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Abstract 

Representing molecules as graphs is a natural approach for capturing their structural information, with atoms 
depicted as nodes and bonds as edges. Although graph-based similarity calculation approaches, such as the graph 
edit distance, have been proposed for calculating molecular similarity, these approaches are nondeterministic 
polynomial (NP)-hard and thus computationally infeasible for routine use, unlike fingerprint-based methods. To 
address this limitation, we developed GESim, an ultrafast graph-based method for calculating molecular similarity 
on the basis of von Neumann graph entropy. GESim enables molecular similarity calculations by considering entire 
molecular graphs, and evaluations using two benchmarks for molecular similarity suggest that GESim has the ability 
to differentiate between highly similar molecules, even in cases where other methods fail to effectively distinguish 
their similarity. GESim is provided as an open-source package on GitHub at https://​github.​com/​LazyS​hion/​GESim.

Scientific Contribution 

We developed GESim, an ultrafast graph-based method for calculating molecular similarity on the basis of von 
Neumann graph entropy. We extended von Neumann graph entropy, a traditional graph-based measure of structural 
complexity, to perform efficient molecular similarity calculations without sacrificing its strong capability to distinguish 
structurally different molecules. While graph-based similarity calculation approaches are typically computationally 
demanding, GESim enables similarity calculations to be performed at a cost comparable to that of fingerprint-based 
approaches.

Introduction
Molecular similarity is a fundamental concept in 
chemoinformatics and medicinal chemistry and is 
widely used in applications ranging from database 
searches to virtual screening[1–5]. In database searches, 
molecular similarity often refers to structural similarity, 
retrieving structurally similar molecules, whereas 
in virtual screening, it often focuses on functional 
similarity, selecting structurally different molecules 
with similar biological activity. To quantify molecular 
similarity, molecular fingerprints are used as standard 
molecular representations, encoding structural 
features either as bits in a bit string or as counts in a 
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vector[6, 7], and are employed in conjunction with 
similarity and distance metrics, such as the Tanimoto 
index and cosine coefficient[8]. Two-dimensional 
(2D) fingerprints are commonly used for molecular 
similarity calculations because of their efficiency and 
simplicity[9–12]. The term “2D” in 2D fingerprints 
means that these fingerprints encode molecular 
structural features based on topological information, 
which describes the connectivity of atoms and bonds, 
without considering spatial information, such as atomic 
coordinates or molecular conformations. 2D fingerprints 
can be categorized as dictionary-based, topological- or 
path-based, circular-based, or pharmacophore-based 
fingerprints; notable examples include molecular 
access system keys (MACCS)[9], atom-pair fingerprints 
(APFP)[10], topological-torsion fingerprints (TTFP)
[11], extended-connectivity fingerprints (ECFP)[12], 
and feature-connectivity fingerprints (FCFP)[12], 
respectively. String representations, molecular graph 
representations, and three-dimensional (3D) molecular 
representations have also been utilized as other types of 
molecular representations[6, 13–15]. Although certain 
combinations of molecular representations and similarity 
metrics, such as ECFP combined with the Tanimoto 
index, perform better in various tasks related to 
molecular similarity, each combination excels in certain 
tasks and underperforms in others, indicating that no 
single combination is universally optimal[16, 17].

Methods for directly computing molecular similarity 
from molecular graphs, rather than through fingerprints 
or descriptors, have gained increasing attention in 
recent years[18–20], along with the advancements and 
promising performances of deep learning techniques 
utilizing graph representations[21–27]. The approach of 
treating a molecule as a graph, where atoms are nodes 
and bonds are edges, captures the intricate topological 
and overall structural features of molecules that are 
not fully considered by conventional methods, such as 
fingerprint-based methods. In chemoinformatics and 
medical chemistry, the graph edit distance (GED) has 
been proposed as a graph-based method for calculating 
molecular similarity. For example, GED-based similarity 
search has demonstrated promising performance in 
virtual screening tasks  [18]. Although GED is effective 
for evaluating molecular similarity, the calculation 
of GED is computationally demanding because it is 
performed in O(n3) time, where n is the number of atoms 
in a molecule. To address this computational challenge, 
filter-and-verification approaches have been developed 
for GED in recent years  [28–32]. However, as reported 
by Naoi et al. [33], the search efficiency of this approach 
is much less than that of fingerprint-based methods. 
More specifically, it has been reported that GED would 

be feasible for small molecules with around 16 heavy 
atoms. Thus, there is a strong need to find an effective 
graph-based similarity method that achieves efficient and 
accurate search performance simultaneously.

Given this situation, we propose GESim, an ultrafast 
graph-based method for calculating molecular 
similarity that is based on von Neumann graph entropy 
(vNGE). vNGE quantifies structural complexity of a 
graph by extracting spectral features from it, which 
represent connectivity among nodes  [34]. Owing to 
its effectiveness, vNGE has recently been used in many 
applications in graph structure analysis and pattern 
recognition, such as anomaly detection  [35], link 
analysis  [36], and others  [37, 38]. Although the exact 
computation of vNGE is computationally expensive, 
GESim achieves high efficiency by employing the one-
dimensional structural information  [39], defined as the 
Shannon entropy of the normalized degree sequence, 
which provides a good approximation of vNGE within 
a short computation time  [40]. Thus, GESim enables 
graph-based molecular similarity calculations at a 
computational speed comparable to that of fingerprint-
based methods, overcoming the impractically high 
computational cost that hinders the use of graph-based 
methods in applications such as database searches and 
virtual screening tasks. Additionally, by using vNGE, 
GESim enables molecular similarity calculations to be 
performed by considering entire molecular graphs. 
To evaluate the characteristics of GESim, a structural 
similarity benchmark[17] and a functional similarity 
benchmark were used[16, 41], and the results suggested 
that GESim has the ability to differentiate between 
highly similar molecules, even in cases where other 
methods fail to effectively distinguish their similarity. 
Additionally, GESim provides a visualization function 
for atom-pair matching in a molecule pair, improving 
user understanding of the GESim calculation results. The 
open-source GESim package is available on GitHub at 
https://​github.​com/​LazyS​hion/​GESim.

Methods
Overview of GESim
GESim measures the graph-based similarity between two 
molecules via vNGE  [34]. vNGE is a traditional graph-
based measure that quantifies the structural complexity 
of a graph by extracting the spectral features of the graph. 
Since the spectral features effectively represent connec-
tivity among nodes  [42], vNGE is a promising tool for 
understanding how a graph is structured. In summary, 
vNGE effectively distinguishes two graphs that are simi-
lar but somewhat different in structure.

GESim extends vNGE to measure the structural differ-
ences between two molecules. Figure 1 (a) illustrates the 
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whole process of GESim. As shown in the figure, GESim 
starts its calculation by converting input molecules 
into labeled graphs, G1 and G2 . Then, GESim quantifies 
their similarity on the basis of vNGE by using Quantum 
Jensen-Shannon (QJS) divergence [43], which is a method 
of measuring the similarity between two entropies (i.e., 
vNGEs of graphs.) QJS divergence requires three graphs 
to compute the similarity between G1 and G2  [40]. One 
is a merged graph Ĝ1,2 , which integrates G1 and G2 . The 
other two are the graphs Ĝ1 and Ĝ2 , which are projec-
tions of G1 and G2 onto Ĝ1,2 . To facilitate the computation 
of QJS divergence, GESim employs the following three 
steps, as shown in Fig. 1  (a): First, in the Graph Aligner 
module, GESim explores the largest common subgraph 
between G1 and G2 by computing atom-level matches on 
the basis of fingerprints and subgraph matches. In the 
Projection module, GESim generates Ĝ1,2 by merging G1 
and G2 on the basis of the common subgraph and pro-
jects G1 and G2 onto Ĝ1,2 to construct Ĝ1 and Ĝ2 , respec-
tively. Next, in the Similarity Calculator module, GESim 
calculates the vNGEs of Ĝ1,2 , Ĝ1 , and Ĝ2 and finally com-
pares them via QJS divergence to quantify the similarity 

between G1 and G2 . In the next subsection, we present 
detailed definitions of vNGE and QJS divergence, fol-
lowed by a concrete description of each step.

As previously noted, we have published the open-
source GESim package on GitHub, which provides 
RDKit-compatible Python functions, including 
similarity calculations and visualizations. Figure  1  (b) 
illustrates a specific use case of our package. Given 
molecules in a standard format such as SMILES or 
SDF, GESim receives Mol objects converted from the 
molecules via RDKit. For these inputs, m1 and m2 , 
GESim provides the following two basic functions: The 
first is gesim.graph_entropy_similarity(m1 , 
m2 ), which evaluates the similarity between molecules 
m1 and m2 on the basis of vNGE. This function returns 
a similarity value ranging between 0 and 1, with values 
closer to 1 indicating that m1 and m2 are structurally 
similar. The second is gesim.get_matched_
mapping_numbers(m1 , m2), which indicates the 
atom-pair matching between m1 and m2 extracted 
by the Graph Aligner module. As shown in Fig.  1  (a), 
the Graph Aligner module explores the largest 
common subgraph between m1 and m2 to facilitate 

Fig. 1  Overview of GESim. a GESim consists of three modules: Graph Aligner, Projection, and Similarity Calculator. The Graph Aligner module 
performs subgraph matching between two molecules: G1 and G2 ; the Projection module builds the merged graph Ĝ1,2 and obtains Ĝ1 and Ĝ2 
by projecting G1 and G2 onto Ĝ1,2 ; and the Similarity Calculator module calculates the QJS distance via Ĝ1 , Ĝ2 , and Ĝ1,2 . b The figure shows 
the workflow of the Python program for calculating molecular similarity and visualizing subgraph matching via GESim
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QJS divergence. This function enables users to see 
the internal behavior of GESim during a similarity 
calculation, which can help them better understand 
the results. More specifically, this function reveals 
how GESim regards the two molecules as structurally 
similar.

Molecular similarity calculation in GESim
GESim calculates the structural similarity between 
two molecules via QJS divergence, which compares 
the vNGEs of the molecules. In this section, we first 
introduce the basic notation and definitions used in 
GESim, followed by a step-by-step description of the 
similarity calculation process of GESim.

Basic notation and definitions
A molecule is modeled as a labeled graph G = (V ,E, ℓ) , 
where a node set V and an edge set E correspond to 
atoms and chemical bonds, respectively. ℓ is a label 
function that maps nodes and edges to corresponding 
chemical elements and bond types, respectively. In this 
study, ℓ is based on an atom code function used in the 
atom-pair fingerprints (APFP)[10], and bond types are 
obtained via RDKit[44]. For simplicity, we omit this 
label function ℓ , and we denote n = |V | and m = |E| if 
their meanings are clear from the context. A ∈ R

n×n 
represents the adjacency matrix of G, where Aij = 1 if 
an edge (vi, vj) ∈ E ; otherwise, Aij = 0 . We define the 
degree of vi ∈ V  in G as di =

∑n
j=1 Aij . Additionally, we 

introduce the Laplacian matrix of G as L = D − A , where 
D is a diagonal matrix such that D = diag(d1, d2, . . . , dn).

vNGE  [34] is a spectral-based entropy measure that 
distinguishes the complexity of the structures of different 
graphs. For a given graph G and its Laplacian matrix L, 
the vNGE of G is the Shannon entropy of the rescaled 
spectrum derived from L. Formally, vNGE is given by the 
following definition:

Definition 1  (von Neumann Graph Entropy (vNGE)) 
Given a graph G = (V ,E) and its Laplacian matrix L, the 
vNGE of G, denoted as Hvn(G) , is defined as

where �1 ≥ �2 ≥ . . . ,≥ �n = 0 are the eigenvalues of L 
and vol(G) =

∑n
i=1 �i.

On the basis of the spectra of the Laplacian matrix, 
vNGE effectively distinguishes different graph structures 
since the spectra are well-known to contain rich 
information about the inherent structural complexity of 

(1)Hvn(G) =

{

−
∑

n

i=1
�i

vol(G)
log2

(

�i
vol(G)

)

(vol(G) > 0),

0 (otherwise),

graphs, such as the connectivity and degree distribution 
of nodes. For example, vNGE is maximal if G is a 
complete graph, whereas it is minimal for G composed of 
only a single edge. If G forms a ring graph, vNGE yields 
intermediate scores between a complete graph and a 
single edge.

However, despite the strong capability to measure 
the structural complexity of graphs, vNGE has high 
computational costs, since computing the Laplacian 
spectra incurs O(n3) time. To reduce this computational 
overhead, GESim employs one-dimensional structural 
information (SI)  [39], denoted by H1(G) for a graph 
G, instead of using Definition  1 directly. As reported 
by Liu  et al.  [40], SI effectively approximates vNGE by 
replacing the spectra of L in Definition 1 with the degrees 
of nodes. Specifically, SI is defined as follows:

Definition 2  (One-dimensional structural information 
(SI)) Given a graph G, the SI of G, denoted as H1(G) , is 
defined as

where vol(G) =
∑n

i=1 di.

Since the Laplacian spectra and degree are closely 
related in a graph G, the approximation error between 
SI and vNGE is tightly bounded in any unweighted 
graph [40]. Unlike the spectrum of the Laplacian matrix 
in Definition 1, the degree can be obtained in O(1) time. 
Specifically, Liu  et al. reported that SI can compute the 
entropy at least two orders of magnitude faster than 
vNGE implemented using BLAS or LAPACK, even 
though it has almost no approximation error [40]. Hence, 
SI efficiently quantifies the structural complexity of a 
graph without sacrificing the strong graph discrimination 
capability of vNGE.

Similarity calculation process in GESim
Here, we present the similarity calculation process shown 
in Fig. 1 (a). On the basis of Definition 2, GESim measures 
the similarity between two molecules. As previously 
noted, GESim takes two graph-represented molecules, G1 
and G2 , as inputs; GESim then calculates their similarity 
via QJS divergence [43], which is a method of measuring 
the similarity between two entropies. In more detail, 
GESim calculates the similarity in the following three 
steps.

(Step 1) Finding the largest subgraph matching: To 
determine the QJS divergence between G1 and G2 , in 
the Graph Aligner module, GESim extracts the largest 
subgraph matching between the two graphs: the nodes 

(2)H1(G) =

{

−
∑

n

i=1
di

vol(G)
log2

(

di
vol(G)

)

(vol(G) > 0),

0 (otherwise),
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that are common between them. Traditionally, the 
maximum common structure (MCS) [45] approach is a 
natural choice for this purpose. However, this approach 
cannot be used to compute the similarity efficiently 
because MCS has intractable computational complexity. 
For this reason, GESim uses an approximate approach 
based on an atom fingerprint to extract the subgraph 
matching between two graphs. Specifically, GESim 
outputs the subgraph matching between two graphs by 
extracting all possible matching nodes as follows:

First, GESim calculates an individual atom fingerprint 
for every node in G1 and G2 . Given a specific node v 
and a user-specified parameter r, the atom fingerprint 
fv is defined as a 1024-bit vector in which a set of 
unique edge paths rooted at the node has been hashed. 
To elaborate, GESim first enumerates unique paths 
of length 0 (node label) to r rooted at the node in the 
graph. Subsequently, GESim clusters these paths into 
sets of paths of identical length and hashes each of them 
into a bit. As a result, r + 1 bits are placed throughout 
fv . Unless otherwise stated, GESim employs the above 
atom fingerprint with r = 4 as a default setting, but 
other types of atom fingerprints can be applied to 
GESim. For convenience, we denote the bit count of the 
result of a logical AND operation between two atom 
fingerprints, fvi and fvj , as |fvi ∩ fvj |.

Next, GESim extracts all node matches between 
G1 and G2 via the atom fingerprint according to the 
definition below.

Definition 3  (Node matching) Let u ∈ N be a user-
specified parameter, and let V 2 be a subset of nodes in V2 
that have not been matched with any node in V1 . Given 
two graphs G1(V1,E1) and G2(V2,E2) , vi ∈ V1 is a match 
with vj ∈ V2 if and only if vj = arg maxv∈�(vi ,V 2)

|fvi ∩ fv| , 
where �(vi,V 2) = {v ∈ V 2 | |fvi ∩ fv| ≥ r − u} . If vi 
matches vj , this node match is denoted as vi ↔ vj.

Definition 3 indicates that node vi in G1 matches node 
vj in G2 if fvi and fvj satisfy the following two conditions: 
(1) |fvi ∩ fvj | is greater than or equal to r − u , and (2) fvi 
and fvj have the largest |fvi ∩ fvj | in V 2 . Note that the 
node matching is symmetric; that is, if vi ↔ vj , then 
vj ↔ vi holds as well. As shown in Fig. 1 (b), this node 
matching result can be visualized via a GESim function, 
gesim.get_matched_mapping_numbers(m1,m2).

(Step 2) Generating merged and projected graphs: 
In this step, GESim performs the projection to gener-
ate three special graphs on the basis of the subgraph 
matching obtained in Step 1. As mentioned above, QJS 
divergence requires three input graphs to compare the 
vNGEs of the two given graphs, G1 and G2 . The first is 
a merged graph Ĝ1,2 obtained by integrating G1 and G2 

into a single graph. The other two are graphs Ĝ1 and Ĝ2 , 
which are projections of G1 and G2 onto Ĝ1,2 . Specifi-
cally, the merged graph Ĝ1,2 of G1 and G2 is obtained as 
follows:

Definition 4  (Merged graph) Given two graphs 
G1(V1,E1) and G2(V2,E2) , the merged graph of G1 and 
G2 is defined as Ĝ1,2(V̂ , Ê) , where V̂ = V1 ∪ V2 and 
Ê = E1 ∪ E2 . In the merged graph Ĝ , vi ∈ V1 has an 
updated degree d̂i , which is defined as

In the merged graph Ĝ , the degree of vj ∈ V2 , denoted by 
d̂j , is also updated as

Note that the degrees given by Equations (3) and (4) 
are theoretical values used to compute the QJS 
divergence. Thus, they do not necessarily correspond to 
the number of edges present in the merged graph.

From Definition 4, the projected graphs Ĝ1 and Ĝ2 are 
derived as Ĝ1(V̂ ,E1 ∩ Ê) and Ĝ2(V̂ ,E2 ∩ Ê) , respectively. 
In the projected graph Ĝ1 , the nodes from G1 have the 
same degree as they had in G1 , and the same is also true 
for Ĝ2 and G2.

(Step  3) Computing the QJS divergence between 
G1 and  G2 : In this step, GESim computes the QJS 
divergence in the Similarity Calculator module, and it 
outputs a similarity between G1 and G2 . By using the 
merged and projected graphs obtained in Step  2, the 
QJS divergence is derived as follows:

Definition 5  (Quantum Jensen-Shannon (QJS) diver-
gence) Given graphs G1 and G2 , their QJS divergence 
DQJS(Ĝ1,2, Ĝ1, Ĝ2) is computed by

QJS divergence takes a value between 0 and 1. 
Definition  5 indicates that QJS divergence measures 
how much the entropy increases by merging the two 
graphs G1 and G2 into a single graph Ĝ1,2 . If G1 and G2 
are isomorphic, Ĝ1,2 is also isomorphic to G1 and G2 
from Definition 4, meaning that their QJS divergence is 
0. In contrast, their QJS divergence is 1 if G1 and G2 are 
completely different, i.e., if the graphs have no common 
subgraphs.

(3)d̂i =

{

di+dj
2 (∃vj ∈ V2 s.t. vi ↔ vj),

di (otherwise).

(4)d̂j =

{

dj+di
2 (∃vi ∈ V1 s.t. vj ↔ vi),

dj (otherwise).

(5)DQJS(Ĝ1,2, Ĝ1, Ĝ2) = H1(Ĝ1,2)−
H1(Ĝ1)+H1(Ĝ2)

2
.
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Finally, as shown in Fig.  1  (a), GESim outputs the 
similarity between G1 and G2 on the basis of the QJS 
divergence. Specifically, the similarity is computed by 
subtracting the QJS divergence from 1. That is, GESim 
outputs a similarity close to 1 for similar compounds.

Evaluation on two benchmarks for similarity measures
To evaluate the characteristics of GESim as a molecular 
similarity measure, two benchmark datasets were 
used: one based on structural similarity and the other 
on functional similarity.[16, 17, 41] Five fingerprints 
were evaluated for comparison: ECFP[12], FCFP[12], 
APFP[10], TTFP[11], and MACCS[9]. A diameter of 
four and a fixed length of 2048 bits were applied for 
ECFP and FCFP. The Tanimoto coefficient[8] was used to 
measure the molecular similarity of the five fingerprints. 
All fingerprints were calculated via RDKit 2023.9.1[44]. 
The Python scripts needed to reproduce the benchmark 
results are available at https://​github.​com/​ycu-​iil/​gesim_​
exper​iment.

Structural similarity benchmark
The structural similarity benchmark consists of single-
assay and multi-assay datasets, which test the ability 
of similarity measures to rank very close analogs and 
diverse molecular structures, respectively[17]. The two 
datasets were created on the basis of the assumption that 
molecules with similar properties are structurally similar, 
which is related to the similar property principle[46]. 
In the datasets, a property refers to a biological activity 
against a target protein. The single-assay and multi-assay 
datasets contained 1000 repetitions of 4563 and 3629 
series, respectively. A series consists of five molecules, 
with the most active one set as the reference and the 
others arranged in descending order of activity. Using 
the ChEMBL 20 database[5], a series of single-assay and 
multi-assay datasets were extracted from one and four 
medicinal chemistry papers, respectively. The Spearman’s 
rank correlation coefficient was used to compare the 
ranking performances of the six similarity measures. 
Detailed descriptions of the method of preparing the 
benchmark can be found in the original paper[17].

Functional similarity benchmark
The benchmark for ligand-based virtual screening[16, 
41] consists of 118 target lists of actives and decoys from 
three databases: 21 targets from the directory of useful 
decoys (DUD)[47], 17 from the maximum unbiased 
validation (MUV)[48], and 80 from ChEMBL[49]. The 
target lists of DUD, MUV, and ChEMBL contained 
31–365 actives and 1,344–15,560 decoys; 30 actives 
and 15,000 decoys; and 100 actives and 10,000 decoys, 
respectively. Virtual screening experiments were 

performed with 50 repetitions, each using five randomly 
sampled query actives. In the experiments, the remaining 
actives and decoys were ranked by their maximum 
similarity to the query actives, a method known as MAX 
fusion[50]. In this study, performance was evaluated 
via Boltzmann-enhanced discrimination of the receiver 
operating characteristic (BEDROC), the enrichment 
factor (EF), and the area under the curve (AUC), which 
are recommended methods for evaluating virtual 
screening performance[16]. Following the previous study, 
BEDROC at α = 20 and 100,  and EF at 1% and 5% were 
used. Detailed descriptions for preparing the benchmark 
can be found in the original paper[16].

Calculation time comparison
To demonstrate that GESim can compute molecular 
similarity on a practical timescale, its computation speed 
was compared with those of ECFP, a representative 
fingerprint-based method, and GED, a graph-based 
method. The implementation of the vanilla GED was 
based on a script provided by Jensen on GitHub Gist[51], 
which utilizes RDKit and NetworkX. A dataset of 1,000 
molecules was obtained from the ZINC database to 
measure the computation time. The first molecule was 
used as the reference molecule, and the computation time 
for similarity calculations against the 1,000 molecules, 
including the reference molecule, was measured. The 
measurement was repeated ten times; the timeout for a 
single similarity calculation was set to 0.1 s as a threshold 
for the practical computation time; and the mean and 
standard deviation were calculated to compare the 
three methods. Since the GED implementation does not 
support bulk similarity calculations, RDKit and GESim 
were evaluated under the same conditions by computing 
the similarity values for each molecule individually, 
without using their bulk calculation functionalities, to 
ensure a fair assessment. As for the ECFP evaluation, 
similarity calculations using pre-computed ECFP 
fingerprints were also performed in the experiment. A 
Python script for reproducing the comparison is available 
at https://​github.​com/​ycu-​iil/​gesim_​exper​iment.

Results and discussion
Evaluation on structural similarity benchmark
To assess the ability of GESim to order molecules by 
structural similarity, two benchmark datasets, single-
assay and multi-assay benchmarks, were used[17]. Fig-
ure 2a and 2b shows the performance of GESim and five 
representative molecular similarity measures in repro-
ducing the benchmark series orders for single-assay 
(4,563 series) and multi-assay (3,629 series) benchmarks 
in 1,000 different repetitions. The Spearman’s rank cor-
relation coefficients from each repetition were grouped 

https://github.com/ycu-iil/gesim_experiment
https://github.com/ycu-iil/gesim_experiment
https://github.com/ycu-iil/gesim_experiment
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into bins with a width of 0.2, and the distributions within 
each bin were visualized using a boxen plot to facilitate 
the comparison of performance across the six measures.

As reported in a previous study[17], APFP showed 
the best performance on the single-assay benchmark 
and reproduced or almost reproduced an average of 626 
original series orders with a coefficient of 0.8 or higher 
in this evaluation. GESim demonstrated comparable 

performance to that of APFP, reproducing or almost 
reproducing an average of 618 original series orders. On 
the other hand, ECFP achieved the best performance 
on the multi-assay benchmark and reproduced or 
almost reproduced an average of 1,061 original series 
orders with a coefficient of 0.8 or higher, as reported in 
a previous study[17]. GESim demonstrated intermediate 
performance among the six measures, reproducing and 

Fig. 2  Performance of six molecular similarity measures on two structural similarity benchmarks: (a) single-assay and (b) multi-assay benchmarks, 
each with 1,000 different repetitions. The Spearman’s rank correlation coefficient ( ρ ) was calculated to assess the ability to reproduce 
the benchmark series orders. The correlation coefficients were grouped into bins with a width of 0.2, and the distributions within each bin 
were visualized using a boxen plot to facilitate the comparison of performance across the measures. c A boxen plot visualizes the comparison 
between GESim best and others in terms of molecular similarity within each series (absolute �similarity). GESim best refers to the 38,624 
series (out of 826,740 unique series in the single-assay benchmark) where GESim achieved the highest Spearman’s rank correlation coefficient, 
while others include the remaining series. Absolute �similarity represents the similarity within a series, calculated as the absolute difference 
between the similarity of the reference molecule to the first and last molecules in a series. To facilitate comparison, 5% of the data are excluded 
as outliers in the boxen plot (c). An example series from GESim best is shown with the corresponding Spearman’s rank correlation coefficients ( ρ ) 
for each method displayed underneath (lower right panel). GESim, ECFP, FCFP, APFP, MACCS, and TTFP are shown in blue, orange, green, red, purple, 
and brown, respectively
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almost reproducing an average of 1,018 original series 
orders. Its performance surpassed that of APFP, which 
obtained 974 original series orders. These results suggest 
that GESim has intermediate characteristics between 
those of APFP and ECFP. Additionally, we compared the 
two groups, series where GESim performed best (GESim 
Best) and those where it did not (Others), in terms of 
the similarity between molecules within each series, as 
shown in Fig.  2c (left panel). To quantify this, absolute 
�similarity was defined as a similarity within a series by 
calculating the absolute difference between the similarity 
of the reference molecule to the first and last molecules 
in a series. The result indicates that series where GESim 
exhibited the highest ranking performance tend to have 
lower absolute �similarity compared to the other series. 
This suggests that GESim has the ability to differentiate 
between highly similar molecules, even in cases where 
other methods fail to effectively distinguish their 
similarity. To illustrate the characteristics of GESim best 
series, an example series from GESim best is shown in 
Fig. 2c (right panel), with the corresponding Spearman’s 
rank correlation coefficients ( ρ ) for each method 
displayed underneath. Complete information on all series 
included in GESim best is provided as a CSV file in the 
Supplementary file.

To visually confirm how GESim identifies atom-pair 
matches and nonmatches between the reference mol-
ecule and those of a series of four molecules during the 
similarity calculation, subgraph matching visualizations 
(described for the Graph Aligner module in Fig. 1) were 
performed and are shown in Fig. 3.

In the top series in Fig. 3, the second to fourth molecules 
have the same atom-pair matching with the reference 
molecule, but their similarity values with respect to the 
reference molecule differ, successfully reproducing the 
order of the original series. This ability to reflect such 
subtle differences in similarity values can be attributed 
to the vNGE algorithm, which considers the degrees 
of the atoms in a molecule. As previously noted, vNGE 
sensitively captures differences in the inherent structural 
complexity of graphs, especially the degree distributions 
of nodes; if a molecule has a degree distribution close to 
that of the reference molecule, GESim tends to consider 
it more similar than other molecules. This is why GESim 
can distinguish two molecules even if they have the same 
atom-pair matching. For example, in series 1 of Fig.  3, 
molecules m2, m3, and m4 share an identical matched 
subgraph. However, GESim considers differences in 
the degree distributions of these molecules, leading to 
distinct similarity scores. In contrast, when both the 
matched subgraph and degree distribution are identical, 
the similarity scores are identical, as observed for m3 and 
m4 in series 3 of Fig. 3.

Additionally, the visualizations provide insights into 
potential improvements to the GESim algorithm, such 
as subgraph matching. By examining the matched atom 
pairs in the five series, some cases can be observed in 
which atoms that are intuitively expected to match are 
instead identified as nonmatches. This may be because 
the Graph Aligner module uses atom-fingerprint-
based subgraph matching. However, we believe that 
this problem can be solved by using other methods or 
by combining several methods to achieve subgraph 
matching that is closer to expert-level intuition. Figure S3 
illustrates that while MCS-based subgraph matching (as 
implemented in RDKit with default settings) provides 
more intuitive matching results, GESim utilizing our 
subgraph matching approach achieves better ranking 
performance across the five evaluated series. Additionally, 
GESim with MCS-based subgraph matching significantly 
increases computational time, making it up to 58,000 
times slower than the current GESim implementation, as 
shown in Supplementary Fig. S4. Given its computational 
efficiency, our subgraph matching approach could be 
applied to tasks such as similarity search, hierarchical 
clustering, and molecule alignment, where MCS is 
commonly used but not always required for identifying 
the maximum common substructure. Considering user 
convenience, integrating MCS algorithms implemented 
in RDKit into GESim could provide greater flexibility in 
adjusting subgraph matching conditions for specific use 
cases, potentially improving alignment with chemical 
intuition and making it a valuable direction for future 
development. In addition, it is possible to improve the 
quality of subgraph matching by using node embedding 
methods such as CONE  [52], albeit at the cost of some 
additional computation time.

Evaluation on Functional Similarity Benchmark
The average performance of GESim on the ligand-based 
virtual screening benchmark, which focuses on func-
tional similarity, created by Landrum and Riniker[16] 
was tested in comparison with those of the five molecular 
similarity measures, as shown in Fig. 4.

To facilitate the comparison, the performance dif-
ferences between each of the five similarity measures 
(GESim, ECFP, FCFP, APFP, and TTFP) and MACCS, 
which was used as a baseline in the previous study[16], 
were visualized using a heatmap. A visual inspection 
shows that the five methods displayed roughly similar 
performance, each showing certain advantages depend-
ing on the target, and GESim outperformed the other 
methods for certain targets (MUV 466, ChEMBL 10475, 
and ChEMBL 11265). With respect to AUC performance, 
GESim did not demonstrate outstanding performance for 
any particular target and yielded average results overall. 
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The plot of BEDROC(α = 100 ) is provided in Fig.  S1; 
the plots of EF(1%) and EF(5%) are not depicted because 
the maximum EF values vary for each target, and com-
parisons between targets are difficult. As observed in the 
heatmaps, GESim generally exhibits lower performance 
on the MUV dataset compared to the other methods, 

as indicated by the prevalence of black and blue regions. 
This is consistent with the fact that the MUV dataset 
was constructed by removing trivial structural ana-
logues from the dataset, which naturally disadvantages 
graph-based similarity measures like GESim. To further 
examine these results, we analyzed the average rank 

Fig. 3  Visualization of atom-pair matching performed by the Graph Aligner module. The red-highlighted atoms within each molecule represent 
those that match atoms in the reference molecule. Five molecules in a series from the structural similarity benchmark are positioned horizontally, 
where the first molecule serves as the reference and the next four are ordered on the basis of their similarity to this reference. The values labeled 
“G” and “E” below each molecule denote the similarity scores calculated by GESim and the Tanimoto similarity using ECFP, respectively, in relation 
to the reference molecule. The rankings in descending order based on these scores are also indicated, along with Spearman’s rank correlation 
coefficient ( ρ ) computed from these rankings
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performance for each evaluation metric and the highest 
performance count across 118 targets for each metric, as 
illustrated in Fig. 5.

Consistent with the previous study, FCFP and TTFP 
performed well, whereas MACCS had the lowest per-
formance. For both the average rank performance and 
the number of top-performing results, GESim consist-
ently ranked in the middle for all the evaluation met-
rics, indicating that GESim did not exhibit outstanding 
performance on this virtual screening benchmark. The 
bar plots of BEDROC(α = 20 ), EF(1%), and EF(5%) are 
shown in Fig. S2. Regarding ECFP and APFP, ECFP out-
performed its counterparts according to BEDROC(20), 
whereas APFP outperformed the other methods in 
terms of AUC. Since GESim’s performance is between 
those of these two methods, as is also indicated by the 
structural similarity benchmark, these findings imply 

that GESim may possess characteristics intermediate 
between those of APFP and ECFP.

Calculation time comparison
The average computation times for calculating 1,000 
molecular similarities via three methods—GESim, ECFP, 
and GED—are shown in Fig.  6. GESim computes the 
1,000 molecule similarities in a mean time of 1.098 s, 
which is approximately 10 times slower than the similar-
ity computation using on-the-fly computed ECFP (0.116 
s) and about 550 times slower than using pre-computed 
ECFP (0.002 s). Conversely, GED required 0.1  s—the 
threshold time set for each calculation—for almost all 
similarity calculations; thus, there is no guarantee that 
the optimal GED values were obtained.

These results, along with the fact that GESim 
completed the two benchmark computations as well as 
did the other methods, indicate that GESim can be used 

Fig. 4  Average performance of six molecular similarity measures with (a) BEDROC(α = 20 ) and (b) AUC on the ligand-based virtual screening 
benchmark. The performance differences ( �BEDROC(20) and �AUC values) between MACCS and each of the five similarity measures (GESim, ECFP, 
FCFP, APFP, and TTFP) were visualized using a heatmap. Red indicates better performance compared with the MACCS, while blue indicates worse 
performance. The plot of BEDROC(α = 100 ) is provided in Fig. S1. The raw values used in the plots are available as CSV files in the Supporting 
Information
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in practical cases as a graph-based molecular similarity 
calculation method. Note that the observed computation 
times may be significantly affected by the processing 
speeds of the programming languages used rather than 
by the inherent differences in the algorithms themselves. 
The algorithms of GESim and ECFP were implemented 
in C++, whereas that of GED was implemented in 
Python. Although GED with extended reduced graphs 
as a molecular representation, as reported in a previous 
study[18], would be appropriate for practical application, 
this implementation is not publicly available.

Conclusion
In this study, we introduced GESim, an ultrafast graph-
based method for calculating molecular similarity, and 
demonstrated its applicability in structural and func-
tional similarity assessments, where fingerprint-based 
methods have traditionally been employed. By using 
vNGE, GESim enables graph-based molecular similar-
ity calculations at a computational speed comparable to 
those of fingerprint-based methods and considers entire 

Fig. 5  Statistical analysis of the ligand-based virtual screening benchmark. a Average rank performance of six molecular similarity measures 
across 118 targets. GESim, ECFP, FCFP, APFP, MACCS, and TTFP are shown in blue, orange, green, red, purple, and brown, respectively. b The 
highest BEDROC(α = 20 ) count and c the highest AUC count across 118 targets are shown as bar plots. The bar plots of BEDROC(α = 20 ), EF(1%), 
and EF(5%) are shown in Fig. S2

Fig. 6  Calculation time comparison between GESim, ECFP 
with Tanimoto similarity, and GED. As for ECFP, the times of similarity 
computations using on-the-fly computed and pre-computed 
ECFP are included. The bar plots show the mean computation 
time with the standard deviation for each method across 10 trials. 
The vertical axis represents the logarithm of the total computation 
time in milliseconds. The dotted line represents the logarithm 
of the timeout limit
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molecular graphs. From the two benchmark results, 
GESim appears to have characteristics intermediate 
between those of APFP and ECFP and to have the ability 
to differentiate between highly similar molecules, even in 
cases where other methods fail to effectively distinguish 
their similarity. On the basis of these findings, GESim 
may pave the way for graph-based similarity calculation 
methods in tasks, such as virtual screenings and database 
searches.
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