1-RNN within the 20- to 100-fold augmen-
tation range (Fig.  4e). A decline in the novelty fraction 
beyond 100-fold augmentation was attributed to poten-
tial model overfitting. Additional metrics, including 
uniqueness and scaffold similarity, revealed that unique-
ness stabilized above 20-fold augmentation, while scaf-
fold similarity declined significantly beyond 50-fold 
augmentation (Supplementary Fig. 5). To balance validity 
and novelty, we selected the 3-RNN model trained with 
50-fold augmented SMILES to generate a dataset com-
prising 10 million SMILES strings, representing 4.5 mil-
lion unique potential inactive compounds, referred to as 
preliminary generated inactive compounds (pGICs). A 
t-SNE mapping of the chemical space revealed a signifi-
cant overlap between the pGICs and CICs (Fig. 4f ). The 
physicochemical properties of pGICs showed notable 
alignment with those of CICs, particularly in MW and 
TPSA distributions (Supplementary Fig. 6).

Generative models often produce compounds that 
closely resemble their training datasets [42]. In some 
cases, certain SMILES strings corresponding to a single 
chemical structure were generated over 1,000 times in 
the 10 million iterations (Supplementary Fig. 7). To char-
acterize and refine the pGICs and enhance their quality, 
we analyzed the generating frequency of SMILES strings 
produced by the CIC-trained generative AI. Based on 
their generating frequencies, pGICs were categorized 
into subsets as pGIC100, pGIC30, pGIC10, pGIC3, pGIC1, 
representing the pGICs generated more than 100, 30, 10, 
3 times, and more than once, respectively, out of 10 mil-
lion iterations. These subsets comprised 2,963, 17,373, 
64,368, 225,800, and 645,909 compounds, respectively, 
from a total of 4.5 million unique pGICs (Fig. 4g). Higher 
generating frequencies were positively correlated with 
greater chemical similarity to nearest neighbor CICs, as 
measured by the Tanimoto coefficient (Tc). Furthermore, 
the likelihood of a compound being found in PubChem 
increased with generation frequency. For example, 
70.6% of compounds in the pGIC100 subset were listed 
in PubChem, compared to only 29.2% of compounds in 
the pGIC1 subset (Fig.  4h). Given that substantial num-
bers of pGICs were listed in PubChem, we analyzed the 

cumulative distribution for fractions of active bioassay 
results on pGICs found in PubChem. High-frequency 
pGICs exhibited significantly lower fractions of active 
bioassay results compared to compounds randomly sam-
pled from PubChem, indicating that pGICs are generally 
enriched for inactive compounds (Fig. 4i). Based on these 
results, we compiled compounds from pGIC10 subset to 
create a refined dataset of 64,368 compounds, referred to 
as generated inactive compounds (GICs). Together with 
the 3,205 CICs curated from PubChem, these genera-
tive AI-based GICs constitute InertDB, a comprehensive 
database designed to advance predictive modeling and 
virtual screening in drug discovery.

Comparison of InertDB with dark chemical matter
To assess the uniqueness and potential complementa-
rity of InertDB, we conducted a detailed comparison 
with the dark chemical matter (DCM) dataset, which 
consists of compounds that consistently remained inac-
tive across 234 Novartis assays and 429 PubChem assays 
from the NIH Molecular Libraries Program [44]. Similar 
to InertDB, DCM represents compounds with inactivity 
across over a hundred biological assays. The DCM data-
set contains 139,352 compounds, while InertDB contains 
649,114 compounds, with 16,943 compounds (2.6% of 
InertDB compounds) shared between the two datasets 
(Supplementary Fig. 8a).

Our chemical space analysis revealed substantial simi-
larities between InertDB and DCM while also highlight-
ing notable distinctions. While the overall chemical 
distributions overlapped, DCM exhibited concentrated 
regions, suggesting that certain substructures were over-
represented (Supplementary Fig.  8b). To further inves-
tigate these differences, we examined chemical class 
composition, finding that InertDB contains a higher 
proportion of benzenoid and organic acid compounds, 
whereas DCM is enriched in organoheterocyclic com-
pounds (Supplementary Fig.  8c). At the scaffold level, 
we identified 147,109 unique scaffolds across both data-
sets, with benzylaniline, diphenylthiohydroxylamine, 
and benzoimidazole as core structures common to both 
(Supplementary Fig. 8d). However, 4,800 scaffolds (3.3%) 
were significantly enriched in one dataset over the other 
(Supplementary Fig. 8e). Specifically, InertDB is enriched 
in dioxaspiroundecane and dioxinylpyrrolidine scaffolds, 
which are largely absent from DCM (Supplementary 
Fig. 8f ). Conversely, DCM contains a higher proportion 
of phenylthiazole, phenylimidazole, benzylazetidine, and 
benzylthiomorpholine scaffolds, which are underrepre-
sented in InertDB (Supplementary Fig. 8 g). Despite these 
structural differences, both datasets exhibit comparable 
PAINS-filter compliance (1.2% in DCM) and Ro5 adher-
ence (97.1% in DCM), reinforcing their suitability as 
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starting points for virtual screening. These findings indi-
cate that while InertDB and DCM share a subset of com-
pounds, their distinct chemical compositions make them 
highly complementary resources.

Validation Study of InertDB
Next, we performed a validation study to investigate the 
efficacy of InertDB in enhancing the performance of 
machine learning models for predicting the biological 
activity of chemical compounds. We used well-estab-
lished benchmark datasets, LIT-PCBA [45] and Maxi-
mum Unbiased Validation (MUV) [46]. The LIT-PCBA 
dataset provides activity annotations for 15 bioassays, 
while the MUV dataset includes annotations for 17 bio-
assays. These bioassays encompass a broad range of tar-
gets, including G-protein-coupled receptors, nuclear 
receptors, and kinases, ensuring diverse assay coverage 
(Supplementary Table 1).

To evaluate the efficacy of InertDB, we implemented 
two different modeling strategies: (i) training models 
with active compounds verified in LIT-PCBA or MUV, 
and inactive compounds randomly selected from either 
the CIC or GIC subsets of the InertDB, PubChem, or 
ZINC, and (ii) training models with verified active com-
pounds, and inactive compounds randomly selected from 
AI-generated property-matched decoys [23] (Fig.  5a). 
Each model was validated using an identical hold-out test 
set composed of verified active and inactive compounds 
derived from LIT-PCBA or MUV datasets to ensure the 
robustness and comparability of the results.

When the random forest-based classifier with ECFP4 
was applied to validation analyses, models incorporat-
ing compounds randomly sampled from InertDB, par-
ticularly the CIC subset, demonstrated significantly 
improved performance, as measured by area under 
the receiver operating characteristic curve (AUROC), 
compared to those using compounds from PubChem 
(P = 0.00043 for LIT-PCBA and P = 0.0011 for MUV) or 
ZINC (P = 0.0026 for LIT-PCBA and P = 0.017 for MUV) 

(Figs.  5a and b). Additionally, models trained with the 
GIC subset of InertDB showed a significant improve-
ment in performance specifically within the MUV data-
set compared to those trained with PubChem (P = 0.013; 
Fig.  5c). Similar trends were observed when evaluat-
ing model performance using two additional metrics, 
Matthews correlation coefficient (MCC) and balanced 
accuracy (Supplementary Figs.  9 and 10). Across both 
LIT-PCBA and MUV benchmarks, models trained with 
the CIC subset of InertDB consistently outperformed 
those trained with compounds randomly sampled from 
PubChem. This improvement in model performance 
underscores the potential of InertDB for predictive mod-
eling in low-data settings.

To further evaluate the efficacy of model training using 
inactive compounds randomly selected from InertDB, 
we conducted a comparative analysis against decoy com-
pounds generated by the DeepCoy model [23]. The Deep-
Coy model, trained on the ZINC database, generates 
property-matched decoys derived from the structures 
of active compounds, serving as potential inactive com-
pounds (Fig. 5a). Notably, our analysis revealed that mod-
els trained with either the CIC or GIC subsets of InertDB 
consistently outperformed those trained with DeepCoy-
generated decoys within LIT-PCBA (P = 6 × 10–5 for CIC 
and P = 0.00018 for GIC) and MUV (P = 6 × 10–5 for CIC 
and P = 0.00031 for GIC) datasets (Figs. 5b and c, Supple-
mentary Figs. 9 and 10). The DeepCoy model was initially 
developed to address potential biases inherent in tradi-
tional decoy datasets like DUDE-E. Originally designed 
for structure-based virtual screening against specific 
targets, DeepCoy has increasingly been applied in 
ligand-based virtual screening as well [25–28]. Although 
DeepCoy offers a realistic framework for evaluating novel 
structure-based virtual screening approaches by gen-
erating decoy compounds that closely mimic the phys-
icochemical properties of active compounds, the decoys 
generated by DeepCoy might not adequately represent 
the diversity of inactive compounds in a ligand-based 

(See figure on next page.)
Fig. 5  Validation study of InertDB. A. Schematic diagram describing strategies for preparing training dataset to compare efficacy of random 
sampling and decoy generation methods. b,c. Mean predictive performances for LIT-PCBA (b) and MUV (c) datasets. Each model was constructed 
by training the random forest-based classifier with ECFP4, with different datasets as sources for positive and negative labels. Performance 
was evaluated on the hold-out test set consisting of original verified active and inactive compounds from each benchmark dataset. The 
performances are compared in area under the receiver operating characteristic curve (AUROC) values. A higher AUROC value reflects superior 
classification performance, indicating that the predictive model can more effectively distinguish between active and inactive compounds. Each 
data point represents the mean AUROC value from 100 random splits for an individual assay endpoint in the benchmark dataset. Gray squares 
indicate median values. Statistical significance between paired assay endpoints (connected by lines) was determined using a paired Wilcoxon 
test: *P < 0.05, **P < 0.01, and ***P < 0.001. d Spearman correlation between model performance and chemical similarity (nearest neighbor Tc) 
of negative-label compounds in the training set to verified active (left) or inactive (right) compounds from the original benchmark datasets. e 
Mean chemical similarity (nearest neighbor Tc) between verified inactive compounds (Inac.) and compounds from InertDB (CIC and GIC subsets), 
PubChem (Pc), ZINC (Zn), and DeepCoy-generated decoys (Dc) for each assay endpoint
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setting, thus may not be the optimal choice for creating 
ligand-based predictive models [23, 24].

To ensure a rigorous evaluation of InertDB’s effec-
tiveness, we further compared models trained on veri-
fied active and inactive compounds from the original 
benchmark datasets (LIT-PCBA and MUV) as base-
line (BL) models. Using identical train-test splits, we 
assessed whether replacing verified inactive compounds 
with InertDB subsets (CIC or GIC) influenced model 
performance. In the LIT-PCBA benchmark, no signifi-
cant difference was observed between BL and InertDB-
based models (P = 0.52 for CIC and P = 0.85 for GIC), 
while in the MUV benchmark, replacing inactive com-
pounds with CIC led to a slight but significant improve-
ment (P = 0.0032) (Supplementary Fig.  11), likely due to 
the smaller training set size in MUV. Given that these 
models were evaluated under identical conditions, the 
results further support the utility of InertDB as a reli-
able resource for augmenting or replacing inactive com-
pounds in predictive modeling.

To further investigate the factors contributing to 
improved model performance, we analyzed the struc-
tural similarity between compounds sampled from each 
source and verified active or inactive compounds for each 
assay endpoint in the LIT-PCBA (Supplementary Fig. 12) 
and MUV (Supplementary Fig.  13) benchmarks. Model 
performance correlated more strongly with similarity 
to verified inactive compounds (R = 0.33, P = 3.5 × 10–5) 
than that to verified active compounds (R = 0.17), high-
lighting the importance of selecting inactive compounds 
structurally aligned with verified inactive compounds 
when constructing training datasets (Fig.  5d). Notably, 
while CIC and GIC compounds showed no significant 
structural differences (P = 0.39), CIC compounds exhib-
ited significantly higher similarity to verified inactive 
compounds than compounds sampled from PubChem 
(P = 0.0026) and ZINC (P = 5.8 × 10⁻⁶), or decoys gener-
ated using the DeepCoy model (P = 2.8 × 10⁻⁸). These 
findings suggest that the structural alignment between 
InertDB compounds and experimentally verified inac-
tive compounds contributes to the enhanced predictive 
performance observed in InertDB-trained models. Col-
lectively, our results suggest that InertDB, with its refined 
selection of inactive compounds from PubChem, serves 
as an effective alternative for developing predictive mod-
els by providing reliable inactive compounds.

Discussion
InertDB is a valuable resource for AI-assisted drug dis-
covery, serving as an extensive virtual screening library. 
An effective virtual screening library should pos-
sess a diverse array of chemical structures to enhance 
coverage and improve the probability of identifying 

pharmacologically active compounds [47]. It is crucial for 
the chemicals within these libraries to exhibit drug-like 
characteristics, including adherence to the Ro5, to ensure 
they possess favorable pharmacokinetic profiles suitable 
for therapeutic development [48]. The majority of com-
pounds within InertDB adhere to the Ro5 criteria, indi-
cating they exhibit the physicochemical characteristics 
desirable for orally administered drugs. Previous studies 
have indicated that incorporating a collection of com-
pounds with no known biological activity into a virtual 
screening library can reduce the risk of undesired off-
target effects in drug discovery [44, 49]. InertDB is par-
ticularly advantageous for this purpose, as its compounds 
have been evaluated across diverse bioassays and con-
sistently classified as inactive in PubChem. Additionally, 
InertDB exhibits a lower proportion of PAINS compared 
to chemical databases such as PubChem and ZINC, sug-
gesting a reduced likelihood of selecting false positives 
during virtual screening. A comparative analysis with 
the DCM dataset [44] further highlights InertDB’s com-
plementary nature. While both datasets capture consist-
ently inactive compounds, they exhibit distinct chemical 
compositions, with InertDB enriched in benzenoid and 
organic acid compounds and DCM containing more 
organoheterocyclic scaffolds. Despite these differences, 
both datasets share similar Ro5 adherence and PAINS-
filter compliance, reinforcing their suitability for virtual 
screening. Leveraging both datasets could provide a 
broader and more diverse chemical landscape, improv-
ing predictive modeling and drug discovery efforts. 
Thus, InertDB offers beneficial characteristics for virtual 
screening, including structural diversity, favorable drug-
like properties, minimized off-target activities, and a 
lower risk of false positives.

InertDB is also applied to the development of diverse 
predictive machine learning models by providing data 
on inactive compounds. In validation studies using ran-
dom forest classifiers with the LIT-PCBA and MUV 
datasets, InertDB demonstrated improved performance 
in selecting inactive compound sets compared to prop-
erty-matched decoy generation or random sampling 
from PubChem or ZINC. This improvement was par-
ticularly attributed to the higher structural similarity of 
InertDB compounds to experimentally verified inactive 
compounds, which strongly correlated with enhanced 
predictive accuracy. The publication bias favoring bio-
logically active compounds has resulted in a deficiency of 
biological activity data for inactive compounds, or nega-
tive data, posing a significant challenge in constructing 
accurate predictive models [10, 12]. InertDB effectively 
addresses this gap, playing a role as a valuable resource 
for inactive compounds and facilitating the develop-
ment of more robust machine learning-based predictive 
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models. To enhance accessibility and usability, InertDB 
is freely available via the repository (https://​github.​com/​
ann08​1993/​Inert​DB), allowing researchers to access the 
curated and generated datasets directly. Additionally, 
scripts for generating additional GICs using a pre-trained 
deep generative AI model are provided, enabling users to 
further expand the chemical space based on their specific 
research needs. This open-access approach ensures that 
InertDB can be easily integrated into workflows for vir-
tual screening, predictive modeling, and other AI-based 
drug discovery applications.

Conclusions
Taken together, InertDB represents a significant advance-
ment in chemical databases by addressing the critical 
need for negative data. By rigorously identifying 3,205 
CICs from PubChem and expanding its chemical space 
with 64,368 GICs using deep generative AI, InertDB 
improves the accuracy of AI-based predictive models. 
This database mitigates the publication bias toward active 
compounds and reduces false positives in virtual screen-
ing, thereby improving the robustness of predictive mod-
eling and the reliability of biological activity predictions. 
InertDB will be a critical resource for the development of 
more accurate and reliable machine learning models.

Methods
PubChem database
To collect inactive compounds, the complete bioassay 
data was downloaded from PubChem database via FTP 
site [8, 29] (https://​ftp.​ncbi.​nlm.​nih.​gov/​pubch​em/​Bioas​
say/). As of March 2024, PubChem contained 1,621,918 
distinct bioassays, involving 4,627,360 compounds each 
with at least one assay result, and a total of 263,051,872 
bioassay results.

Cluster analysis on assay name embeddings
Natural language processing (NLP) techniques and the 
subsequent cluster analysis were employed to categorize 
the bioassays based on their names [50]. Bioassay names 
were retrieved via PubChem FTP and were then encoded 
into numeric vectors using TinyBioBERT [51], a pre-
trained language model for biomedical context. Tiny-
BioBERT, a distilled version of BioBERT [52] v1.1, with 
four hidden layers of 312 unit each has been trained on 
over one million PubMed articles. As a result, each bio-
assay name was represented as 312-dimensional numeric 
embeddings. The model was available through python 
library transformers (https://​huggi​ngface.​co/​nlpie/​tiny-​
biobe​rt).

Next, the HDBSCAN algorithm was applied on the 
assay name embeddings with min_cluster_size = 20 and 
cluster_selection_epsilon = 0.03, which resulting in the 

categorization of bioassays into distinct clusters based on 
their names [53]. For two-dimensional (2D) visual repre-
sentation, the assay name embeddings were further pro-
cessed using the Uniform Manifold Approximation and 
Projection (UMAP) algorithm [54], allowing for the visu-
alization of complex data in a simplified 2D space.

Assay diversity
To quantitatively assess the diversity of assays in which a 
given compound was tested, we defined a metric referred 
to as an ‘assay diversity’ (Dassay). Dassay is quantified as the 
arithmetic mean of normalized Shannon entropy val-
ues for three distinct aspects of bioassays: (1) clusters 
derived from NLP-based embeddings of assay names, (2) 
assay types, and (3) target IDs. The assay type and tar-
get ID were obtained from the bioassay annotations in 
PubChem. To quantify the diversity with the normalized 
Shannon entropy (Hnorm), the set of unique categories for 
PubChem bioassays associated with a given compound, 
S = {a1, a2, · · · , an} , was constructed, and the frequency 
f(ai) was defined as the frequency of the assay category ai 
in the list. Then, the probability p(ai) was determined by 
scaling the frequency to the total number of bioassays (N) 
in which the compound has been tested:

Thus, in the context of Dassay, probability p(ai) repre-
sents the proportion at which a particular category of 
assay was observed for given compound. Using these 
probabilities, Shannon entropy H was calculated as 
follows:

To derive the normalized Shannon entropy (Hnorm), the 
H value was divided by the logarithm of the number of 
unique categories n, which represents the maximum pos-
sible entropy where bioassay results were available for all 
categories:

The Hnorm value ranges from 0 to 1, where 0 indicates 
no diversity meaning that all assays performed against 
a given compound fell into a single category, whereas 1 
indicates maximum diversity, where data were equally 
available to all assay categories in PubChem bioas-
says. Collectively, Hnorm was calculated independently 
after given assays were categorized by the cluster (8,976 
unique clusters), the assay type (17 unique types), and the 

(1)p(ai) =
f (ai)

N

(2)H = −
n∑

i=1

p(ai)logp(ai)

(3)Hnorm =
H

log2n

https://github.com/ann081993/InertDB
https://github.com/ann081993/InertDB
https://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/
https://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/
https://huggingface.co/nlpie/tiny-biobert
https://huggingface.co/nlpie/tiny-biobert
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target ID (16,669 unique IDs). Finally, the assay diversity, 
Dassay, was determined by averaging those three normal-
ized entropies:

Inclusion criteria for the determination of curated inactive 
compounds (CICs)
We assessed the number of bioassays (Nassay) tested for 
each compound in PubChem, as well as the assay diver-
sity Dassay. By analyzing the multimodal distribution of 
Nassay and Dassay across all compounds in PubChem, we 
determined the threshold that encompassed the largest 
local maxima. In PubChem, bioassay results for com-
pounds are annotated as active, inactive, unspecified, and 
inconclusive [30]. The bioassay information was directly 
adopted when compounds were labeled as active or inac-
tive in PubChem annotations. For compounds labeled 
as unspecified or inconclusive, despite having available 
bioassay results linked to PubMed references, we manu-
ally curated their activity outcomes from the literature. 
Accordingly, compounds exhibiting 50% of the maxi-
mal activity (AC50) at concentrations less than or equal 
to 1,000  µM were labeled as active; otherwise, they 
were labeled as inactive. By applying the above criteria, 
we identified 3,205 compounds that were consistently 
recorded as inactive across all bioassay results. These 
compounds are termed curated inactive compounds 
(CICs).

Comparison of chemical datasets
We compared characteristics of our curated CICs with 
those of the open chemical databases, PubChem [8] 
and ZINC20 [13]. The list of FDA-approved drugs was 
obtained from ZINC20 (https://​zinc20.​docki​ng.​org/). 
Using the python library RDKit, we calculated the phys-
icochemical properties and determined the proportion of 
compounds flagged by the Pan-Assay Interference Com-
pounds (PAINS) filter. To visualize the chemical space, 
compounds were represented as 1024-dimensional vec-
tors using the Extended Connectivity Fingerprint (ECFP) 
with a radius of 4 (ECFP4) [55]. These vectors were then 
reduced to 2D using the t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) algorithm.

Chemical similarity was quantified using the Tanimoto 
coefficient (Tc), which is calculated by dividing the num-
ber of shared features by the sum of the unique features 
in ECFP4 of both compounds. This coefficient provides 
a measure of similarity between two chemical structures, 
ranging from 0 (no similarity) to 1 (identical or complete 
similarity). For chemical classification, we employed 

(4)Dassay =
Hcluster
norm +H

type
norm +H

target
norm

3

ClassyFire [56] (http://​class​yfire.​wisha​rtlab.​com/), an 
automated tool that classifies compounds based on 
standardized chemical ontology. To facilitate a com-
parative analysis, a randomly sampled subset of 50,000 
compounds from PubChem and ZINC20 was used for 
calculating physicochemical properties, visualizing 
chemical space, and performing chemical classification. 
This methodology allowed us to efficiently compare large 
datasets while maintaining computational feasibility.

Generated inactive compounds (GICs)
To expand the chemical space of inactive compounds, we 
trained a recurrent neural network (RNN)-based gen-
erative AI model with a dataset of 3,205 CICs as a ref-
erence set, enabling the generation of potential inactive 
compounds. We constructed a character-level generative 
AI using long-short term memory (LSTM) layers, with 
SMILES (Simplified Molecular Input Line Entry System) 
notation as both the input and output [40]. We con-
structed the generative AI with either one or three LSTM 
layers to determine the optimal architecture.

To enhance model performance, especially when 
trained on a small number of compounds, we adopted 
SMILES augmentation, varying the degree of augmen-
tation factor from twofold to 500-fold [43]. The model 
was implemented using python tensorflow framework 
and was trained using the Adam optimizer for up to 300 
epochs, with β1 = 0.9, β2 = 0.999, and the learning rate of 
0.001. To prevent overfitting, we applied early stopping 
with a delta of 0.001 and a patience setting of 10 epochs.

To evaluate the performance of the generative model, 
we calculated six metrics from the subset of 10,000 gen-
erated SMILES strings: validity, uniqueness, novelty, 
scaffold similarity, and fragment similarity, as previously 
described [57]. Validity is the metric to determine the 
proportion of syntactically valid SMILES strings gener-
ated by the model. A SMILES string is considered valid 
if it can be correctly parsed by MolFromSmiles func-
tion of RDKit. Uniqueness measures the proportion of 
unique SMILES strings among the strings generated by 
the model. High uniqueness indicates that the model can 
generate a wide variety of chemical structures without 
repeatedly producing the same molecule. Novelty met-
ric is the proportion of novel SMILES strings generated 
by the model that are not present in the reference set. 
High novelty indicates that the model can produce new 
chemical entities that could potentially offer unexplored 
chemical space. Scaffold similarity is the metric for the 
similarity between the scaffolds of SMILES strings gen-
erated by the model and those of the reference set. The 
list of available scaffolds in given chemical set is obtained 
using GetScaffoldForMol function of RDKit. Then, the 
cosine similarity was calculated between normalized 

https://zinc20.docking.org/
http://classyfire.wishartlab.com/
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frequency of scaffolds for reference SMILES strings and 
generated ones. Finally, fragment similarity is the met-
ric associated with the similarity between the substruc-
tures (fragments) of SMILES strings generated by the 
model and those of the reference set. The list of available 
fragments in given chemical set is obtained using Frag-
mentOnBRICSBonds function of RDKit, then cosine sim-
ilarity was calculated.

By evaluating the performance of generative AI models, 
we identified the 3-RNN model trained with 50-fold aug-
mented SMILES as optimal. Using the trained generative 
AI model, we generated 10 million SMILES strings, from 
which we filtered out low-quality strings, including inva-
lid ones and those representing inorganic compounds 
(e.g., azides and halides), as well as those shorter than 15 
characters. Compounds present in the reference set were 
also excluded. This process yielded a total of 7,815,176 
SMILES strings, corresponding to high-quality 4,508,818 
unique chemical structures. After refining these com-
pounds based on the generating frequency (how repeat-
edly the generating AI produced the SMILES string), we 
defined 64,368 generated inactive compounds (GICs).

Together, CICs and GICs form InertDB, a comprehen-
sive database of inactive compounds. Additionally, to 
contextualize InertDB within existing chemical resources, 
we compared it to dark chemical matter (DCM) [44]. 
Chemical space and class composition analyses were 
performed as described above in section Comparison of 
Chemical Datasets. To compare scaffold distributions, we 
extracted Murcko scaffolds using RDKit and performed 
a chi-squared test to identify scaffolds that were signifi-
cantly enriched in either dataset.

Predictive model
To benchmark the performance of predictive models by 
using the CIC and GIC sets of InertDB, two datasets were 
utilized: LIT-PCBA [45] and Maximum Unbiased Valida-
tion (MUV) [46]. Both LIT-PCBA and MUV are curated 
from PubChem bioassays to create unbiased datasets to 
benchmark predictive models for biological activity.

For model construction, chemical structure on active 
and inactive compounds was encoded using ECFP4 
[55]. A binary classification model was then trained 
based on the active/inactive labels. Model training 
involved three approaches for preparing training data-
set: (1) extracting both active and inactive compound 
information from benchmark datasets (LIT-PCBA or 
MUV), which was also used to train baseline (BL) mod-
els, (2) using active compounds from the benchmark 
datasets while randomly sampling inactive compounds 
from other sources (InertDB, PubChem, or ZINC), or 

(3) using active compounds from the benchmark data-
sets while property-matched decoys were generated 
using a pretrained deep learning model as inactive 
compounds [23].

To compare the performances of each approach, fin-
gerprint-based random forest models were trained with 
each training set and evaluated using the 20% hold-
out test set for 100 repeated times. The same hold-out 
test set obtained from benchmark datasets was used 
for comparison. Model performance was primarily 
assessed using the area under the receiver operating 
characteristic curve (AUROC). Additionally, Matthews 
correlation coefficient (MCC) and balanced accuracy 
(BA) were incorporated as supplementary metrics to 
provide a more comprehensive evaluation of classifica-
tion performance. The MCC is defined as:

where TP (true positive), TN (true negative), FP (false 
positive), and FN (false negative) represent classifica-
tion outcomes. MCC ranges from -1 (total disagreement) 
to + 1 (perfect prediction), with 0 indicating no better 
performance than random chance. The BA is given by:

where TPR (true positive rate) = TP / (TP + FN) and TNR 
(true negative rate) = TN / (TN + FP). To prevent model 
overfitting due to class imbalance, the number of nega-
tive labels in the training and test sets was limited to at 
most twice the number of positive labels through random 
undersampling.

To investigate the observed differences in model per-
formance across datasets, we performed a chemical 
similarity analysis. Specifically, for each assay endpoint 
in LIT-PCBA and MUV, we quantified the structural 
similarity (nearest neighbor Tc) of compounds in 
InertDB (CIC or GIC subsets), PubChem, ZINC, and 
DeepCoy-derived decoys to those labeled as active or 
inactive in original benchmark dataset (verified active 
and inactive compounds).
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√
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