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Abstract 

In vitro-based high-throughput screening (HTS) technology is applicable to hazard-based ranking and grouping 
of diverse agents, including nanomaterials (NMs). We present a standardized HTS-derived human cell-based 
testing protocol which combines the analysis of five assays into a broad toxic mode-of-action-based hazard 
value, termed Tox5-score. The overall protocol includes automated data FAIRification, preprocessing and score 
calculation. A newly developed Python module ToxFAIRy can be used independently or within an Orange Data 
Mining workflow that has custom widgets for fine-tuning, included in the custom-developed Orange add-on 
Orange3-ToxFAIRy. The created data-handling workflow has the advantage of facilitated conversion of the FAIR HTS 
data into the NeXus format, capable of integrating all data and metadata into a single file and multidimensional 
matrix amenable to interactive visualizations and selection of data subsets. The resulting FAIR HTS data includes 
both raw and interpreted data (scores) in machine-readable formats distributable as data archive, including into the 
eNanoMapper database and Nanosafety Data Interface. We overall present a HTS-driven FAIRifed computational 
assessment tool for hazard analysis of multiple agents simultaneously, including with broad potential applicability 
across diverse scientific communities.

Scientific Contribution Our study represents significant tool development for analyzing multiple materials 
hazards rapidly and simultaneously, aligning with regulatory recommendations and addressing industry needs. 
The innovative integration of in vitro-based toxicity scoring with automated data preprocessing within FAIRification 
workflows enhances the applicability of HTS-derived data application in the materials development community. The 
protocols described increase the effectiveness of materials toxicity testing and mode-of-action research by offering 
an alternative to manual data processing, enrichment of HTS data with metadata, refining testing methodologies—
such as for bioactivity-based grouping—and overall, demonstrates the value of reusing existing data.
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Introduction
The development of new chemical substances and 
advanced materials, including NMs, pose complex 
challenges to ensure safety for humans and the 
environment. “New Approach Methodologies” (NAMs) 
refers to scientific techniques and approaches for 
laboratory safety assessments without animal testing 
under the 3Rs principle [1]. NAMs encompass innovative 
in  vitro- and in silico-driven technologies, including 
high-throughput screening with human cell culture 
models. Stakeholders promoting the application of 
NAMs to safety assessments include regulatory agencies 
and industry. For the latter, the evaluation of safety 
overlaps innovation, and safe and sustainable by design 
manufacturing [2–5].

Data management based on FAIR [6] (Findability, 
Accessibility, Interoperability, and Reuse) guiding 
principles support consistent machine-driven curation 
and reuse of the accumulated data by the nanosafety, 
cheminformatics and bioinformatics communities. 
Tools supporting FAIRification of safety data are 
available, i.e., the Nanosafety Data Interface [7] 
provides flexible findability of data gathered and/or 
generated by a wide variety of European nanosafety 
projects. The data entry for newly generated data is 
streamlined through the eNanoMapper Template 
Wizard [8], which facilitates efficient processing 
of widely accepted excel data format by means of a 
user-friendly online form that allows users to specify 
essential experimental information for which they 
require data and associated metadata. The data entry 
is further supported by the newly developed Template 
Designer online app that automates the step 2 of the 
protocol published in [8] (creating custom data entry 
excel templates). The eNanoMapper FAIRification 
workflow [9] is applied to convert data entered into 
harmonized templates to the eNanoMapper data 
model [7, 9] and to import results into the database or 
generate NeXus files.

The complexity of reproducible assessment and 
simultaneous validation of many agent effects makes 
application of HTS technology challenging for defining 
adversity effects. Implementing FAIR principles in 
the context of HTS data presents further challenges, 
including automatically linking large experimental 
data sets to descriptive metadata, harmonizing the 
terminology used, converting them into a machine-
readable format that will allow the data to be found, 
accessed and reused. Traditional HTS results 
documentation approaches, such as using spreadsheets 
for data collecting and preprocessing are time-consuming 
and error-prone. Alongside the challenges associated 
with manual data processing, integrating external 

software like ToxPi [10, 11] into the workflow introduces 
further complexity, especially due to the need of 
transferring substantial data sets. While ToxPi serves as 
a valuable tool for data visualization and harmonization, 
its capabilities are constrained by the absence of 
preprocessing functions and limited output options.

Herein we report a plate-based toxicity assessment 
procedure utilizing stand-alone plate-replicators, 
-fillers and -readers for assessment of five commonly 
used toxicity endpoints under multiple timepoints, 
concentrations, replicates, and cell models. We couple 
additionally the HTS analysis with a set of automated 
FAIRification protocols that improve results readability 
and enhance the interpretation of results in diverse 
scientific settings.

Results
The HTS set-up builds on an in-house developed next-
generation hazard assessment workflow which applies 
high-throughput and high-content profiling technolo-
gies integrated with omics profiling for assessing toxicity 
of chemicals and NMs (previously described [5, 12, 13]). 
The tiered approach to NMs safety evaluation is initiated 
by HTS, where a panel of toxicity tests are applied for 
relative toxic potency ranking of multiple agents (Fig. 1). 
The Misvik high throughput screening setup enables 
rapid toxicity assessment of multiple materials using a set 
of well-established toxicity endpoints (CellTiter-GloⓇ 
for cell viability, DAPI for cell number, gammaH2AX for 

Fig. 1 Cell based high throughput functional screening by Misvik 
Biology
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DNA damage, 8OHG for nucleic acid oxidative stress, 
and Caspase-GloⓇ 3/7 for apoptosis), and several time 
points, adapted from [12, 13].

The use of multiple exposure times provides a 
kinetic dimension to the test and combination of 
luminescence and fluorescence-based endpoints generate 
complementary readouts that control for potential assay 
interference by the tested agents. In the second step gene 
expression profiling and toxic mode of action screening is 
carried out to gain a deeper understanding of the toxicity 
mechanisms involved.

The approach developed is demonstrated using two 
different HTS datasets from the H2020 HARMLESS [14] 
and calibrate [15] EU projects. The datasets consists of 
30 NMs, 5 reference chemicals and one nanomaterial 
control, which were assessed for toxicity using 5 in vitro 
hazard assays, three time points, and two human cell 
models.

The caLIBRAte data encompass a HTS-based evalua-
tion of a total of 28 NMs, along with five selected chemi-
cal controls and one nanomaterial control acting as 

reference points for in vitro hazard assessments. Table 1 
summarizes caLIBRAte assays, which include five tox-
icity assays with a minimum of three time points were 
carried out in BEAS-2B cells assayed in the presence 
and absence of 10% serum in the culture medium. Four 
biological replicate screens using a twelve-concentration 
dilutions series for each material were carried out. Num-
ber of data points obtained is indicated.

Data for quantum dots, from the HARMLESS project, 
were used to test and demonstrate flexibility of the 
developed workflow. Deviations from the caLIBRAte 
materials and methods are described in section Methods.

Traditional toxicity testing is based on determina-
tion of the growth inhibitory 50  (GI50) value based on 
which sequential assays are carried out. Combining 
toxicity results from several time points and endpoints 
(e.g., induction of Apoptosis and γH2AX) may provide 
more sensitive and specific toxicity estimates. However, 
 GI50 cannot be calculated or is not optimal for some 
of the endpoints used here. Thus, a  GI50–independent 
scoring system was used (Fig. 2). Steps taken from the 

Table 1 Summary of assays carried out for the caLIBRAte project

Endpoint Assay (unit) Mechanism Time points (h) Concentration 
points

Biological 
replicates

Data points

Cell viability Luminescence measurement CellTiter-Glo assay (RLU) ATP metabolism 0, 6, 24, 72 12 4 12 288

Cell number Imaging DAPI staining (cell number) DNA content 6, 24, 72 12 4 18 432

Apoptosis Imaging Caspase-3 activation (RFI) Caspase-3 
dependent 
apoptosis

6, 24, 72 12 4 9216

Nucleic acid oxidative damage Imaging 8OHG staining (RFI) Oxidative stress 6, 24, 72 12 4 9216

DNA double-strand breaks Imaging γH2AX staining (RFI) DNA repair 6, 24, 72 12 4 9216

Total 58 368

Fig. 2 Tox5-scoring and ranking of the in-vitro nanomaterial toxicity dose–response data
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traditional one-endpoint, one-time point 50% growth 
inhibition concept to a more comprehensive, multi-
time and -endpoint concept, enabling toxicity scor-
ing. Toxicity is measured using several time points and 
multiple complementary endpoints and key metrics 
(1st statistically significant effect, AUC and maximum 
effect) are calculated from the data. The metrics are 
separately scaled and normalized using the ToxPi soft-
ware to allow for comparability, and then compiled to 
end- and time-point-specific toxicity scores, which are 
further compiled to an integrated Tox5-score, which 
is used as the basis for toxicity ranking and grouping 
against well-known toxins.

The concept is based on calculation of multiple 
metrics from the normalized dose–response data and 
integration of those metrics from several time points 
and endpoints into one integrated toxicity score, which 
retains transparency towards the contribution of each 
specific endpoint.

Tox5-score [16] integrates dose–response parameters 
from different endpoints and conditions (time points, 
cell lines, concentrations) into a final toxicity score. Each 
slice shows the bioactivity and weight of each specific 
endpoint. The pie serves as a basis for computational 
assessment of similarity in toxicity responses, i.e. toxicity 
profiles. The complexity and visualization of the pie 
may vary depending on the amount of information 
included. The transparency of the approach allows a 
clear visualization of the overall assessment, allowing 
chemicals and materials to be ranked from most to least 
toxic and comparison with known chemical toxicants 
included in the screens. Furthermore, the new workflow 
enables the combination of data from other experiments 
with similar setups, enhancing its versatility and 
applicability. Clustering, based on endpoint, timepoint 
and cell line specific toxicity scores, enables grouping 

and read-across, including transparency on the grouping 
hypothesis, i.e. the underlying bioactivity associated with 
the detected hazard-based similarity.

General concept for automated HTS data preprocessing 
and Tox5‑score approach
To allow for automated evaluation of the toxicity of 
chemicals and materials, and allow for grouping and 
ranking using the Tox5-score approach, a general compu-
tational workflow was developed, as presented in Fig. 3. 
This general concept can be implemented using various 
computational techniques within the frame of MS Excel 
or other calculation software.

Reading experimental HTS data and metadata annotation
First, experimental data are read, combined, and 
converted into a uniform format suitable for post-
processing. Metadata, including details such as 
concentration, treatment time, type of material used, 
cell line, and replicate, are also provided and used for 
annotation.

Here, it is worth noting that when investigating tox-
icity of non-soluble (nano)materials, the cell-delivered 
doses play a crucial role. Traditionally, toxicity evalua-
tion is based on nominal dose, i.e., the mass of chemi-
cal/material per volume unit of cell culture medium, but 
as (nano)material sedimentation rates, hydrophobicity 
and other physical chemical factors influence the inter-
action between cell culture medium and cells, the frac-
tion of material mass actually reaching the cells remains 
unknown. Consequently, quantification of material deliv-
ered to close proximity of the cells is crucial, as material 
situated far from the cells does not contribute to toxicity, 
except in the case of material dissolution. Additionally, 
a NMs toxicity can be directly linked to its surface area 
[17]—generally, more surface area implies more toxicity. 

Fig. 3 General steps in the workflow for HTS data preprocessing and toxicity scoring
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Utilizing Brunauer–Emmett–Teller (BET) or Sears titra-
tion analysis, the concentrations can be expressed as 
material surface area per cell growth area  (cm2/cm2) con-
centration units, which can further enhance the scoring 
process. It’s important to note that the concentrations 
in points 1 and 2 [nominal dose per cell culture medium 
(μg/ml) and nominal dose per cell growth area (μg/cm2)] 
can be computationally determined. However, for point 3 
[nominal dose based on the material’s specific surface area 
per cell growth area  (cm2/cm2)], empirical Specific Sur-
face Area, measured by BET method (SBET), is necessary 
to determine the material’s specific surface area, which is 
then used to calculate the concentration. To take mate-
rial’s surface area information and cell delivered dose into 
account, a dose recalculation was incorporated to the ini-
tial step of the workflow, enabling selection of concentra-
tion units between:

1. nominal dose per cell culture medium (μg/ml),
2. nominal dose per cell cell growth area (μg/cm2),
3. nominal dose based on the material’s specific surface 

area per cell growth area  (cm2/cm2), and
4. the cell delivered dose per cell growth area (cell 

delivered  cm2/cm2).

caLIBRAte project data are presented in units of μg/ml 
and can be recalculated as μg/cm2 based on cell growth 
area, and HARMLESS data can be expressed using any 
of the above mentioned concentration units as results 
for SBET are available. BET and Sears correlation based 
surface area information and cell delivered dosing was 
acquired by the HARMLESS project partners.

HTS data preprocessing and dose–response parameters
The second step of the workflow involves data preprocess-
ing to minimize the impact of systematic errors caused by 
human, biological, or technical factors during the experi-
mental process, leading to unwanted variation and noise in 
the data. The data were expressed as percent of plate-wise 
controls (percent of control) to account for plate-to-plate and 
screen-to-screen variability. Since percent of control is sensi-
tive to outliers in the controls, outlier removal was applied 
to control samples by defining the 75th (Q3) and the 25th 
(Q1) percentiles and their interquartile range (IQR). Control 
samples with values greater than Q3+ 1.5*IQR or less than 
Q1−1.5*IQR were removed. Additionally, a 0-h exposure 
served as a baseline for cell viability assays, representing the 
pre-exposure state and also indicating possible assay interfer-
ence. A baseline correction was applied by subtracting the 
median of replicate 0-h baseline values from the correspond-
ing time-point replicates.

In-vitro imaging endpoints have been detected by 
fluorescence microscopy from the same wells. Cells 

have been detected through nuclear DAPI staining, 
and the absence of signal could be attributed to either 
absence of cells or failed image focusing (e.g., focus on 
a dust particle instead of the cells), resulting in two dis-
tinct methods for cleaning DNA imaging data. In both 
scenarios, no 8OHG and H2AX signals were obtained 
leading to NaN (Not a Number) values for H2AX and 
8OHG. When cells have been absent, the cell count has 
been set to 0 if biological replicates showed cell counts 
close to zero, preserving meaningful information, i.e., 
all cells have been most likely dead as there were few 
cells in the replicates. DAPI values have been further 
refined by replacing 0 with NaN when the mean DAPI 
values of replicates have exceeded a threshold of 50. 
This strategy eliminated DAPI values that resulted from 
focusing errors or other technical issues. The same 
algorithm has been applied for Caspase-3 normaliza-
tion using a second technical replicate for DAPI signal 
from the same well. For the DAPI signal, the average of 
the two technical replicates has been used.

Since Caspase-Glo 3/7 activation (measured as a 
viability assay in HARMLESS data) has been used as a 
sign of dying cells, the Caspase readout, in addition to 
0-h assay interference subtraction and normalization to 
plate-wise controls, has been further normalized to cell 
number. This has been achieved by dividing the Caspase 
readout by the mean of the CTG and DAPI responses to 
account for the loss of cells.

To minimize the influence of outliers, median values of 
the biological replicates have been calculated and used 
for determining the dose–response parameters in the 
third step.

Tox5‑score computation
Maximum effects were calculated separately for each 
replicate, and median maximum effect values were used 
for scoring. For Area under the curve (AUC) calculations, 
values less than two standard deviations (2SD) from the 
median of vehicle-treated controls were excluded to 
remove baseline noise. AUC calculations were performed 
using a non-curve fitting-based trapezoid rule, and val-
ues beyond the highest concentration x-values were not 
extrapolated. The first significant effect defines the con-
centration threshold at which a statistically significant 
response is induced compared to control conditions. 
Only significant effect values higher than the median 
of controls plus two standard deviations (2SD) and plus 
3SD were considered to exclude artifacts. Two separate 
metrics for + 2SD and + 3SD cutoffs were calculated. The 
two cut-offs were included so that the scoring extended 
to the lower toxicity materials/agents while still giving 
higher weight to the higher toxicity ones. Likewise the 
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maximum effect calculations help rank materials at the 
lowest toxicities that fall below even the 2SD cut-off.

The final part of the workflow involves toxicity scoring 
and grouping of the materials. The ToxPi v2.1 software 
[18] has been used to scale, normalize and integrate 
time point-, and endpoint-specific metrics. Toxicological 
effects from the material library were first scaled between 
0 and 1, and transformed to smooth the data towards 
normal distribution. This was done separately for each 
time- and end-point and dose response parameter 
so that 1st significant effect data were − log10(x) + 6 
transformed, and AUC and maximum effect data were 
square root transformed.

These dose–response parameter scores were combined 
into slices to generate endpoint and time point specific 
composite scores, which constituted the final pie 
representing the integrated Tox5-score.

To emphasize sensitivity of the observed toxicity 
effects, the first significant effect doses (with 3SD cutoff) 
were weighed in the final slices so that they contributed to 
50% of the final score while other parameters contributed 
to 16.67% each. 95% confidence intervals were calculated 
for the integrated Tox5-scores, rank numbers, and 
endpoint- and time-point-specific scores. Due to the 
effect-thresholds applied for the AUC and 1st significant 
effect values, low toxicity materials get a toxicity score, 
which might be based only on the maximum effect 
values. Thus, the scoring and ranking accuracy declines 
as toxicity decreases, as less data is available for scoring, 
but a score is obtained even for the least toxic materials, 
as well as for the dispersant controls.

Collection and annotation of HTS data
In this study, in-vitro imaging data were provided as.txt 
files (Fig.  4b), while cell viability data (HARMLESS 

dataset) were in.csv format (Fig.  4a). Images were 
analyzed using Olympus ScanR software, with data 
exported as.txt files (see “Methods” section).

Each file corresponds to a 384-well plate, with cell 
viability data stored separately, and imaging data 
combined into one file. Metadata, such as well location, 
dose, time, replication, endpoint, and cell line, should 
be included with the raw data. An Excel annotation file 
(Fig. 4c) details the materials and doses in each well.

Collecting and annotating experimental metadata 
is challenging and time-consuming due to a lack of 
standardization, with inconsistent terminology across 
materials, endpoints, and cell lines (e.g., HepG2, 
HEPG2, HEP-G2). This issue complicates data 
FAIRification, emphasizing the need for automated 
machine-based data processing.

CellTiter-Glo assay data, from caLIBRAte project 
have been made available in the eNanoMapper data-
base [7] (Fig.  5) and were managed in our previous 
activities. This process required manually crafting 
numerous JavaScript Object Notation (JSON) file con-
figurations and adapting to changes in the layout of the 
input Excel files.

The HTS_METADATA template [19] as a harmonized 
reporting format is specifically designed, as part of this 
research, and integrated in Template Wizard [8] web 
form into Nanosafety Data Interface [7].

The harmonized HTS metadata template includes a 
“Front sheet” (Fig. 6a) for metadata about materials and 
doses for a given well position, and a “File” sheet (Fig. 6b) 
for replicate, time, endpoints, and cell lines, auto-filled 
from data filenames. The auto-completed filename meta-
data can be corrected manually, which will ensure that 
the different spellings of the objects are harmonized. 
Users can conveniently select materials, presented with 

Fig. 4 Screenshot of experimental data: a plate reader, b imaging data output files and c annotation file
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ERM identifiers [20], from a drop-down menu, in “Front 
sheet”, associated with the “Material” sheet.

The HTS_METADATA template allow users to 
annotate data with meaningful metadata while ensuring 
consistency and harmonization.

Implementation of general concept in ToxFAIRy python 
package
The ToxFAIRy Python software was designed to 
automate HTS data preprocessing and toxicity scoring. 
The software is available in the orange3-toxfairy 
GitHub repository https:// github. com/ ideac onsult/ 
orang e3- toxfa iry. The software consists of two main 
modules: endpoints and calculations. The “endpoints” 
module reads the data, annotates it with metadata, 
and collects both raw and processed data within a 
dedicated data container for each specific endpoint. The 

“calculations” module implements the latter stages of the 
general workflow outlined previously. It encompasses 
functionalities for data preprocessing, calculations of 
dose–response parameters, and the generation of Tox5-
scores. Notably, Tox5-scores are derived by integrating 
the ToxPi-R library [21] into the Python workflow.

Reading and annotating the data
A dedicated Python method was developed to automati-
cally populate the “files” sheet in the HTS_METADATA 
template using file names. After manual updates, if 
needed, the template is used to parse raw data and anno-
tate it with metadata, stored in a two-dimensional labeled 
structure. Each endpoint is a separate instance of an HTS 
object, containing raw and processed data along with 

Fig. 5 Screenshot of caLIBRAte cell viability data available in the eNanoMapper database at https:// enano mapper. adma. ai/ proje cts/ calib rate

https://github.com/ideaconsult/orange3-toxfairy
https://github.com/ideaconsult/orange3-toxfairy
https://enanomapper.adma.ai/projects/calibrate
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associated metadata. Dose recalculation functions are 
based on the following formulae:

(1)

Cell−delivevered dose
( µg

cm2

)

=
dose

(µg
ml

)

× well volume(µl)

plate growth area
(

cm2
)

(2)
SBET effective dose

(

cm2

cm2

)

= SBET

(

cm2

g

)

×

dose
(µg
ml

)

÷1000

well volume(µl)

plate growth area
(

cm2
)

Data preprocessing
The “calculations” module contains five Python classes: 
one for basic normalizations, which is applied to all 
endpoints, two classes for cell viability and in-vitro 
imaging data processing, which inherit the basic 

Fig. 6 HTS_METADATA template: Example of filled template for Misvik HTS data. a Front sheet, b files sheet
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normalization, and two classes for dose–response and 
Tox5-score calculations.

Basic normalization Representation of the result as a 
percentage of the control based on Eq. 3

Both approaches provide insights into the sample’s 
relationship with the control, offering flexibility in how 
the data is interpreted and presented.

Outlier removal based on Inter Quartile Range (IQR) 
between 75th (Q3) and 25th (Q1) percentiles of the data 
and calculation of mean and median of replicates.

Cell viability normalization For endpoints involving a 
0-h experiment baseline correction functionalities have 
been implemented based on Eq. 4. The baseline-corrected 
values can also be represented as a percentage.

Endpoint (Caspase-Glo 3/7) specific normalization step 
was implemented (Eq.  5) based on the combined mean 
data from two additional endpoints (DAPI and CTG used 
in the current case), to account for the loss of cells.

In‑vitro imaging normalization ToxFAIRy implements 
functionalities to remove potentially failed imaging based 
on DAPI assay results. According to the rules, if DAPI is 
0, associated imaging endpoints are replaced with 0 and if 
the median of DAPI’s replicates > 50, the result is replaced 
with NaN.

Dose response parameters ToxFAIRy identifies of the 
first significant dose using a 2SD/3SD cutoff, defining the 
dose where a noticeable response is induced compared to 
control conditions. P-values are calculated for each repli-
cate using a two-tailed hypothesis test, and if p < 0.05, the 
null hypothesis is rejected, indicating a significant effect. 
Before this, p-values are filtered if the mean score of rep-
licates is less than the control median plus 2 or 3 standard 
deviations (SD). These values establish the threshold for 
the initial significant concentration.

(3)

% effect of median control =
Sample(i)

median control
∗ 100

% of median control =

(

1−

(

Sample(i)

median control

))

∗ 100

(4)

Baseline correction = Sample i/median(0 H)

Baseline correction as percent = 100+

(

Sample(i)

median(0H)

)

(5)Casp - Glo 3/7 normalization =
Sample (i)

1− (average (mean endpoint 1, mean endpoint 2)÷ 100

To improve AUC reliability and reduce minor fluc-
tuations, a data cleaning step is performed as described 
early: data points are excluded if the mean score for a 
replicate endpoint was less than the control median 
+ 2SD as well as AUC is determined using the trapezoidal 
rule. A logarithmic transformation is applied to the doses 
before AUC calculation, to comply with the trapezoidal 
rule assumption that the x-values (dose levels) are nor-
mally distributed. Maximum dose calculation was imple-
mented as a median of maximum results of all replicates.

Tox5‑score
Tox5-score calculations are performed by the 
ToxPi-R library [21] integrated into the ToxFAIRy. 
To achieve a normal distribution of the data, three 
different transformation functions were implemented: 
− log10(x) + 6, square root, and the Yeo-Johnson 
transformation. In ToxFAIRy, slicing can be done both 
automatically and manually, unlike in ToxPi, where slices 
must be entered manually one at a time. Tox5-scoring 
in ToxFAIRy software is enhanced with a more flexible 
weighting functionality, allowing specific parameters 
within the same slice to be weighted—an option not 
available in the original ToxPi.

ToxFAIRy calculates bootstrap confidence intervals 
for each specific slice, general Tox5-score and ranks at a 
95% confidence level, similar to the original ToxPi [22]. 
Therefore, the reported toxicity scores are accompanied 
by measures of statistical significance.

ToxFAIRy module implements functionality for 
hierarchical clustering, allowing users to select from 

various distance metrics, including: Euclidean, Cityblock, 
Cosine, Hamming, and Minkowski. The set of supported 
clustering methods includes agglomerative clustering 
(with Ward’s method, Single linkage, Complete linkage, 
Average linkage). The number of clusters can be user 
defined or using the Elbow and Silhouette methods to 
determine the optimal number of clusters. Additionally, 
three cluster significance metrics (Silhouette score, 
Davies–Bouldin score, and Calinski–Harabasz score) are 
included.

Orange3‑ToxFAIRy add‑on
To facilitate HTS data preprocessing and scoring by 
non-programmers, we developed Orange3-ToxFAIRy, 
an add-on for the popular Orange Data Mining soft-
ware. Orange3-ToxFAIRy wraps all ToxFAIRy func-
tionalities in a user-friendly manner. The user can build 
a complete HTS data preprocessing and Tox5-score 
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workflow (Fig.  7) by connecting custom widgets. (i.e. 
visual programming style). The workflows can be saved 
as.ows files and loaded later or shared as an informa-
tional resource. Orange3-ToxFAIRy visual user guide is 
available as a resource in Zenodo [23].

The “Multifiles” widget simplifies the file selection 
procedure. After selecting the directories with raw data 
and the harmonized metadata template, the “Auto-
fill HTS template” widget (Fig.  8, top left) is used to 
populate the ‘file’ sheet automatically, while the rest of 
the sheet must be adjusted manually. Once the HTS_
METADATA template is ready, it can be linked to the 
reader widget.

The “Read HTS data & metadata” widget features 
(Fig.  8, top right) are organized in four main sections: 
entering endpoints, selecting directories for each 
endpoint, setting the HTS_METADATA template, 
and optional dose recalculation section. After clicking 
“Process,” the annotated raw data is available for each 
endpoint, and the corresponding tables can be saved in 
formats like CSV or Excel. The metadata output is also 
available, shown in Fig. 8 with the dashed arrow.

The “HTS Preprocess” widget (Fig. 9, top left) imple-
ments data preprocessing and dose–response metric 
calculation. After selecting an endpoint, a list of nor-
malization functions appears as clickable buttons, and 
the chosen functions could be applied independently 

to each endpoint. Results are displayed in a drop-down 
menu in table format. The widget takes the diction-
ary of defined endpoints from the previous output and 
returns the same dictionary after preprocessing.

The “Tox5-score” widget enables grouping and 
toxicity scoring, with a filter for multiple cell lines. 
Implemented on top of ToxPi software, it allows 
automatic slicing by time point and endpoint (Fig. 9 up 
right), with customizable slicing options (Fig.  9 down 
right). Users can assign weights to the metrics via a 
menu with options, and transform the data to a normal 
distribution for each dose–response metric. Bootstrap 
confidence intervals are also calculated as on option.

The “Tox5 view” widget (Fig. 10) displays the toxicity 
profiles as pies (following ToxPi approach) and materi-
als ranking. Users can select materials from the menu 
on the left, export the graphic in various formats, and 
view the confidence intervals in gray color for each 
slice. An automated coloring system with custom color 
schemes for slices is implemented. In the example 
(Fig. 10), slices are colored by endpoints and organized 
in the legend.

The “HTS data filter” widget allows filtering of data 
records by endpoint, cell line and materials. It can be 
used before data normalization for faster preprocess-
ing or afterwards to streamline workflows with differ-
ent filters and data groupings. Figure 11 shows workflow 

Fig. 7 Basic example of an automated workflow for HTS data processing and Tox5-scoring
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branched for scoring behavior analysis with the same 
processing and corresponding slicing applied.

Application of the ToxFAIRy workflow to the caLIBRAte 
dataset and HARMLESS quantum dots
Automatic workflow for data processing and Tox5‑scoring
Experimental data for the CTG endpoint from 
the caLIBRAte project were retrieved from the 
eNanoMapper database, while all other data were 
obtained from a local repository and annotated using 
the HTS_METADATA template. Processed datasets are 
available as a resource in Zenodo [24].

The results of the automatic processing and ranking of 
the caLIBRAte dataset, are shown in Fig. 12. A bootstrap 
confidence interval is calculated for each Tox5-score 
(Fig. 12B) and rank (Fig. 12A), and plotted on the figure 
as error bars.

Different colors were used to represent the various 
substance types:

• Advanced SiO2 NMs (orange)—Porous Silica 
300 nm-Me, Non-porous Silica 300 nm-Me, Porous 
Silica 100  nm-Me, Non-porous Silica 100  nm-Me, 
Porous Silica 300  nm-CuO doping-Me, Porous Sil-
ica 100 nm-CuO doping-Me and Non-Porous Silica 
300 nm-CuO doping-Me;

• NMs with antipollution or antibacterial properties 
(light purple)—TiO2,  TiO2/SiO2 1:3, A1 Silver 
nanoparticles, A2 Silver nanoparticles (less ions) and 
CuO nanoparticles;

• Fine pigments and mineral fillers (blue)—
Expancel, Titanium(IV)oxide, Dolomite, Talcum, 
Ultrex 96, PoleStar 200P, Calcium Carbonate, 
Alumino Silica, Sodium Hexametaphosphate/
Sodium Hexametaphosphate set2, Tylose HS 6000 
YP2, Tylose HX 6000 YG4 and tetrapotassium 
diphosphate;

• Functionalized nanodiamonds (dark purple)—Kaolin 
(Halloysite), NanoDiamond Hydrogen P, NanoDia-
mond Molto and NanoDiamond VoxP;

Fig. 8 Screenshot of a specific part of a workflow, which reads and annotates HTS data
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• Nanomaterial control (yellow)—Carbon black 
(Printex 90);

• Positive controls (red)—5-Fluorouracil, Mitomycin 
C, Daunorubicin, Gemcitabine, 4-Nitroquinoline 
1-oxide/4-Nitroquinoline 1-oxide set2.

Figure 13 presents the ranked quantum dots and asso-
ciated reference NMs, as a pie chart, where each pie 
represents the entire Tox5 score for each material. Each 
slice corresponds to a specific score for each parameter 
included in the grouping and is colored according to the 
endpoint. For example, the CTG endpoint parameters are 
colored green, with a gradient indicating the specific cell 
lines and time points. Additionally, the bootstrap confi-
dence interval for each slice is depicted, with the upper 
bound shown in red and the lower bound in blue.

Figure  14 illustrates hierarchical clustering applied to 
the caLIBRAte data, using Euclidean distance as the met-
ric and Ward linkage method. The optimal number of 
clusters was determined using the “elbow” method. The 
“elbow” method demonstrated better statistical perfor-
mance in terms of cluster significance metrics (Silhou-
ette, Davies–Bouldin and Calinski–Harabasz scores), 
compared to the Silhouette method.

Figure  15 presents multiscale bootstrap resampling 
to the hierarchical clustering of caLIBRATE dataset. 
The clustering was done by reintegrating ‘pvclust’ [25] 

package in python. Approximately Unbiased p-value 
(AU) and Bootstrap Probability (BP) report the sig-
nificance of each cluster in clustering structure. The 
AU value is less biased and clusters that have this value 
greater than 95% are considered significant and strongly 
supported by the data.

The HARMLESS project HTS dataset was used to test 
the functionality with SBET-based dose recalculations. 
Figure 16 demonstrates ranked quantum dots and mate-
rials used as positive and negative controls, with doses 
converted to  cm2/cm2 (a) versus doses in µg/mL (b).

Biological results
Figure  12 shows ranks (A) and as Tox5 scores (B) for 
the caLIBRAte materials scored using both with and 
without serum datasets. The inclusion of positive 
and nanomaterial controls services as a reference for 
assessing the relative toxicity of the materials. Tylose HX 
6000 YG4 chemically modified hydroxyethyl cellulose 
and TiO2/SiO2 are ranked as the most and least toxic 
test-material, respectively.

Toxicity effect pie charts (Fig. 13) show cell line-specific 
and dynamic differences in toxicity patterns between the 
HARMLESS quantum dots (QD) and the corresponding 
reference/control materials, from the PATROLS [26] pro-
ject QDs decrease cell numbers (blue slices) and induce 

Fig. 9 Part of an automated workflow for calculating dose–response parameters and rank materials, based on a grouping approach
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nucleic acid oxidative stress (purple slices), whereas zinc 
oxide (NM-110) is more prone to induce apoptosis (gray 
slices) and loss of cell viability (green slices).

Hierarchical clustering of the caLIBRAte materials 
enables grouping and read-across based on similar 
bioactivity, i.e. toxic modes of action (Figs.  14 and 
15). The ToxFAIRy module implements bootstrap 
validation to identify statistically significant clusters 
(Fig.  15). Despite the small and heterogeneous dataset, 
statistically significant clusters are formed, for example, 
between Nanodiamonds (VoxP and Molto) and porous 
silica particles. As shown in Fig.  16, changing the dose 
metrics used can have significant effects on the toxicity 
ranks of nanomaterials as the specific surface areas of 
the materials vary dramatically. Optimally, cell-delivered 
doses, which take into account crucial physical–chemical 
characteristics such as surface areas, sedimentation rates, 
leaching and dissolution/ion-shedding abilities should be 
used for toxicity assessment.

High throughput data FAIRification
The resulting data structures, after preprocessing, are 
converted into the FAIR eNanoMapper data model 
using the pynanomapper library and stored as a NeXus 
file. The high throughput data FAIRification is avail-
able as a widget in the Orange3-ToxFAIRy add-on and 
also as a specific task in a Ploomber [27] workflow. The 
Ploomber workflow employs the ToxFAIRy module 
for HTS data preprocessing, scoring and FAIRification 
(Fig.  17) and is available on GitHub—https:// github. 
com/ ideac onsult/ orang e3- toxfa iry/ tree/ main/ toxfa iry_ 
workfl ow.

All processed data from both datasets were converted 
into the FAIR eNanoMapper data model and thus made 
accessible for database import as well as stored in the 
NeXus format. The resulting NeXus file contains all HTS 
materials, endpoints, including raw and processed data 
i.e. normalized values, median values, parameters cal-
culated from dose response curves and the Tox5-scores. 
The data is stored as a multidimensional matrix and 
H5Web tool allows interactive visualizations, selection of 
specific data subsets, inspection and analysis.

Fig. 10 Visualization and exploration of Tox5-scores as a pie for each material

https://github.com/ideaconsult/orange3-toxfairy/tree/main/toxfairy_workflow
https://github.com/ideaconsult/orange3-toxfairy/tree/main/toxfairy_workflow
https://github.com/ideaconsult/orange3-toxfairy/tree/main/toxfairy_workflow
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Figure  18 contains screenshots representing the data 
from NeXus file with caLIBRAte datasets and displays 
material: Porous Silica 300  nm-CuO doping-Me, end-
point: 8OHG, cell line: BEAS-2B. Figure  18a) shows a 

Heatmap view for NORMALIZED data with an addi-
tional data subset of replicates in D2 and respectively, 
AUC results are shown in Fig. 18b).

Fig. 11 Screenshot of a workflow with different filtering use cases

Fig. 12 Ranked caLIBRAte materials and controls with bootstrap confidence interval, a by ranks and b by Tox5-score
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Fig. 13 Pie chart representation of ranked Quantum dots with Tox5-scores and bootstrap confidence intervals for specific slices

Fig. 14 Hierarchical clustering for caLIBRAte dataset
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Discussion
The toxicological research field faces a pressing 
challenge in efficiently evaluating both untested 
existing, and novel to be developed, chemicals 
and materials [5],. Grouping and read-across are 
the recommended approaches for gap-filling for 
nanomaterials [28], exemplified by the hypothesis-
driven Gracious framework [29] requiring information 

for physicochemical properties (“what they do”), 
fate /toxicokinetic behaviour (“where they go”) and 
hazard comparison based on bioactivity (“what they 
do”). However, linking specific physicochemical 
properties to well-defined hazard endpoints remains 
complex. To address this challenge New Approach 
Methodologies (NAMs) such as in-vitro testing [2, 30] 
or computational methods [31, 32] are increasingly 

Fig. 15 Hierarchical clustering of caLIBRAte dataset with p-values (AU/BP %) via multiscale bootstrapping

Fig. 16 Comparison of quantum dots ranking based on recalculated doses
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being adopted, and have proved useful for assessment 
of bioactivity-based similarity [33].

ToxFAIRy for automatic data processing and toxicity 
scoring
In vitro high-throughput screening hazard data is used 
for clustering, ranking, prioritization of NMs and read 
across. Recent efforts have led to the development 
of a scoring concept for evaluating and prioritizing 
toxicity in  vitro, the Tox5-score. However, manual data 
preprocessing is time consuming and prone to errors, 
as well as unsuitable to scale-up for large NMs datasets. 
The original Tox5-score approach relied on manual data 
processing and annotation. Associated with common 
issues such as column shifts in Excel, and inconsistent 
naming of cell lines and metadata. In contrast, the 
ToxFAIRy automates these tasks, enhancing scalability, 
efficiency, and reproducibility by integrating the 
entire data pipeline into a unified platform. The HTS_
METADATA template ensures consistent terminology 
and accurate metadata annotation, minimizing technical 
errors during data transfer.

Automation not only streamlines processing but also 
frees up resources for analysis, speeding up research. 
Key improvements over ToxPi include enhanced data 
visualization, easier export, automated slicing and slice 
coloring based on specific patterns, and the ability to add 
weights to specific slice parameters.

The Orange3-ToxFAIRy add-on significantly enhances 
user accessibility by enabling the composition of complex 
workflows through a visual programming interface. This 
visual approach simplifies the creation of workflows while 
enhancing their customization and flexibility. The ability 
to save workflows as.ows files promotes reproducibility 
and collaboration by allowing standardized workflows 
to be disseminated and reused across different research 
groups. Sharing these workflows ensures consistency in 
data preprocessing and scoring, which is crucial for reli-
able and comparable results.

FAIR high throughput data retrieval and reuse
Three primary challenges are highlighted, in the 
context of nanomaterial grouping [29]: (a) limited data 
availability, (b) non-harmonized experimental methods 
for testing NMs, and (c) significant concerns regarding 
data quality, a critical issue previously noted by other 
researchers [34].

To overcome data scarcity, it was recommended [35] 
that all original data from publicly funded research 
projects be shared in publicly accessible databases [28]. 
This initiative would facilitate greater data availability, 
aiding in the reuse of data for purposes such as meta-
analysis and NMs grouping. The eNanoMapper 
data model and Nanosafety Data Interface [7] is 
presented as an exemplary framework for creating such 
comprehensive data collections. The eNanoMapper data 
model has been effectively utilized in various EU projects 

Fig. 17 Screenshot of the code used to convert HTS data to NeXus format
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and serves as a best practice [28] for data management 
and sharing.

Additionally, the current lack of reliable data can be 
addressed by implementing validated high-throughput 

screening approaches and predictive toxicogenomics 
methodologies [36, 37]. High-throughput screening 
platforms, which include high-content analysis and 
omics technologies, employed in tiered workflows and 

Fig. 18 Misvik HTS data converted to NeXus format and visualized via open source h5web tool
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supported by computational, automated data evaluation, 
are crucial tools for addressing the complexity associated 
with NMs [35, 38, 39].

Recommendations for improving data availability 
are critical for acquiring the reliable data necessary 
to establish, enhance, and verify both NMs grouping 
methodologies and computational approaches 
in general [28]. The EU-US Nanoinformatics 
Roadmap 2030 [35] emphasizes the need for ongoing 
developments in computational nanotoxicology 
to support these efforts. Incorporating data into a 
database is crucial for efficient reuse and retrieval of 
the data, allowing researchers to access and leverage 
existing datasets for new analyses without the need 
to repeat experiments. This not only saves time 
and resources but also enhances the reproducibility 
of scientific studies. Ensuring that data is FAIR 
promotes data sharing, transparency, and long-
term preservation of valuable scientific information, 
ultimately enhancing the overall quality and impact of 
research.

A significant outcome of our study is the successful 
extraction of FAIR HTS data from the caLIBRAte 
instance of eNanoMapper database, using the 
pynanomapper library. The retrieved FAIR HTS data 
have been combined with non-FAIR HTS data from 
the same experiment but for different endpoints. The 
HTS_METADATA template developed as part of 
the Template Wizard supports data annotation and 
harmonization in a reproducible manner, which is 
crucial for the FAIRification process.

After processing the resulting data is converted into 
the eNanoMapper FAIR data model and serialized in 
NeXus format. The main advantage of NeXus files is 
being machine readable, interoperable with existing 
HDF5/NeXus software and allow to package metadata 
and data of diverse experiments in the same file. These 
can be used for publishing in database-independent 
repositories like Zenodo, in electronic lab notebooks, 
as well as preparing an input format for data analysis.

ToxFAIRy currently supports only the pre-processing 
and scoring algorithms described. These approaches 
do not capture all relevant toxicity assessment 
methodologies. Future steps are to integrate additional 
methodologies, such as Benchmark Dose (BMD) 
modeling, as well as alternative scoring systems to 
support a tiered testing approach that incorporates 
physicochemical properties, ecotoxicology, and omics-
based assessments.

At present, ToxFAIRy expects data from a specific 
source HTS format. While the HTS_METADATA 
template improves consistency, it may not be 
applicable for all types of experiments. Rather than 

expanding format compatibility within ToxFAIRy 
itself, we build upon current community efforts 
and open tools like Template Wizard and Template 
Designer and ensure that data from various sources 
can be converted to NeXus format. To our knowledge, 
this is the first proposal and software to use NeXus 
format for biological assays. This approach maintains 
interoperability while adhering to FAIR principles.

Conclusions
We have developed an automated workflow for the 
FAIRification, preprocessing and scoring of high-
throughput screening data (HTS) FAIRification, 
implemented as a new Python module, ToxFAIRy, 
which is accessible at Github https:// github. com/ ideac 
onsult/ orang e3- toxfa iry. The ToxFAIRy module can 
be used independently or through an user friendly 
Orange3-ToxFAIRy add-on, enabling development 
of custom workflows within the Orange Data Mining 
platform. This integration supports visual programming 
for preprocessing and scoring, making the tools 
accessible to non-programmers.

With ToxFAIRy, the eNanoMapper FAIRification 
workflow can be applied to HTS data by converting 
the raw and processed data into the eNanoMapper 
semantic model, which has been previously 
demonstrated to enable integration of diverse 
nanosafety data in NanoSafety Data Interface [7], 
compliant with FAIR principles. Once HTS data is 
structured in the eNanoMapper model, ToxFAIRy 
offers the option to further convert it into NeXus 
format, a multidimensional file format that integrates 
raw and processed data, metadata, and hierarchical 
relationships into a single interoperable file.

Linking the processed data (scores) with the original 
raw data increases trust in the generated data and helps 
researchers work and analyze data more efficiently. The 
results of this work is a combination of methodologies 
for HTS data handling and newly developed software 
modules that can be further enhanced to include 
alternative scoring and ranking methods and more 
comprehensive modeling and data analysis. The ability 
to perform toxicity ranking supports implementation 
of safe and sustainable by design approaches by 
prioritizing materials with lower toxicity for inclusion 
in innovative processes.

In the context of the described challenges of data 
scarcity [28, 35], and high-throughput screening 
data [36, 37], and the development of computational 
nanotoxicology [35, 38, 39], the ToxFAIRy module 
contributes by harmonizing and annotating HTS 
data with a rich set of metadata, while minimizing 
manual efforts on all data analysis steps and providing 

https://github.com/ideaconsult/orange3-toxfairy
https://github.com/ideaconsult/orange3-toxfairy
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conversion to an interoperable semantic data model 
and format. The developed tools are applicable beyond 
nanomaterials and HTS data and could be particularly 
useful for data harmonization across multiple projects 
and organizations and addressing the challenges with 
existing data processing towards integrated FAIR data 
resources.

Methods
Materials and methods for the in vitro studies
Nanomaterials
The 28-material selection consisted of 12 nano-
components including paint additives, 8 porous and non-
porous silica nanomaterials of different sizes with and 
without copper doping, 4 nanomaterials used as ceramic 
tile surface coatings, 4 functionalized nanodiamonds and 
Carbon black as a nanomaterial control. Five chemical 
controls were included in all the experiments. To test 
the flexibility of the automated Tox5-score workflow, 2 
additional quantum dots were used from the HARMLESS 
project, with control materials:  TiO2,  BaSO4, ZnO 
from the PATROLS project. The treated dose could be 
recalculated as a μg/cm2 based on specific growth area 
and in  cm2/cm2 based on SBET. The final maximum assay 
concentrations are indicated in Table 2.

All materials from Table  2 were measured in the 
caLIBRAte project except quantum dots. Joint Research 
Centre (JRC) materials with JRC code are different 
batches of the same materials.

Cell models
The lung epithelial A549 cells were acquired from 
ECACC (86012804, LOT 17L047, passage + 92) and 
cultured in RPMI 1640 (11879020 Gibco) supplemented 
with 1% Penicillin–Streptomycin (15140-122 Gibco), 1% 
l-Glutamine (17-605E Gibco) and 10% FBS (10270-106, 
heat inactivated, Gibco), (500  ml RPMI + 5.5  ml Pen-
Strep + 5.5 ml l-Glutamine + 50 ml FBS).

Human bronchial epithelial BEAS-2B cells (Sigma-
Aldrich #95102433) were cultured without serum 
using LHC-9 bronchial epithelial cell growth medium 
(Thermo-Fisher Scientific/Gibco #12680013). The 
caLIBRAte screens were carried out ± 10% fetal bovine 
serum (Biowest S181B-500) and Harmless screens only 
with + serum, added to the LHC-9 medium.

Liver HepG2 cells were acquired from ECACC 
(85011430, LOT 17K028, passage 100) and cultured in 
DMEM (with 4.5  g/l d-Glucose, l-Glutamine, 41966-
029 Gibco) supplemented with FBS (10270-106, Gibco) 
and Penicillin/Streptomycin (15140-122, Gibco), (500 ml 
DMEM + 50 ml FBS + 5 ml Pen-Strep).

THP-1 Monocyte cells were acquired from ECACC 
(#88081201) and cultured in RPMI-1640 (11879020, 
GIBCO®, Paisley, UK) supplemented with 1% Penicil-
lin–Streptomycin (15140-122 Gibco), 1% l-Glutamine 
(17-605E Gibco) and 10% FBS (10270-106, Gibco), 
0.9% HEPES buffer, 0.9% Sodium pyruvate (500  ml 
RPMI + 5.5  ml Pen-Strep + 5.5  ml l-Glutamine + 50  ml 
FBS + 5 ml Hepes + 5 ml Sodium pyruvate). THP-1 cells 
were differentiated into Macrophages (dTHP-1) over 
48  h with 100  nM PMA without recovery phase before 
each screen.

The assays have been conducted using the BEAS-2B 
cell line, and quantum dots have been employed across all 
human cell types. The cells were cultured in 10 cm dishes 
(Thermo Scientific 130182) and the assays were carried 
out in 384-well plates (Greiner µ-clear plates with a 10 
 mm2 growth area per well, #781091 and Corning with a 
7.95  mm2 growth area per well, #3771 for quantum dots.) 
using cells under passage 20. The cells were passaged 
at ~ 80% confluence using Accutase cell detachment 
solution (Thermo-Fisher Scientific/Invitrogen # 00-4555-
56) at 1:2–1:6 ratio twice a week.

Nanomaterial dispersion and high throughput screening
The NANOGENOTOX SOP was used for dispersions. A 
calorimetric testing was carried out according to the SOP 
provided for Hielscher SP200-st sonicator and samples 
were sonicated for 9 min and 38 s at 20% amplitude using 
a 14 mm probe to yield 7056 Joules of acoustic energy to 
the samples. The materials were dispersed to yield 6–8 ml 
of 2.56  mg/ml solution. Following each dispersion, 
the samples were aliquoted to 2  ml tubes and stored at 
− 80 °C.

After the dispersions, the nanomaterials were thawed, 
thoroughly vortexed and pipetted as 12-concentration 
dilutions series with twofold concentration increase 
per step into assay master-plates (Eppendorf deep well 
384 plates #0030522.109), which were sealed and stored 
at − 80  °C before preparation of assay plates (Greiner 
µ-clear 384-well plates) for which 5 µl of the nanomaterial 
solution per well was pipetted from the master plates 
using Eppendorf epMotion 96 liquid handling station. 
The assay plates were heat-sealed and stored at − 20  °C 
before the screens. The time between dispersions and the 
screens was kept as short as possible.

On the screening day the cells were detached from 
culture plates using Accutase cell detachment solution, 
counted using a Nexcelom bioscience Cellometer mini 
cell counter and dispersed (1200  cells/well in 45  µl) to 
384-well assay plates containing the nanomaterials using 
a Multidrop 384 dispersion station (Thermo Scientific/
Titertek). The cells were exposed to the nanomaterial, 
together with a panel of class representative chemical 
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Table 2 Description of materials used in the assays

Material type Trade name (substance type) Final max assay BET surface  m2/g

ug/ml ug/cm2 cm2/cm2

Titanium(IV) oxide Tioxide TR81 256 128

Kaolin Halloysite 256 128

Nano diamond NanoDiamond Hydrogen P 256 128

Nano diamond NanoDiamond Molto 256 128

Nano diamond NanoDiamond VoxP 256 128

Dolomite Microdol 256 128

Talcum Finntalc M15 256 128

Calcined kaolin Ultrex 96 256 128

Calcium carbonate Socal® P2 Fine Grades 256 128

Calcined kaolin PoleStar™ 200P 256 128

Aluminosilicate OpTiMat® 2550 256 128

Expancel Expancel 461 WE 20 d36 256 128

Sodium-hexametaphosphate Sodium-hexametaphosphate PLV 256 128

2-hydroxyethyl cellulose Tylose HX 6000 YG4 256 128

2-hydroxyethyl cellulose Tylose HS 6000 YP2 256 128

Tetrapotassium diphosphate Tetrapotassium-pyrophosphate PLV 256 128

Silicone dioxide nanoparticle Porous Silica 300 nm-Me (NPO_1373) 256 128 10 598 828

Silicone dioxide nanoparticle Non-porous Silica 300 nm-Me (NPO_1373) 256 128 128 10

Silicone dioxide nanoparticle Porous Silica 100 nm-Me (NPO_1373) 256 128 10 803 844

Silicone dioxide nanoparticle Non-porous Silica 100 nm-Me (NPO_1373) 256 128 282 22

Silicone dioxide nanoparticle Porous Silica 300 nm-CuO-Me (NPO_1373) 256 128 11 034 862

Silicone dioxide nanoparticle Porous Silica 100 nm-CuO-Me (NPO_1373) 256 128 9 562 747

Silicone dioxide nanoparticle Non-porous Silica 300 nm-CuO-Me (NPO_1373) 256 128 115 9

Copper oxide nanoparticle CuO nanoparticles (NPO_1544) 256 128 960 75

A1 silver nanoparticles Silver, pH 2.65 256 128

A2 silver nanoparticles (less ions) Silver, pH 4.56 (less Ag-ions) 256 128

TiO2 TiO2, pH 1.01 256 128

TiO2/SiO2 TiO2/SiO2 (1:3 ratio), pH 1.73 s 256 128

Positive control Gemcitabine 1.3

Positive control 5-FluoroUracil 13.0

Positive control 4-Nitroquinoline 1-oxide 9.5

Positive control Mitomycin C (CHEBI_59999) 33.4

Positive control Daunorubicin 10.6

Carbon black Printex 90/nanomaterial control 256 128

Quantum dot PL-QD-CF ZnCuInS core/ZnS shell 256 161 397.97 247.16

Quantum dot PL-QD-OA ZnCdSeS
no shell

256 161 237.34 147.4

Positive control ZnO (NM-110) 256 161 17.92 14

Negative control BaSO4 (NM-220) 256 161 52.48 41

Positive control TiO2 (JRCNM01005a, NM-105) 256 161 59.11 46.175

Negative control BaSO4 (JRCNM50001a, NM220) 256 161 52.48 41

Negative control TiO2 (NM-105) 256 161 59.11 46.175
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controls, for 6, 24 and 72  h (4-Nitroquinoline 1-oxide 
[4NQO, Sigma-Aldrich 442683], Fluorouracil [5-FU, 
Sigma-Aldrich F6627], Daunorubicin [Sigma-Aldrich 
D8099], Gemcitabine [Sigma-Aldrich G6423], mitomycin 
C [MMC, Sigma-Aldrich Y0000378]. An additional 0-h 
time point was used in the CTG screens as a background 
control plate.

The quantum dots were dispersed as it was done in 
the caLIBAte project, except for 90  min to yield 68137 
Joules of acoustic energy to the samples due to poor 
dispersibility.

Cell viability measurement
For the cell viability measurement, the cells were lysed 
by adding 5  µl of the CellTiter-Glo (Promega, G7573) 
reagent to each well and the total ATP content was 
measured after 15 min using a Labrox plate reader.

DAPI, γH2AX, 8OHG and Caspase‑3 staining
The staining for γH2AX (Cell Signaling CS9718), 8OHG 
(Abcam ab62623), DAPI (Sigma-Aldrich 10236276001) 
and Caspase-3 (Cell Signaling CS9661) was carried 
out in 384-well plates in the following way: the cells 
were fixed at the given time points in 384-well plates 
by removing 1/2 of the medium and by adding 25 µl of 
1/5 diluted 37% formaldehyde (Sigma # 252549, 3.7% 
final) with Eppendorf EpMotion 96 for 15–30  min. The 
plates were aspirated empty, 50  µl PBS added and the 
plates stored sealed at + 4  °C before staining. To stain, 
the cells were permeabilized with 10  µl of 0.3% Triton-
PBS for 10–30 min, washed twice with PBS, 7 µl per well 
of primary antibody in 2% BSA-PBS was added (Anti-
rabbit µH2AX 1:600, Anti-mouse 8OHG 1:600, Anti-
rabbit Caspase-3 1:600), the plates spun down and kept 
overnight in dark at 4  °C. The next day the plates were 
washed twice with PBS, 7  µl of secondary antibody per 
well with DAPI (1:1000) added in 2% BSA-PBS, spun 
down and incubated in dark for 60  min [Donkey anti-
rabbit 568-Alexa 1:425 (A10042), Donkey anti-mouse 
647-Alexa 1:425 (A31571)]. The plates were then washed 
twice with PBS, left in PBS, sealed, and stored at 4  °C 
before imaging. The 8OHG antibody recognizes both 
RNA and DNA which are in the cytoplasm following 
oxidative stress. The 8OHG staining was almost 
exclusively cytoplasmic.

Image analysis
Automated microscopic analysis of cells was carried out 
with high-content imaging station ScanR (Olympus) 
equipped with inverted microscope IX81 and 
Hamamatsu ORCA-ER high sensitivity cooled CCD-
camera (Hamamatsu Photonics K. K.). Four images were 

acquired with 10× magnification using specific filter sets 
for DAPI, Alexa568 and Alexa647 (Invitrogen) labels. 
The software automatically removes the background 
image. Cells were first segmented based on DNA 
counterstaining (DAPI) by edge-finding algorithm and 
the average nuclear fluorescence intensities of DAPI 
and Alexa568 were measured (only nuclear γH2AX was 
measured). Average cytosolic fluorescence intensity was 
recorded from a predefined area outside of the nucleus 
(cytoplasmic and nuclear 8OHG and Caspase-3 was 
measured). Clustered cell populations with high or low 
fluorescent intensity of Alexa568 were gated from two-
dimensional scatter plots (Nuclear DAPI intensity vs. 
area). Nanomaterial induced artifacts were removed 
by circularity factor vs. elongation factor gating before 
the cell number (DAPI) assessment. The well median 
intensity values were extracted and values two standard 
deviations above the median of control values were 
counted as µH2AX, 8OHG and Caspase-3 staining 
positive.

The quantum dots HTS screens were carried out 
as eight-concentration dilutions series with threefold 
concentration increase per step. Thermo Scientific™ 
Abgene™ 96 deepwell plates (AB-0661) were used as 
master plates and 20 µl (5 µl of NM + 15 µl of serum free 
medium) of the NMs solution per well was pipetted from 
the master plates into the assay plates. On the day of the 
screening the cells (950 cells in 30  µl of medium = the 
same final cell density as in caLIBRAte) were added 
to 384-well assay plates containing the NMs. For the 
apoptosis assays, supernatants were drained from 
the wells using a 16-channel manifold, 10  µl of 50:50 
Caspase-Glo 3/7 (Promega, G8093)—PBS added to the 
wells and the signal measured after 45 min. To control for 
assay interference, an additional 0-h apoptosis time point 
was introduced and the background signal was measured 
by adding 20 µl of undiluted Caspase-Glo to the wells.

Materials and methods for used software and data formats
Toxicological prioritization index (ToxPi) software
The ToxPi [18] is an analytical framework that was 
developed to enable integration of multiple sources of 
evidence by transforming data into integrated, visual 
profiles. For each ToxPi material, a dimensionless index 
score ranging from 0 to 1 is calculated as a weighted 
combination of all data sources that represents a 
formalized, rational integration of information from 
different domains. ToxPi represents this integration 
visually as component slices of a unit circle, with each 
slice representing one piece of information. For each 
slice, the distance from the origin (center) is proportional 
to the normalized value of the data points for the 
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component comprising that slice, and the width (in 
radians) indicates the relative weight of that slice in the 
overall calculation of ToxPi.

Orange data mining software
The orange data mining system [40, 41] is an open-source 
visual programming tool for data analysis and mining, 
supporting macOS, Windows, and Linux. It has a user-
friendly drag-and-drop interface, allowing even non-
programmers to build data workflows by connecting 
widgets for tasks like data import, transformation, 
visualization and machine learning. Orange supports 
various data formats and offers pre-processing tools for 
cleaning and manipulating data. It includes a range of 
machine learning algorithms and visualization options 
for easy exploration. Users can create custom widgets in 
Python. We utilized the Orange interface to implement 
our Python module, and we developed custom widgets 
that are available as a new Orange add-on.

Data FAIRification and the importance of the semantic data 
model
The FAIR Principles for Scientific Data Management 
[6] aim to enhance the discoverability, accessibility, 
interoperability, and reusability of data. Emphasizing 
machine actionability, these domain-agnostic principles 
address the growing reliance on computational support 
in research. GO-FAIR [42] defines FAIRification as a 
transformative process that begins with data acquisition, 
analysis, and the definition of a semantic model. The 
subsequent steps include making data linkable, assigning 
a well-defined license, defining metadata, and deploying 
FAIR data for machine readability and linkage with other 
sources.

While terminology alignment is a common step, the 
most resource-intensive phase in the FAIRification 
process is defining the semantic model, or aligning the 
data to it. A semantic data model comprises objects 
representing aspects of reality and their relationships. 
Researchers routinely describe the primary data objects 
for experiment description in scientific literature as: 
materials, methods and results. Computer representation 
of the experimental system as domain data structure 
and enabling machine actionality require defining the 
data objects, as well as the relationships and constraints 
between them. In computer science, this is known as a 
data model, and serves as a blueprint for how data will 
be stored, accessed and manipulated. Conceptually, a 
data model is different from a data format, as one and the 
same data model can be stored in different formats.

The main objects in the eNanoMapper data model [7] 
are material(s), methods, the measurement processes 

(the specific assays utilized to generate the end-point 
data) and the experimental results.

NeXus data format
NeXus data format [43, 44] is a community designed 
format to accommodate complex and diverse datasets 
based on Hierarchical Data Format version 5 (HDF5), 
a widely used open scientific format optimized for 
sets of data matrices organized in a hierarchical 
structure. The “measurement process” entity from 
the eNanoMapper data model corresponds to the 
NeXus “NXEntry” object and includes all objects 
starting with “entry_”. NXEntry is the main container 
for experimental data, while NXProcess represents 
processed data. The results can be scalar values, array 
of values or multi-dimensional matrices (e.g. spectra, 
images, dose response).

NeXus files are structured with predefined classes like 
NXentry, NXdata, and NXsample, ensuring consistent 
data organization. NXdata groups hold experimental 
data, including scalar values or multi-dimensional 
arrays, along with associated metadata such as units, 
error information and axes. NeXus supports linking 
data fields to establish relationships between datasets.

NeXus format is appropriate for storing annotated 
datasets from multiple experimental techniques, 
hence the pynanomapper library https:// github. com/ 
ideac onsult/ pynan omapp er/ have been updated with 
the ability to convert the eNanoMapper data model 
into NeXus data format. The NeXus format enables to 
package multiple types of experiments into the same 
file. The processed data can be stored under NXProcess 
group instead of NXentry group. Derived values, e.g. 
normalization, mean, dose–response parameters and 
Tox5-scores, can be stored in separate datasets. Most 
of the eNanoMapper/AMBIT data model components 
(entities) have clear correspondence to NeXus data 
structures and vice versa.

Visualization of the NeXus format is enabled by 
ready-to-use open-source tools developed by the 
scientific community, namely H5Web [45] and NexPy 
[45], and online supplied tools (e.g. myHDF5 [46]).
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