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Abstract 

Water solubility is a relevant physico‑chemcial property in environmental chemistry, toxicology, and drug design. 
Although the water solubility is besides the octanol–water partition coefficient, melting point, and boiling point 
a property with a large amount of available experimental data, there are still more compounds in the chemical uni‑
verse for which information on their water solubility is lacking. Thus, prediction tools with a broad application domain 
are needed to fill the corresponding data gaps. To this end, we developed a graph convolutional neural network 
model (GNN) to predict the water solubility in the form of log Sw based on a highly curated dataset of 9800 chemicals. 
We started our model development with a curation workflow of the AqSolDB data, ending with 7605 data points. We 
added 2195 chemicals with experimental data, which we found in the literature, to our dataset. In the final dataset, 
log Sw values range from − 13.17 to 0.50. Higher values were excluded by a cut‑off introduced to eliminate fully misci‑
ble chemicals. We developed a consensus GNN by a fivefold split of the corresponding training set (70% of the data) 
and validation set (20%) and used 10% as independent test set for the evaluation of the performance of the different 
splits and the consensus model. By doing so, we achieved an r2 of 0.901, a q2 of 0.896, and an rmse of 0.657 on our 
independently selected test set, which is close to the experimental error of 0.5 to 0.6 log units. We further provide 
the information on the application domain and compare our performance to other existing prediction tools.

Scientific contribution Based on a highly curated dataset, we developed a neural network to predict the water solu‑
bility of chemicals for a broad application domain. Data curation was done by us in a step‑wise procedure, where we 
identified various errors in the experimental data. Based on an independent test set, we compare our prediction 
results to those of the available prediction models.

Keywords Water solubility, Neural networks, Machine learning, Physico‑chemical property prediction

Introduction
Knowledge on water solubility is relevant in the fields 
of environmental chemistry and risk assessment of 
chemicals, where it determines the transport and fate 
of chemicals in the environment [1, 2]. Further, it plays 
a significant role in pharmacology and toxicology, espe-
cially in the ADME processes (absorption, distribution, 
metabolism, and excretion), and is, therefore, a main 
characteristic of drug design [3–6]. When it comes to 
effect concentrations in toxicology, the water solubility 
impacts the freely dissolved concentration of a chemical 
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[7, 8]. Concentrations above the water solubility may lead 
to precipitation of the corresponding chemicals, which 
should, of course, be avoided in test systems like in-vitro 
assays for example.

The water solubility is defined as the maximal amount 
of a chemical (i.e., the solute) that can be dissolved in a 
defined volume of water. Water solubility Sw (standard 
units are mol/L or g/L) is often given in logarithmic form 
log Sw. There are different definitions of water solubil-
ity: intrinsic water solubility refers to the solubility of the 
neutral chemical in water, whereas apparent water solu-
bility refers to the water solubility at a certain pH, which 
is important for ionizable chemicals [9].

Temperature, ambient pressure, and pH level can be 
the major drivers of the solubility of chemicals in aqueous 
media. The main experimental methods for determining 
the water solubility are the saturation shake-flask method 
[10], the column elution/generator column method [10], 
the dissolution titration template method [3, 11, 12], and 
direct UV measurements [3, 13, 14].

One of the largest datasets which is freely available is 
the AqSolDB [15], which is a compilation of water solu-
bility data collected from the eChemportal [16], EPI Suite 
[17], and the datasets of Raevsky et al. [18], Huuskonen 
[19], Wang et al. [20], Delaney [21], and Llinas et al. [22]. 
A broad overview on the different solubility datasets and 
models related to them is given by Llompart et  al. [23]. 
Although the collection of physico-chemical data and, 
therefore, the number of models being developed based 
on these datasets is rising, there is evidence that curation 
of the datasets might be an option to improve the perfor-
mance of the models [15, 24]. Especially the pH-depend-
ency of the water solubility of a corresponding chemical, 
the formation of micelles, and the effects of co-solvents 
might have a substantial impact on the quality of data 
and, therefore, on the performance of the models [3].

Based on the AqSolDB, Sorkun et al. developed a con-
sensus machine learning approach applying a set of 
chemical descriptors (atom-based, ring-based, bond-
based, log P, topological, and E-state indices) with an 
overall rmse of 0.53 based on a test set of 1290 chemi-
cals [25]. They used the different subsets of their initial 
data collection to develop various models and to com-
bine them in a consensus approach. By doing so, they 
observed a direct relation between size of the dataset 
& data quality and the accuracy of the model. A differ-
ent approach was used by Tang et  al. [26]. The authors 
developed a self-attention-based message-passing neu-
ral network to predict log Sw with an overall rmse of 0.66 
based on a dataset of 1311 chemicals. The main advan-
tage of this approach is that heatmaps of the correspond-
ing structures are generated, which highlight certain 

areas impacting log Sw. However, the dataset used for the 
development of the neural network is relatively small. 
A multiple linear regression model (descriptors clogP, 
molecular weight, rotatable bonds, and aromatic propor-
tion) was developed by Delaney based on a set of 2874 
chemicals [21]. The model’s performance was evaluated 
on a blind test set of 528 chemicals, with a correspond-
ing standard error of 0.96 [21]. The Delaney dataset is 
sometimes used as a benchmark in the literature [26, 27]. 
Tang et al. achieved an rmse of 0.66 on a subset of this set 
of chemicals (1311 chemicals), which is also used by Wu 
et  al. (rmse = 0.58 (1128 chemicals), rmse = 0.68 for the 
subset of 1311 chemicals) for the evaluation of the per-
formance. Tetko et al. developed a neural network apply-
ing the molecular weight and elecotrotopological E-state 
indices based on a set of 1291 chemicals, which achieved 
an overall rmse of 0.62 [28]. There are more models avail-
able, which were developed using different descriptors to 
predict log Sw values [19, 20]. However, Tang et al. indi-
cated that graph-based neural networks tend to be more 
promising than conventional descriptor-based models 
[26]. They argue that the atoms represented as nodes 
being connected with bonds represented as edges, may 
depict the overall structure in a better way, which is in 
its 2D form more closely related to the corresponding 
property.

Thus, our aim was to develop a graph convolutional 
neural network (GNN) model for predicting log Sw for 
neutral chemicals based on a highly curated water solu-
bility dataset. As most of the approaches used relatively 
small datasets for the model development, our aim was 
to develop the GNN on a larger dataset of experimental 
data. We used the AqSolDB dataset of Sorkun et al. [15] 
and developed a workflow to identify potential errors in 
the dataset. We preferred to use a data curation strategy 
as a first step, as it is known that not all datasets of log 
Sw values included high-quality data [15, 25]. Further, we 
extended the dataset with log Sw values of 2195 additional 
chemicals, which we collected from different sources. 
Based on the highly curated dataset of 9800 chemicals, 
we developed an consensus GNN model (based on a five-
fold split into training and validation sets) to allow for a 
higher accuracy of log Sw predictions. We compare our 
results to the models of Sorkun et al. [25], Tang et al. [26] 
and the current model of Tetko et al. [28] (implemented 
in OCHEM [29]) as well as the two software tools ACD 
Galas [30] and EPI Suite [17]. Based on our predic-
tion outcomes, we demonstrate that we can achieve an 
improved performance in the prediction of log Sw with 
our developed consensus GNN.
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Methods
Solubility dataset
We used the AqSolDB dataset of Sorkun et al. [15] as a 
starting point for our model development. This data-
set has already been curated with respect to chemical 
identifiers. The dataset is a comprehension of different 
solubility datasets from the literature. Thus, there are 
7746 compounds with one log Sw value each and 2236 
chemicals with multiple log Sw values. The correspond-
ing log Sw values for chemicals with multiple values were 
selected based on the mean and the standard deviation. 
In the case of two different log Sw values for a chemical 
in the dataset, the deviation from a predicted reference 
value was used as a criterion. The merged repository con-
tained 9982 chemicals in total. We removed inorganic 
chemicals, salts, mixtures, reactive chemicals, and poly-
mers from this dataset. Finally, we ended up with 7605 
chemicals.

The dataset was further extended by 2254 additional 
organic chemicals with their corresponding log Sw values, 
which we collected from the literature. However, due to 
the cut-off for large chemicals (molecular weight > 900 g/
mol) and miscibility with water (log Sw > 0.5), the number 
was reduced to 2195 chemicals.

We developed some initial GNNs on the dataset to 
identify potential erroneous log Sw values. In the case of 
chemicals with multiple log Sw values given in the data-
set, we selected the log Sw value, which was closer to 
the corresponding prediction. Additionally, we checked 
the corresponding literature or database for the original 
log Sw value and corrected the dataset. Further, we con-
sidered homologous series and similar structures in the 
dataset to indicate potential errors and issues.

Neural networks
The curated dataset included 9800 chemicals. The dataset 
was randomly split into 70% training set, 20% validation 
set, and 10% test set. We checked that all structural fea-
tures of the chemicals were homogeneously included in 
the three different sets. We first split off 10% of the test 
set and distributed the remaining chemicals along the 
training and validation set in five different setups. By this, 
we developed five independent sets, which were used for 
the fivefold cross-validation and as a basis for a consen-
sus GNN.

To develop our GNN model, we first enlarged the num-
ber of input features by applying a data augmentation 
strategy. For data augmentation, different SMILES vari-
ants were generated using Openbabel (3.1.1), namely the 
canonical SMILES, the universal SMILES, and the inchi-
fied SMILES. All variants were generated with explicit 
hydrogens and with or without dative bonds. Further, the 

kekulized variant and the variant using aromatic labels 
were used. Based on these SMILES, all tautomeric forms 
were generated using RDKit version 2023.09.6. Dupli-
cates of the SMILES variants were removed afterward. 
To avoid the over-weighting of chemicals with many tau-
tomers, the number of tautomers was cut randomly to 
50.

The development of the neural networks was done in 
Python version 3.11.8, Tensorflow version 2.15.0, and 
Keras version 2.15.0. The library Deepchem version 2.7.2 
[31] was used to develop the GNNs. As input, molecular 
graphs were selected [27], which were generated from the 
SMILES of the corresponding chemicals using Deepchem 
(ConvMolFeaturizer). We selected molecular graphs, 
as the connectivity and the chemical bonding are repre-
sented, and we assumed that local interactions as well as 
the global structure (like shape and size) might be repre-
sented well by them. Both are of high relevance for the 
description of physico-chemical properties like log Sw. 
We adapted the Keras implementation for the regression, 
the python code is provided at the GitHub repository. 
In brief, atoms and their corresponding properties (like 
atom type, implicit valence, hybridization, formal charge, 
aromaticity, chirality, e.g.) are represented as nodes, 
bonds to neighbor atoms are represented as edges. The 
graph convolutional operation involves the aggregation 
of the features of the neighboring atoms, in detail this 
is depicted by a graph convolutional layer, followed by a 
batch normalization and a graph pool layer. The output 
layer includes a dense and a batch normalization layer.

The calculations were performed on a Tuxedo book 
(Intel core i9, 64  GB RAM) with an NVIDIA RTX4090 
(16 GB GDDR6). Additionally, the scientific results have, 
in part, been computed at the High-Performance Com-
puting (HPC) Cluster EVE, a joint effort of both the 
Helmholtz Centre for Environmental Research—UFZ 
and the German Centre for Integrative Biodiversity 
Research (iDiv) Halle-Jena-Leipzig.

To identify the optimal setup (number of neurons, 
learning rate, activation function, loss function, number 
of epochs) for the training, neural networks with differ-
ent setups were trained over 200 epochs, and the rmse 
(root mean squared error) was plotted over the epochs 
for both the training set and validation set (SI1). First, 
we tested different number of neurons per layer and dif-
ferent learning rates (Figure S1-1 and S1-2), second we 
tested different loss functions (Figure S1-3), and third 
we tested different activation functions (Figure S1-4) to 
identify the optimal structure and parameters. Based on 
these results, the final setup for our neural network was 
selected. Our GNN consists of two layers with 64 and 128 
neurons; the learning rate is 0.0005, the dropout is set as 
0.1, and the training is performed over 130 epochs. We 
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applied a leaky ReLu function as an activation function 
and used the L1Loss function. Details on the code can 
be found in the GIT repository https:// github. com/ nadin 
ulrich/ log_ Sw_ predi ction.

The applicability domain was determined according to 
Aniceto et  al. [32], which combines the structure-based 
approach of Sahigara et al. [33] with the consensus stand-
ard deviation (reliability-based approach). In brief, the 
mean distance of each molecule in the training set to its 
k-nearest neighbors is determined, and the correspond-
ing global reference value is calculated according to [32]. 
The mean Tanimoto distance is determined for each 
training set chemical to all neighbors within the radius of 
the reference value. The distances are further corrected 
according to the corresponding prediction reliability for 
each training set chemical. We, therefore, calculated the 
relative standard deviation of the prediction and the rela-
tive deviation from the experimental value, resulting in 
a correction factor for each radius as described in [32]. 
Details are provided in the github repository.

Results and discussion
Curation of the dataset
We started with the curation of the AqSolDB dataset 
published by Sorkun et  al. [15] and performed an 
initial training of GNNs to identify potential outliers 
in the dataset (Fig.  1). The suggested solubility dataset 
of Sorkun et  al. contained 9982 chemicals, comprised 
of a collection of several solubility datasets. Some 
chemicals were included in more than one dataset also 
with different log Sw values. For outliers (> 1 log unit 

difference to the experimental log Sw) appearing in our 
initial training, we checked whether the corresponding 
chemical was included in several datasets and selected 
the corresponding log Sw value close to the corresponding 
prediction. We further checked the original sources in 
these cases to identify potential errors. The main errors 
found during our curation procedure were the following: 
(1) The log Sw value was given as “below the limit of 
quantification”, and the limit of quantification was 
included as log Sw in the dataset. In this case, we removed 
the value from the dataset, as the log Sw value might be 
orders of magnitude lower than the given value. (2) The 
value given in the dataset was a predicted value. This 
case often appeared in data from REACH dossiers in the 
ECHA database. Here, we removed the corresponding 
value. (3) Typos and errors resulting from data transfer; 
these data were corrected. (4) There were errors in the 
corresponding identifier of the chemical. If possible, we 
corrected the errors. Otherwise, we excluded the data 
from the dataset. (5) There were issues with the stability 
of the chemical in water, e.g., through hydrolysis; the 
corresponding data were excluded from the dataset. 
(6) In some cases, the critical micelle concentration 
was given instead of water solubility; these values 
were also excluded. We removed inorganic chemicals, 
complexes, and salts from the dataset and processed 
a check for duplicates. If multiple values were found in 
the original sources, we selected the log Sw value close 
to the predicted log Sw value. We are aware that this 
might lead to a bias, nevertheless in the case of multiple 
experimental values given for one chemical it is always 

Fig. 1 Flowchart to illustrate the data curation procedure

https://github.com/nadinulrich/log_Sw_prediction
https://github.com/nadinulrich/log_Sw_prediction
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hard to declare the “correct” one. Each correction is 
marked in the dataset provided in the GitHub repository. 
Further, we performed the screening for outliers three 
times based on the corresponding curated dataset. We 
included an additional cutoff for fully miscible chemicals; 
therefore, we excluded all log Sw values greater than 0.50. 
Additionally, we excluded chemicals with a molar mass 
> 900  g/mol. In total, 686 fully miscible chemicals were 
excluded, and 159 chemicals had molar mass > 900  g/
mol.

The resulting dataset included log Sw values in the 
range of − 13.17 to 0.50. The distribution of all log Sw 
values in the dataset is depicted in the density plot for the 
curated complete dataset, the subset of original data, and 
the additional subset of new data (Fig. 2).

Selection of the optimal GNN structure and performance 
of the GNN
The curated dataset contained log Sw values of 9800 
chemicals and was divided into three subsets: 6860 (70%) 
training set chemicals with their corresponding log Sw 
values, 1960 (20%) data points for the validation set, and 
a set of 980 (10%) chemicals for testing. To avoid a bias 
based on the selection of the training set we applied a 
fivefold split, varying the chemicals in training and vali-
dation set. We kept the initial test set for evaluation of 

each individual model. By generating tautomeric forms 
and different SMILES variants, the five different train-
ing sets were enlarged to 45,602 data points–46,835 data 
points for the training of the GNNs. We already applied 
this data augmentation strategy previously [24] and could 
demonstrate that the overall training was more stable and 
we achieved a better performance on the predictions. In 
this work, we reduced the number of tautomers to 50 per 
chemicals as we saw that there is no difference in the per-
formance outcomes by this reduction.

The optimal GNN architecture for the corresponding 
datasets was determined by plotting the rmse values of 
the corresponding training and validation set over the 
epochs for different GNN setups and the five different 
data splits (SI1). The number of neurons per layer and 
the learning rate varied. Beforehand, different activation 
functions were tested. The optimal neural network was 
based on two hidden layers with 64 and 128 neurons. The 
learning rate was 0.0005, and the network was trained 
over 130 epochs. A pyramidal structure was tested as 
well, but did not perform as good as this variant (S1–5).

For fivefold cross-validation, we prepared five random 
splits of the training and validation sets (ensuring 
only that each chemical was at least once part of the 
validation set) and checked the individual optimal GNN 
parameters for each of the different splits (SI1-6–13). We 

Fig. 2 Density plot of the dataset used for model development. Density plot for the curated dataset. Besides the curated complete dataset, we 
added the information on the distribution of log Sw data for the subset of original data and the subset of new data (which we added to the original 
curated dataset)
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came up with the same parametrization for the different 
GNNs and performed the corresponding training of the 
GNNs. The r2 values ranged from 0.839 to 0.870 for the 
different splits, the q2 values [34] ranged from 0.837 to 
0.870, and the rmse ranged from 0.74 to 0.85). There is a 
slight difference in the corresponding rmse values, which 
could be explained by the different composition of the 
corresponding validation set.

Additionally, we developed a consensus model, where 
we used the mean of the five different GNNs and deter-
mined the corresponding standard deviation. The 
results for the fivefold cross-validation are depicted in 
Table 1, the corresponding plots of the experimentally 
determined log Sw versus predicted log Sw for the five 
GNNs and the consensus GNN are provided in SI2.

We further developed five models based on the initial 
dataset (without data curation), the corresponding stats 
for the five GNNs are given in SI3. The performance of 
the model improved slightly by the corrections done, 
with a slightly higher r2 (0.901 versus 0.897) and a 
slightly lower rmse (0.657 vs 0.664) for both consensus 
models. It should be noted that the corresponding test 
dataset used for comparison was the corrected one.

Further, we used the test set of 980 chemicals to eval-
uate the performance of our GNNs (Table 1). According 
to the r2 values (0.873–0.886), q2 values (0.868–0.882), 
and the rmse values (0.70–0.74) of the five different 
GNNs trained, there is no clear indication that there 
was a bias introduced by the selection of a specific 
constellation of training set and validation set. The r2 
and q2 are close to each other, indicating that there is 
no bias associated with the model used for the external 
prediction.

The corresponding standard deviations (SD) of the 
five GNNs applied in the consensus model are given for 
the test set in Table 2. We grouped the SDs to evaluate 
the overall prediction quality and reliability. As can 
be seen from Table  2, the rmse of the corresponding 
subset of test set chemicals is 0.44 for a SD ≤ 0.1 

and 0.56 for a SD ≤ 0.2, therefore we assume a high 
reliability of the predictions. The rmse increases (0.59) 
for the SD range of 0.2 < SD ≤ 0.3. Thus, we declared the 
corresponding predictions as good reliability. For the 
SD range between ( <)0.3 and 0.5 the rmse values were 
0.75 and 0.87. We assigned a moderate reliability. For 
predictions with an SD > 0.5, we determined an rmse of 
0.93 and suggested to declare that the predicted log Sw 
values for these chemicals are less reliable. Note that 
this might be interpreted as a subjective categorization.

We also included an approach to depict the structural 
similarity in the applicability domain. The method is 
based on Tanimoto distances to its k-nearest neighbors 
and the prediction reliability of the training set chemicals 
[32]. Based on the work of Sahigara et al. [33], we deter-
mined an optimal k of 12 for our approach (see SI4). We 
applied the applicability domain for our test set, cover-
ing 98.7% (967/980 chemicals). The rmse of the subset of 
chemicals within the applicability domain is 0.655, and 
the rmse outside the applicability domain is 0.771. We 
uploaded the script for the determination of the applica-
bility domain and a script for further application of the 
model to new datasets to the GitHub repository.

Table 1 Results of the five models and the consensus model, with each model trained on a distinct training set

Model Split Validation set Test set

r2 q2 rmse r2 q2 rmse

GNN1 1 0.870 0.870 0.735 0.873 0.873 0.728

GNN2 2 0.846 0.842 0.809 0.886 0.882 0.701

GNN3 3 0.839 0.839 0.821 0.881 0.880 0.708

GNN4 4 0.846 0.837 0.846 0.874 0.868 0.741

GNN5 5 0.853 0.841 0.841 0.881 0.871 0.734

Consensus All 0.901 0.896 0.657

Average 0.850 (± 0.011) 0.845 (± 0.012) 0.807 (± 0.040) 0.878 (± 0.005) 0.875 (± 0.005) 0.722 (± 0.015)

Table 2 Evaluation of the corresponding standard deviations 
of the five different predictions done by the 5 GNNs and 
information on the suggested quality and reliability of the 
predictions

* Note that the range is given as 0 < SD <  = 0.1 (e.g.)

Range of SD* n rmse Max. error Suggestion

0–0.1 38 0.436 1.50 High quality/reliability

0.1–0.2 309 0.559 2.79 Good quality/reliability

0.2–0.3 317 0.593 3.23 Good quality/reliability

0.3–0.4 171 0.748 2.58 Moderate quality/reliability

0.4–0.5 91 0.867 2.72 Moderate quality/reliability

> 0.5 54 0.929 3.32 Low quality/reliability
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For the consensus model, the determined squared 
correlation coefficient is 0.901. Further, the predictive 
squared correlation coefficient q2 is 0.896 and the rmse 
of the test set was 0.66 log units (Table 3) with a maximal 
negative error (mne) of − 3.32 and a maximal positive 
error (mpe) of 3.23. The 95th percentiles of the negative 
and positive errors (95% neg, 95% pos) were − 1.25 and 
1.48, respectively (Table 3). Although standard deviations 
for the experimental data are given only in some cases 
(and are not included in the comprised dataset), it is 
estimated that 0.5 to 0.6 log units shall be expected as a 
standard deviation for experimental solubility values [9, 
35]. Thus, it is likely that the corresponding error for the 
prediction of log Sw should be higher. To test our data 
augmentation strategy, we developed for the first split 
(training and validation set) GNNs, where we did not 

apply the data augmentation. We tested several versions 
of the GNNs with various neurons implemented in the 
two layers (16 or 32) and achieved a minimum rmse of 
0.960 on the test set and a corresponding r2 of 0.778. 
Thus, applying the data augmentation strategy improves 
our predictive performance.

We investigated the rmse for different subsets of the 
test set predictions based on our GNN and used the 
number of non-hydrogen atoms (NHAs) to characterize 
the different chemicals included in the test set (Fig.  3). 
As can be seen from Fig. 3, the lowest rmse value (0.46) 
is determined for the subset of chemicals with ≤ 10 
NHAs (in total 225 chemicals), whereas rmse values 
of 0.66 and 0.63 are determined for chemicals with 
11–15 NHAs (298 chemicals) and 16–20 NHAs (219 
chemicals), respectively. The rmse value increases for 

Table 3 Performance of our GNN and other prediction tools on the test set

The performance of the GNN compared to three other available prediction tools (EPI Suite, ACD GALAS and OCHEM) for the test set of 980 chemicals. The statistics for 
the subsets of neutral and ionizable chemicals are given below the statistics of the total test set
* Note that parts of the test set were implemented in the training set of the model

Test set n = 980 Consensus GNN EPI suite OCHEM ACD GALAS

Predictions possible for 980 934 980 980

r2 0.901 0.718 0.885 0.835

q2 0.896 0.549 0.882 0.829

rmse 0.657 1.386 0.703* 0.845

bias 0.123 0.260 0.027 − 0.063

mne − 3.32 − 7.15 − 4.99 − 5.74

mpe 3.23 5.80 3.74 4.53

95% neg − 1.25 − 2.81 − 1.51 − 1.73

95% pos 1.48 3.30 1.52 1.75

Subset ionizable chemicals n = 257

 Predictions possible for 257 238 257 257

 r2 0.797 0.529 0.787 0.715

 q2 0.795 0.075 0.771 0.622

 rmse 0.730 1.570 0.772 0.991

 bias 0.054 0.310 − 0.013 − 0.379

 mne − 2.72 − 5.12 − 4.99 − 5.58

 mpe 2.31 5.80 3.20 2.76

 95% neg − 1.49 − 3.19 − 1.75 − 2.26

 95% pos 1.96 2.57 1.57 2.19

Subset neutral chemicals n = 723

 Predictions possible for 723 696 723 723

 r2 0.918 0.758 0.902 0.868

 q2 0.913 0.625 0.899 0.864

 rmse 0.630 1.319 0.677 0.787

 bias 0.147 0.243 0.041 0.050

 mne − 3.32 − 7.15 − 4.00 − 5.74

 mpe 3.23 5.38 3.74 4.53

 95% neg − 1.19 − 2.70 − 1.43 − 1.49

 95% pos 1.46 3.30 1.54 1.70
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chemicals with 21–25 NHAs (132 chemicals) to an rmse 
of 0.77 and an rmse of 0.78 for chemicals with 26–30 
NHAs (51 chemicals). For large molecules with NHA > 30 
(50 chemicals in the test set), the rmse is much higher, 
with an overall value of 0.92. One explanation for the 
higher rmse might be that the number of chemicals 
with experimental log Sw < − 6 is larger as compared to 
chemicals with log Sw > − 6 for this group (see SI5). Thus, 
the trend that higher rmse values are observed for the 
group of chemicals with NHA > 30 might be explained 
by the fact that these molecules are less soluble and the 
corresponding experimental error is larger as well (due 
to issues regarding the analytical determination like the 
limit of quantification of the corresponding method or 
the error in quantification of smaller concentrations 
related to the dilution of stock solutions).

Comparison to other models
We compared the performance of our model to the 
developed consensus model AqSolPred of Sorkun et  al. 
[25]. The authors used a subset of the AqSolDB (subset 
E, which is the log Sw collection of Huuskonen et al. [19]) 
as a test set to evaluate the performance of their models. 
The rmse of the consensus model AqSolPred for the E 
subset was 0.54. We applied our consensus GNN model 
to predict the log Sw values of the E subset (1291 log Sw 
data), resulting in a rmse of 0.43 (Table 4, GIT repository 
dataset.xlsx, predictions E dataset). Thus, our model 
seems to perform slightly better on this dataset. However, 
some data points of the E subset were implemented in 
our training sets as well and lead to this reduced rmse. 
So we re-trained the five models with reduced training 
sets and removed all data, which were implemented in 
the E subset for training. We again applied a consensus 

Fig. 3 Rmse for different subgroups of the test set. The rmse of the test set is plotted versus the number of non‑hydrogen atoms for our developed 
GNN and the three different prediction tools: EPI Suite, ACD GALAS, and OCHEM

Table 4 Performance of the consensus GNN for different solubility datasets commonly used in literature

* taken from AqSolDB—subset E

Dataset from literature Number of data 
points

Overlap of chemicals with our 
training data

Consensus GNN Consensus GNN 
based on a reduced 
training set

r2 rmse r2 rmse

Delaney 1128 966 0.950 0.488 0.889 0.711

Huuskonen* 1291 1125 0.960 0.427 0.905 0.637
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GNN with a corresponding rmse of 0.64 (Table  4). 
One explanation for the higher rmse value is that more 
chemicals are out of the corresponding applicability 
domain (STD > 0.5, reduced training sets 114 chemicals, 
initial training sets 69 chemicals).

Further, we applied the consensus model to predict 
the Delaney subset used by Wu et  al. [27] and Tang 
et al. [26]. Our model achieved an rmse of 0.49 on the 
subset (Table  4), which we extracted from Deepchem 
(1128 chemicals), the model of Wu et  al. achieved an 
rmse of 0.58. Tang et  al. used an increased dataset of 
1311 chemicals for the comparison achieving an rmse 
of 0.66 (in comparison to Wu et  al. rmse = 0.68). We 
again removed the corresponding chemicals of the 
dataset from our initial training sets and re-developed 
the models including the consensus GNN, by this, our 
rmse increased to 0.71 (Table 4). However, it is unclear 
how many datapoints of this set did overlap with the 
corresponding training sets of the methods applied in 
the previous studies.

Additionally, we compared experimental data with 
the predictions of our GNN model and those of three 
different software tools: EPI Suite [17], ACD Percepta 
(GALAS) [30], and OCHEM [29]. Only 934 SMILES 
codes of the test set chemicals could be processed in EPI 
Suite. The rmse of the test set predictions done by our 
consensus model was lowest (0.66 log units), the rmse 
of OCHEM was relatively close (0.70 log units). The 

corresponding rmse values of EPI Suite and ACD GALAS 
were higher, with 1.39 and 0.85 log units, respectively 
(Fig.  3, Table  3). Nevertheless, one needs to be aware 
that 547 chemicals of our test set were implemented in 
the training set of the OCHEM model. Thus, we selected 
the subset of chemicals not included in the training of 
the OCHEM model, and determined the corresponding 
r2, q2, and rmse for the remaining set of 433 chemicals 
for a better comparison of the performance. Our GNN 
achieved an r2 of 0.877, an q2 of 0.867, and a rmse of 0.700 
on this subset. In comparison, the model implemented 
in OCHEM achieved an r2 of 0.788, an q2 of 0.768, and a 
rmse of 0.924 on this subset.

We also included the rmse values of the subsets of 
the test set for the different NHAs in Fig.  3. Especially 
for larger chemicals with NHAs > 30, the rmse is much 
higher than for smaller molecules. However, the rmse 
value for this subset was the lowest for the predictions 
of our GNN model (rmse = 1.05), followed by an rmse of 
1.38 for the ACD GALAS model, an rmse of 1.65 for the 
model of OCHEM, and an rmse of 2.57 resulting from 
the predictions done by EPI Suite.

In many cases the pH value applied for the experimental 
determination of the log Sw value was not given. In 
addition, experimentally determined pKa values are not 
available for all the chemicals included in the dataset. 
Thus, we cannot ensure that only the intrinsic solubility 
is included in the dataset for each case. To cross-check 

Fig. 4 Comparison of the predictive outcomes of the developed GNN to other tools. Experimentally determined log Sw values are plotted 
against the predicted ones for A our developed GNN model, B EPI suite, C ACD GALAS, and D OCHEM. Potential ions are displayed in red, 
and neutral chemicals are shown in black
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whether ionizable chemicals can be identified as outliers, 
we marked them to identify specific patterns. As can be 
seen from Fig. 4, no outlier groups occur in the plots of 
experimentally determined log Sw values versus predicted 
ones. Outliers with more than one log unit difference to 
the experimentally determined log Sw value were checked 
individually. If we could not explicitly identify issues 
regarding the state of the chemical in the corresponding 
experiment, we did not exclude the corresponding value. 
We included the corresponding statistics for the subset of 
ionizable and neutral chemicals in Table 3.

We added a set of 2195 chemicals to the curated 
AqSolDB dataset (7605 chemicals) of Sorkun [15]. This 
new subset was randomly distributed into the subset 
used to generate the individual training and validation 
sets, and test set. For further comparison, we performed 
a statistical evaluation of the two subsets of the test set 
(Table 5, Fig. 5). As can be seen from Table 5, the rmse 
for the subset of novel data implemented in the test set 
is slightly higher for our developed consensus GNN 
(rmse = 0.74 new dataset, rmse = 0.63 original dataset). 
However, the differences between the rmse values of 
these subsets and those of the other tools applied are 
higher. For the predictions performed by OCHEM, 
the difference between the rmse of both subsets is even 

larger, with an rmse of 0.61 for the old subset and an rmse 
of 0.95 for the subset of the new chemicals included. The 
same trend can be observed for ACD GALAS with rmses 
of 0.77 and 1.06 for the old and new subset and EPI Suite 
with rmses of 1.30 and 1.63 for the old and new subset, 
respectively.

Comparison of the model’s performance trained 
on a benchmark dataset
We additionally trained our model on the Delaney 
dataset (1128 datapoints) to allow for a direct comparison 
of the model’s performance to other models developed 
on the same dataset. As the number of datapoints 
is lower in comparison to our initial training set, we 
needed to repeat the hyperparameter optimization (see 
SI6 for details on the hyperparameters). We decided to 
randomly split the dataset into 80% for training and 
10% for validation, and 10% for testing to allow for a 
better comparison to other models. We again applied a 
fivefold split to allow for a cross-validation approach. 
The GNN models developed achieved an average r2 of 
0.852 (± 0.027) and q2 of 0.849 (± 0.028) on the validation 
sets with an rmse of 0.74 (± 0.09). The average r2, q2, and 
rmse values for the corresponding test sets are 0.894 
(± 0.015), 0.888 (± 0.012), and 0.72 (± 0.06), respectively. 

Table 5 Performance of our GNN and other prediction tools on the two different test subsets (original data and new data, which were 
added)

The performance of the GNN compared to three other available prediction tools (EPI Suite, ACD GALAS and OCHEM) for the test set of 980 chemicals. The statistics for 
the test subsets of original data and novel data are given

Test set n = 980 Consensus GNN EPI suite OCHEM ACD GALAS

Subset original dataset n = 756

 Predictions possible for 756 712 756 756

 r2 0.911 0.757 0.915 0.868

 q2 0.908 0.620 0.913 0.863

 rmse 0.630 1.303 0.612 0.770

 bias 0.102 0.199 0.023 − 0.092

 mne − 2.58 − 7.15 − 3.25 − 5.74

 mpe 3.23 5.80 3.31 4.53

 95% neg − 1.19 − 2.65 − 1.38 − 1.69

 95% pos 1.45 3.14 1.31 1.50

Subset new dataset n = 224

 Predictions possible for 224 222 224 224

 r2 0.862 0.589 0.768 0.701

 q2 0.845 0.254 0.749 0.685

 rmse 0.744 1.627 0.947 1.060

 bias 0.191 0.456 0.040 0.037

 mne − 3.32 − 5.12 − 4.99 − 5.58

 mpe 2.18 5.38 3.74 3.54

 95% neg − 1.37 − 3.65 − 2.37 − 2.01

 95% pos 1.48 3.69 1.87 2.19
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In comparison, the three models developed by Cho and 
Choi [36] showed rmse values between 0.69 and 0.79 
on a test set (10% of the dataset). The best performing 
model in their approach was also a graph convolutional 
neural network. The four NN models of Deng and Jia 
[37] were developed on a 80%/20% split and achieved 
rmse values from 0.97 to 1.05. Coley et al. [38] achieved 
an rmse of 0.56 (note that they used a reduced dataset 
of 1116 data points and a 80%/20% split). Wu et  al. 
[27] achieved an rmse of 1.05 (validation set, 10%) and 
0.97 (test set, 10%) with their GCNN model. The best 
performance was achieved by a message passing NN 
with rmse values of 0.55 and 0.58 for validation and test 
set, respectively. The same split was applied by Shen 
et  al. [39], the corresponding test set rmse was at 0.58. 
Chen and Tseng could achieve an rmse of 0.56 based 
on a 90%/10% training set/test set split [40]. Especially 
message passing neural networks and multitask neural 
networks developed on this small dataset show better 
performances on the test sets. Nevertheless, we could 
demonstrate that the model’s performance is increased 
by training on the larger dataset.

Conclusions
In this work, we developed a GNN to predict log Sw 
values for a broad spectrum of chemicals. We started 
by curating the AqSolDB and included log Sw values 
for 2,195 additional chemicals. Thus, our developed 

consensus GNN model with an rmse of 0.65 (for the 
independent test set) covers a broad spectrum of 
chemicals, which is demonstrated by the corresponding 
similarity-based approach to depict the applicability 
domain. Within our study, it became apparent that the 
overall performance and quality of the model’s prediction 
depends on the amount of data used for the training and 
on the quality of the input data. Therefore, it is essential 
that large datasets need to be curated. This is a time-
consuming step that cannot be automatized by now, but 
it needs to be performed manually by independently 
checking each data point in literature or databases. 
Today, many studies show that deep learning models are 
trained on large datasets without data curation or pre-
checks on consistency or plausibility, leading to poor 
performance and low-quality predictions. Further, there 
is a missing understanding of the underlying experiments 
and experimental errors, which is sometimes seen in 
overfitting in training these models.
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