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Abstract 

The electron density is an important object in quantum chemistry that is crucial for many downstream tasks in drug 
design. Recent deep learning approaches predict the electron density around a molecule from atom types and atom 
positions. Most of these methods use the plane wave (PW) numerical method as a source of ground-truth training 
data. However, the drug design field mostly uses the Linear Combination of Atomic Orbitals (LCAO) for computation 
of quantum properties. In this study, we focus on prediction of the electron density for drug-like substances and train-
ing neural networks with LCAO-based datasets. Our experiments show that proper handling of large amplitudes 
of core orbitals is crucial for training on LCAO-based data. We propose to store the electron density with the stand-
ard grids instead of the uniform grid. This allowed us to reduce the number of probing points per molecule by 43 
times and reduce storage space requirements by 8 times. Finally, we propose a novel architecture based on the Deep-
DFT model that we name LAGNet. It is specifically designed and tuned for drug-like substances and ∇2DFT dataset.

Scientific contribution We propose a core suppression model to correctly handle core orbitals and train neural 
network on LCAO-based data with atoms of the 3rd and 4th periods. We show that using the standard grid instead 
of the uniform grid drastically reduces the number of electron density probing points and data storage requirements. 
Finally, we propose the LAGNet model that allows to get better results on drug-like substances than the equivariant 
DeepDFT model.
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Graphical abstract

Introduction
The electron density is a fundamental quantity in 
quantum chemistry, as it uniquely determines the 
ground-state of a quantum system and directly enters the 
expression for total energy in density functional theory 
(DFT) [1]. Beyond its theoretical importance, electron 
density is used for many computational analysis in drug 
design.

The electron density enables visualization of molecules 
and computation of molecular descriptors. For example, 
molecular electrostatic potentials (MEPs) derived from 
electron density reveal charge distribution and identify 
key interaction sites for hydrogen and halogen bonding, 
chemical reactivity, binding affinity, and other biophysical 
properties [2–4]. Additionally, quantum theory of atoms 
in molecules (QTAIM)  [5–7] allows researchers to 
characterize and quantify intermolecular interactions in a 
drug-target complex at the electron density level [7]. The 
magnitude of electron density at these intermolecular 
bond critical points correlates with interaction strength 
and overall binding affinity  [8]. The descriptors derived 
are suitable for improving the robustness of quantitative 
structure-activity relationship (QSAR) models  [5, 7]. 
The study [9] directly shows that partial atom charges 
(i.e. Bader’s partial charges) can be computed from the 
electron density predicted with a neural network without 
relying on traditional numerical methods. Moreover, the 
electron density can serve as an input for other machine 
learning methods. Computed electron density has been 
used as input data for models that predict protein-ligand 
binding affinity [8], host-guest interactions [10], virtual 
screening results [11], and molecular classification [12].

Recent studies have applied machine learning to 
predict electron density directly from molecular 
conformations [13–30] using machine learning and deep 
learning approaches. However, most of these studies 
use the QM9 dataset, and the ground truth data from 
plane-wave (PW) calculations with pseudopotentials. 

Moreover, such studies typically utilize uniform grids to 
represent the electron density in a discrete form.

QM9 [31] is a popular benchmark for machine learning 
in computational chemistry. However, the molecules in 
QM9 dataset are relatively small and only contain up to 
9 heavy atoms. Consequently, this dataset does not cover 
a major part of the drug-like chemical space. Larger and 
more diverse datasets, such as ∇2DFT [32], QMugs [33], 
SPICE [34], Frag20 [35], and OrbNet Denali [36], have 
recently emerged.

Deep learning approaches to electron density 
prediction use outputs of quantum chemistry software 
as ground-truth data for training. There are two main 
branches of numerical methods for computation. The 
plane-wave (PW) method decomposes the quantum 
system into plane waves. In practical applications, the 
PW methods use pseudopotentials that replace core 
electron orbitals with their approximations. The following 
software systems are PW-based: VASP [37], Quantum 
Espresso [38], GPAW [39], and cp2k [40]. Most deep 
learning approaches use PW-based data as the ground 
truth: [17–27, 41, 42]. We describe possible reasons to 
prefer PW-based methods in previous studies in the 
related work section  4. The other branch of numerical 
methods uses a local combination of atomic orbitals 
(LCAO). LCAO decomposes the quantum system into 
combinations of Gaussians and spherical harmonics. 
Unlike the PW-based method, the LCAO method usually 
takes into account all electron orbitals. This method is 
implemented in psi4 [43], pyscf [44], Turbomole [45], 
Gaussian [46], and other software packages.

The electron density is usually represented as a set 
of points in the 3D space with electron density values. 
The most common representation utilizes a uniform 
grid over a rectangular volume, that encompasses the 
molecule. Using such representation is mandatory for 
approaches that use convolutional neural networks [21, 
22] and Fourier neural operators [23, 24]. Moreover, 
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the PW-based method requires the uniform grid to 
efficiently compute electron density values  [47]. How-
ever, the uniform grid is not an optimal discrete rep-
resentation of function, if an integral over 3D space is 
required. LCAO-based methods use the standard grid 
which is a combination of the radial grid around each 
atom and a Lebedev grid.

In this work, we propose an approach to train 
neural networks on LCAO-based electron density 
data. The key difference between LCAO-based data 
and PW-based data is the presence of core electron 
orbitals, which create large variations in density values 
(from 10−20 to 104 ) and complicate training. To address 
this, we introduce a core suppression model. Also, 
we propose to store the electron density for training 
on the standard grid instead of the uniform grid. As 
a source of such molecules, we use the largest dataset 
of electron densities for commercially available drug-
like substances ∇2DFT  [32]. Finally, we present the 
Lebedev-Angular Grid Network (LAGNet), a new 
architecture based on DeepDFT and specifically 
designed to be trained on LCAO-based data, and to 
work with drug-like substances (such as those from the 
∇

2DFT dataset). Our contributions are as follows: 

1.	 We propose a core suppression model that reduces 
amplitude of core orbital. That is a data normalization 
approach critical for training on LCAO-based 
electron density data.

2.	 We propose using the standard grid to represent 
electron density data, reducing the number of points 
per molecule on average by 43 times, and cutting 
data storage requirements by 8 times.

3.	 We introduce LAGNet, a novel neural network 
architecture derived from the equivariant DeepDFT 
model. We extensively modify and tune it for ∇2

DFT, achieving exceptional performance on drug-like 
substances.

This paper is organized as follows. Section  2 describes 
the data  2.1, grid sampling  2.2, the core suppression 
model  2.3, the invariant and equivariant DeepDFT  2.4, 
the LAGNet model  2.5, and performance metrics  2.6. 
Section  3 presents general observations on differences 
between electron density in QM9 and ∇2DFT data-
sets 3.1, analyzes the effect of core orbital suppression 
3.2, provides an ablation study for LAGNet 3.3, shows 
the advantages of SG-0 3.4,compares performance on 
various grids 3.5 before reporting final metrics  3.6, and 
shows metrics for cross-dataset evaluation 3.7. Section 4 
reviews related works on electron density prediction 
and relevant datasets. Lastly, Sect.  5 discusses possible 
applications and limitations of this study and presents a 
conclusion.

Methods
Electron density dataset
We use the ∇2 DFT dataset as a source of ground truth 
data for electron density. A sample with index i includes 
one molecule with a set of {zj}j∈[1,Mi] atom numbers 
and their positions {�rj}j∈[1,M(i)] . Dataset include mol-
ecules with various number of atoms (M(i)). For each 
molecule, the dataset includes the Hamiltonian (F, the 
Fock matrix, or the full Hamiltonian) and the over-
lap matrix (S). The solution of the generalized eigen-
value problem ( Fci = �iS ) provides a set of vectors 
( ci, i ∈ [0, 1, . . . , n] ). These vectors form the density 
matrix D = CCT , C = [c0, c1, . . . , cd , 0d+1, . . . , 0n] , 
where d =

n
2 =

1
2

∑

j∈[1,M]
zj is a number of occupied 

orbitals. For a point �r , atomic orbitals ψ(�r) are defined by 
the geometry of the molecule and the basis-set (def2-SVP 
in the case of ∇2DFT). The ground truth electron density 
is computed as follows: ρlcao(�r) = ψ(�r)TDψ(�r).

The ∇2DFT dataset includes 1,936,931 unique mole-
cules and 12,676,264 conformations. In order to simplify 
the usage, it is divided into several train and test splits 
with different sizes. For example, tiny train split contains 
2,809 molecules and 12,145 conformations. These splits 
are accompanied by three test splits. A tiny conformation 

Fig. 1  This study employs a comprehensive partitioning of the ∇2DFT dataset into training, validation, and test splits. Two training splits are 
defined: one containing a single conformation per molecule and another containing multiple conformations per molecule. Three progressively 
challenging test splits assess model generalization: the conformation split holds out novel conformations of molecules present in the training splits; 
the structure split holds out entirely new molecules not seen during training; and the scaffold split holds out molecules with unseen scaffolds
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test split includes novel conformations for molecules 
from the tiny train split. A structure test split includes 
novel molecules that were not present in the train split. A 
tiny scaffold test split includes novel molecules with scaf-
fold that were not presented in the train split.

This study uses the tiny train split (2,809 samples, 
12,145 conformations) to train neural network (see 
Fig.  1). The neural networks were trained with a single 
conformation per molecule (2,809 samples) or multiple 
conformations per molecule (12,145 samples, 4.32±3.83 
conformations per molecule). Five percent of each train-
ing set was held out as a validation set to monitor per-
formance and prevent overfitting. The testing of a neural 
network is performed with the conformation test split 
(2,774 samples, 2,747 molecules, 2,774 conformation, 
1±0.12 conformations per molecule), the structure test 
split (30,000 samples) and the scaffold test split (30,000 
samples).

In addition, we performed cross-dataset evaluation 
of the best checkpoint of LAGNet using part of QMugs 
[33] and the Hutchinson dataset [48]. This methods and 
results explained in detail in the Sect. 3.7.

Grid sampling
The key idea of [26, 27] is to train and validate neural 
networks with a small random subset of points from 
the uniform grid around a molecule. A subset of grid 
points is unique at each step. The authors of DeepDFT 
use a uniform grid and pick 1000 points of this grid for 
the training step and 5000 points for the validation step. 
This setup was designed for PW-based data with pseu-
dopotentials. However, in the case of LCAO-based data 
(ie, ∇2 DFT), a batch of training data may contain many 
points sampled from the core orbitals of Br, Cl, and S. 
Significant differences in statistical properties between 
batches can negatively affect training stability. The num-
ber of points in the uniform grid becomes notably high 
for molecules with more than 10 atoms. Therefore, stor-
age of the uniform grid requires a significant amount of 
memory or disk space to store one sample. The numeri-
cal values and analysis for this issue are presented in the 
Result section 3.

LCAO-based solvers use a standard grid (SG) instead 
of the uniform grid. SG is a combination of the radial 
grid and Lebedev’s grid. Each atom in a molecule is sur-
rounded by a set of spheres (the radial grid) with equal 
step between the spheres. Each sphere contains a set of 
integration points that is angular grid. In particular, the 

Fig. 2  Examples of different grid types for the same molecule projected onto the XY-plane. The left panel shows the standard grid at level 0, 
the middle panel shows the standard grid at level 1, and the right panel shows the uniform grid. Red points denote atomic positions, black dots 
denote probe points, and blue lines indicate the convex hull of each point set after projection. Distances are given in Bohr

Fig. 3  Example of the core suppression method. The left panel shows the electron density around a single carbon atom in a sample molecule. 
The red line is the regression model for the core orbital and its local environment, 1+ α(�r)β(�r) . The center panel shows how the electron density 
changes after applying core suppression to all atoms. The right panel is a histogram comparing electron density before ( ρlcao(�r) , red) and after ( ρ(�r) , 
blue) core suppression
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Lebedev grid is a particular type of angular grid. The 
LCAO solver uses the SG to compute integral over space 
with better precision than is possible with a uniform grid 
containing the same number of integration points. This 
makes the calculation of the exchange-correlation func-
tional faster and reduces the total processing time for the 
LCAO solvers [47, 49, 50].

In this study, we combine the DeepDFT grid sampling 
and the SG. The usage of SG instead of a uniform grid 
allows us to train neural networks with the smaller size of 
the stored data and to increase the stability of the neural 
network training process. Examples of uniform and 
standard grids are shown in Fig. 2.

Usually, the SG is parametrized in software packages 
with the ‘level of grid’ property. Each level of the grid 
associates with a predefined number of spheres and the 
Lebedev grid order per atom type. The whole SG is a 
union of subgrids assigned to each atom in a molecule. 
In our study, we used grids from the pyscf/Turbomole 
software with default parameters and disabled pruning.

We preserve the SG-0 subgrid structure for each atom 
in our training inputs. During each iteration, our sam-
pler randomly selects 5% of the points from every atom’s 
SG-0 subgrid. Consequently, each batch contains 5% of 
the total SG-0 points, ensuring that sampling uniformly 
covers the local environment of all atoms. This strategy 
prevents batches from being dominated by points around 
a single atom or region of the molecule, resulting in more 
consistent statistical properties across iterations. For vali-
dation, we use the full SG-0 grid (100% of points).

For the test, this study uses SG-0, SG-1, and the 
uniform grid. The last has a margin of 2 Å and a step of 
0.1 Å. The same uniform grid parameters were used in 
the datasets from [26, 27], and the following studies [21, 
24].

Core suppression method
In contrast to computation with PW-basis and pseudo-
potentials, the LCAO computation directly simulates 
core orbitals and generates data with large values of the 
electron density near the heteroatoms. For the LCAO 
method, the magnitude of the electron density is approxi-
mately 0.7 el./Bohr3 near the hydrogen atom and reaches 
2500 el./Bohr3 around a bromine atom. At the same time, 
the electron density at the point between two atoms is in 
the range of 0 to 1 el./Bohr3 . Thus, the distribution of the 
electron density values is notably skewed with extreme 
values on the right side of the distribution.

Our experiments show that training with the default 
implementation of the DeepDFT model is not stable for 
this type of data. To completely avoid issues with huge 
amplitudes of the electron density, we propose a core 
orbital suppression model that decreases the electron 

density around the atom positions and increases the 
neural networks training stability. The effect of the model 
is shown in Fig. 3.

To approximate the electron density around the 
atom, we propose a radial basis function that is gen-
eral enough to represent the atom neighborhood. To 
build the function, we start from α(�r) = 1/(1+ ε��r�2) , 
which is the classic inverse quadric function for the 
radial basis function interpolation, and ε is a hyper-
parameter. Then we generalize it to the function 
α(�r) = ε/Pk(��r�2) , where ε is a trainable coefficient, and 
Pk(x) = ε20 + ε21x + ε22x

2
+ · · · + ε2kx

k is a polynomial 
of the degree k with a set {ε}i=k

0  of k + 1 trainable coef-
ficients. Since the coefficients are raised to the second 
power, the polynomial is strictly positive ( Pk(x) > 0 ). If 
ε > 0 , then α(�r) > 0.

The set of coefficients (ε, ε0, ε1, . . . , εk) is fitted for each 
atom type zi separately. In this work, we use a degree 4 
polynomial and employ the L-BFGS method from scipy.
optimize [51] to train such a model on 333 randomly 
chosen molecules from the dataset. To verify the stability 
of the regression model, we performed 30 runs with 
various subsets of molecules, and the convergence was 
successful for all subsets in all runs.

In order to localize the effect of the model inside the 
covalent atomic radii ( rcov(zi) ), we additionally introduce 
a soft cutoff function that limits the effect of the first 
model: β(�r) = 1/(1+ exp(rcov(zi)− �ri�2) . To avoid 
disruptions of the target function, we use the 
multiplicative form for data modification instead of 
subtraction of the regressed values. Multiplication by 
µ(�r) = 1/

(

1+ αi(�r)βi(�r)
)

 suppresses the core orbitals 
and the density in the neighborhood of the atoms. The 
core orbital suppression model, direct and inverse data 
transformation finally look like this:

In the last expression, ρlcao is an original density function 
of the LCAO method, ρ is a target value for the train-
ing of neural networks. The proposed method is similar 
to an isotropic exponential function method, which was 
proposed in [42]. The main advantages of the proposed 
method are a more universal type of function that can be 
extended to more complex datasets with heavier heter-
oatoms and a straightforward approach to fit the model 
coefficients.

αi(�r) = w/Pk (��ri�2), βi(�r) =
1

1+ exp(rcov(zi)− ��ri�2)

ρ(�r) = µ(�r)ρlcao(�r), µ(�r) =
∏

i∈M

1

1+ αi(�r)βi(�r)

ρlcao(�r) = µ−1(�r)ρ(�r), µ−1(�r) =
∏

i∈M

1+ αi(�r)βi(�r)
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Viewed from a machine-learning perspective, the core-
suppression method functions as a data-normalization 
technique tailored to LCAO-based electron densities. 
During training, the core-suppression model is applied 
to the raw data to improve convergence speed and stabil-
ity of the neural network. At inference time, the inverse 
transformation is applied to the network’s output, ensur-
ing that all evaluation metrics compare predictions 
against the original target values (with full core orbital 
amplitudes).

Invariant and equivariant DeepDFT
Denote h,d as abstract tuples of tensor values and g as 
a group action. The function f is invariant if the group 
action applied to the input does not affect the output: 
h = f (g.d) . The function f is equivariant if the group 
action applied to the input and output keeps the fol-
lowing expression: g.h = f (g.d) . Denote G = (V , E) 
as a geometric graph with vertices v ∈ V and edges 

euv ∈ E; u, v ∈ V . Each vertex v has a position in the 
space �r , a tuple of scalar features s , and a tuple of vec-
tor features v : dv ≡ (�r, s, v)v , v ∈ V , s ∈ R

1×F , v ∈ R
3×F . 

Denote an edge as �euv ≡ �ru − �rv . Operation N (v) returns 
a set of vertices with the distance to vertex v smaller than 
some specific finite cutoff.

A geometric graph neural network (G-GNN) processes 
information in sequential layers with index l: l ∈ [1,D].

where Update(l) and Message(l) are functions with train-
able parameters. This section employs the notation from 
[52] and marks trainable functions and trainable param-
eters with an underline.

DeepDFT is an architecture that works on a graph 
with two partitions: atoms Va and probe points Vp . 

d
(l+1)
u ⇐ Update(l)



d
(l)
u ,

�

v∈Nu

Message(l)(d(l)u ,d(l)v , e(l)uv)



,

Fig. 4  Diagram showing the main modules in each neural network architecture. Blue blocks represent the message-passing part of the GNN, 
and red blocks represent the update part. invDeepDFT uses different blocks for atom-to-atom and atom-to-probe interactions. eqvDeepDFT 
uses the same blocks for both types of interactions. LAGNet further adapts the eqvDeepDFT blocks to enable an advanced message processing 
from atoms to probe points. The invDeepDFT and eqvDeepDFT diagrams are based on the original DeepDFT paper and source code, while LAGNet 
is introduced in this work
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These partitions do not intersect and include all vertices: 
Va ∪ Vp = V , Va ∩ Vp = ∅ . Atoms send messages to each 
other, and then information from atoms is propagated 
to probe points. Messages between atoms propagate in 
both directions, but messages from atoms propagate to 
probe points in one direction. This framework also uses 
the embedding layer, and readout multilayer perceptron 
(MLP) to compute the electron density. Operations Na(v) 
and Np(v) provide all atoms around a specific atom or 
probe points, respectively.

In order to reduce over-complicated notation, we omit 
the upper index of the layers ( �(0) , �(l) , �(D) ) and keep 
only ⇐ between the left and right parts of the equations.

Invariant DeepDFT (invDeepDFT) is based on the 
SchNet [53] neural network (see 4 for visual explana-
tion). We directly obtain the following equations from 
the original DeepDFT implementation. The Message 

da = (�r, s, v)a, s
(0)
a = Embedding(zi), v

(0)
a = 0, a ∈ Va,

dp = (�r, s, v)p, s(0)p = 0, v(0)p = 0, p ∈ Vp,

d
(l+1)
a ⇐ Update(l)

A



d
(l)
a ,

�

v∈Na

Message(l)
A
(d(l)a ,d(l)v , e(l)av )



,

d
(l+1)
p ⇐ Update

(l)
P



d
(l)
p ,

�

v∈Np

Message(l)
P
(d

(l)
p ,d

(l)
v , e

(l)
pv )



,

ρ(�r) ⇐ Readout(d(D)p )

and Update functions of invDeepDFT are combined as 
follows:

where [·, ·] is concatenation and ◦ is a pointwise product. 
The same functions for atom-probes iteration are slightly 
changed:

The invDeepDFT model is based on SchNet but includes 
notable modifications. The message function concat-
enates the sender and receiver scalar values. The update 
function includes the gating expressions that differ for 
the atom-atom interaction and the atom-probe interac-
tion. invDeepDFT does not use vector features and edge 
directions.

Equivariant DeepDFT (eqvDeepDFT) uses more 
complex message and update functions (see Fig.  4 
for a visual explanation). The eqvMessage function 
takes information from the edge direction and utilizes 
scalar and vector features. The message function of 
eqvDeepDFT for atom-atom interaction is defined as 
follows:

sa ⇐ sa +MLP

(

∑

j∈N (a)\a

ga ◦MLP
(

[sa, sj]
)

)

ga = MLP(RBF(eaj)) ◦ f cut(eaj)

sp ⇐ gu ◦ sp + (1− gu) ◦MLP
(

∑

j∈N (p)

gp ◦MLP
(

[sp, sj]
)

)

gu = MLP(sp)

gp = MLP(RBF(epj)) ◦ f cut(epj)

Fig. 5  Overall block layout for each architecture. Branch #0 exchanges messages between atoms and updates atomic states (gray blocks 
and lines). Branches #1 and #2 send messages from atoms to probe points and update probe states (green blocks and lines). The connections 
show that invDeepDFT passes only scalar features, while eqvDeepDFT and LAGNet pass both scalar and vector features. LAGNet uses two separate 
branches (#1 and #2) specifically for atom-to-probe message passing
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The expressions for the atom-atom and atom-probe 
interactions are the same in eqvDeepDFT. The only dif-
ference is the function N (p) , which returns in the neigh-
borhood of an probe point instead of atom neighborhood 
( N (a)\a).

The update layers are also the same for atoms and probes. 
The matrix multiplications Uv and V v are applied to a 
list of vectors �v ∈ R

3×F along the feature dimension, 
where U  , V  are training weights. These equivariant oper-
ations are named channel-mixing operations as in [52]. 

[gs, gv1, gv2] = MLP(sa) ◦MLP(RBF(eaj)) ◦ f cut(eaj)

sa ⇐ sa +

∑

j∈N (a)\a

gs

va ⇐ va +

∑

j∈N (a)\a

(

gv1 ◦ va + gv2 ◦
�eaj

��eaj�

)

[gs, gv1, gv2] = MLP(sp) ◦MLP(RBF(epj)) ◦ f cut(epj)

sp ⇐ sp +

∑

j∈N (p)

gs

vp ⇐ vp +

∑

j∈N (p)

(

gv1 ◦ vp + gv2 ◦
�epj

��epj�

)

The update expressions for eqvDeepDFT (indexes a and 
p are omitted for simplicity):

Atom-atom interactions and atom-probe interactions 
form two branches of the model, which we denote as 
branch #0 and branch #1 (see Fig.  5). invDeepDFT and 
eqvDeepDFT use an embedding layer to encode atoms. 
The MLP readout combines the outputs of the branches 
and computes the electron density at the probe point.

LAGNet
After the analysis of the performance of eqvDeepDFT on 
the ∇2DFT dataset, we introduce several modifications 
that improve the model. We name our model LAGNet.

The first modification is related to the expansion of the 
RBF in the message block. According to [52], an RBF 
expansion enriches the edge representation and maps 
�e ∈ R

3 to a multidimensional cube ( RBF(�e) ∈ [0, k]N ). 
Figure  6 shows the expansions used in the models. 
invDeepDFT uses the Gaussian expansion: 
RBF(�eij) = concat

n∈[1,N+1]
exp(−((��eij�2 − µ)2)/(2σ 2))   . 

[gvv , gsv , gss] = MLP(
[

s, �V v�2

]

)

s ⇐ s+ gss + gsv ◦ �Uv,V v�

v ⇐ v + gvv ◦Uv

Fig. 6  Radial basis function (RBF) expansions used in each model. Each column corresponds to one RBF function. From top to bottom, the rows 
show: the function name; examples of three expansion modes; a pattern image displaying all 20 modes; the l1 , l2 , and l∞ norms of the RBF 
expansions computed on real molecules for atom-to-atom and atom-to-probe messages (vertical lines mark the zero and cutoff distances 
from the atom); and the model name with the branch where the expansion is applied
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µ ∈ [0, σ ], σ = nC/Nexp , where Nexp = 20 is the size of 
the expansion of the RBF, C is the cutoff value, and 
‘ concat ’ denotes the concatenation of features together. 
The eqvDeepDFT model uses the Sinc expansion: 
RBF(�eij) = concat

n∈[1,N+1]
sin(πnC ��eij�2)/��eij�2.

The distribution of the edge distances differs signifi-
cantly for atom-atom and atom-probe interactions. The 
minimal distance between a pair of atoms in ∇2 DFT 
is 1.7 Bohr (0.9 Å). Consequently, for the atom-atom 
interaction, the model does not encounter the distance 
between 0 and 0.9 Å in the cases of Sinc or Gaussian 
expansions. Unlike atoms, probe points may lie at arbi-
trary distances from the atomic center. Figure  6 shows 
the norms for the expansion vectors for a random sub-
sample of the dataset. In this subsample, the maximum 
value of the l1 norm of the Sinc expansion for atom-
atom interactions is 7.31. However, the maximum value 
for atom-probe interactions is 66. This discrepancy may 
cause instabilities with neural network training.

In aim to solve the last problem we propose to use 
different RBF expansions. The available literature [54], 
frameworks [55, 56], and implementations propose 
numerous variants of RBF expansions with several 
modifications and hyperparameters in each. We 
performed a series of preliminary experiments and 
tested the functions of the scipy [51], the e3nn [56] and 
SchNetPack [57] frameworks with a shallow neural 
network (D=2, F=32). These libraries include the most 
common RBF expansions that are used in deep learning 
models and other applications. The Bessel function 
(similar to Sinc) causes better prediction for probe points 
which are close to atoms, and the Fourier expansion 
provides better results for points with distances larger 
than 8 Bohr. We use these two functions for LAGNet (see 
Fig. 6). In addition, to fix the issue of large amplitudes of 
RBF expansions in atom-probe interactions, we changed 
the distance value by 0.5 Bohr ( ��eij�2 + 0.5 ). The final 
RBF functions are defined as follows:

The second modification targets softcut functions 
( fcut(·) ) in the Mesage block. InvDeepDFT uses 
f cut(�eij) = 1− sigmoid(5(��eij�2 − (C − 1.5))) , and eqv-
DeepDFT uses f cut(�eij) = 1

2 (cos(π��eij�2/C)+ 1) , where 
C is a cut-off distance in Angstrom. Both invDeepDFT 

RBF(�eij) = concat
n∈[1,N+1]

1
√
cx

sin(n
x

c
),

x = �eij�2 + 0.5, c = C + 0.5

RBF(�eij) = concat
n∈[1,N+1]

sin(πnx)
√
0.25+ N/2

,

x =
��eij�2 + 0.5

C + 0.5

and eqvDeepDFT build upon the SchNet and PaiNN 
architectures, respectively. Softcut functions are intro-
duced to stabilize the gradients of the models with 
respect to atom positions. This is necessary for predicting 
force fields and incorporating trained models into molec-
ular dynamic simulations. However, the benefits of these 
functions in the electron density prediction tasks are not 
obvious. In order to reduce unnecessary computation, we 
do not use f cut in LAGNet in the message blocks.

The third modification targets the message-update pair 
of blocks. We introduce a novel, generalized update block 
that extends the PaiNN/DeepDFT framework by unify-
ing scalar and vector operations. Rather than operating 
on a single list of input vectors, our update block accepts 
a pool of vector gathered from multiple sources. Each 
vector in the pool is first converted into multiple scalar 
features via scalarization operations. These pooled scalar 
features feed into a shared MLP, which produces two sets 
of gate coefficients: one for updating scalar features and 
one for updating vectors. The vector gates are applied 
element-wise to the original input vectors, yielding 
equivariant output vectors. This three-stage architecture-
pooling, scalarization, and gated update-generalizes the 
standard PaiNN update block by allowing flexible aggre-
gation of information from diverse vector inputs while 
preserving equivariance. This section provides intuition 
for the proposed extensions and presents all conversions 
in a formal manner.

eqvDeepDFT uses skip connections with the Update 
block: s ⇐ s+ fs(s), �v ⇐ �v + fv(�v) . Mixing of the chan-
nels Uv does not change the orientation of the input vec-
tor, and multiplication on the gate coefficient also does 
not change the direction. Thus, the entire update block 

Fig. 7  This explains how we modified eqvDeepDFT’s Message 
and Update blocks to create LAGNet. In eqvDeepDFT, the Update 
block only changes a vector’s length, not its direction. LAGNet 
adds an extUpdate block that gathers vectors both before and 
after the Message block and combines them into a single output 
vector with any direction. We found that adding extUpdate blocks 
to branches #1 and #2 improves model performance. These branches 
send messages from atoms to probe points
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does not change the direction of the input vector (see 
Fig. 7 for visual explanation). This limits the expressive-
ness of an update block and is the target for an extension.

According to recent reviews, DeepDFT is a neural 
network that belongs to the class of Cartesian tensor 
G-GNN [52], and to the class of equivariant values net-
work [58]. The major advantage of this network is its sim-
plicity [52], and its performance [58]. Experiments with 
the prediction of energy and force fields show that Car-
tesian tensors G-GNN handle both tasks with good pre-
cision and even surpass some spherical tensor G-GNN 
with a greater number of trainable parameters [32]. For 
these reasons, we aim to extend the Update block with 
elements from a spherical tensor G-GNN, but keep a 
general class of networks as a Cartesian tensor G-GNN.

The major benefit of the spherical tensor G-GNN (irre-
ducible representation neural network in terms of [58]) is 
its expressiveness and ability to represent the neighbor-
hood of complex atoms as a unique state of a tensor. A 
crucial part of the spherical tensor G-GNN is a trainable 
tensor product operation. The tensor product is a func-
tion equivariant to the group action on two arguments: 
g.h = f (g.d1, g.d2) . We design the extUpdate block to have 

the same properties without usage spherical harmonics of 
higher orders.

The extUpdate block is shown in Fig.  4. This block 
receives two inputs: (s1, v1) from the previous update block 
and (s2, v2) from the message block. The original update 
block (eqvUpdate) from eqvDeepDFT contains the chan-
nel mixing operation ( Uv ). In extUpdate, channel mixing is 
applied to each input vector: Av1 , Bv2 . Four vectors form a 
vector feature pool U = [v1, v2,Av1,Bv2].

An MLP cannot work with vector features directly. A 
scalarization operation transforms pool of vector features 
into scalar values suitable as input to an MLP. The eqvUp-
date block in eqvDeepDFT uses two scalarization opera-
tions: the l2-norm � · �2 and the dot product �·, ·� . In the 
extUpdate, we extend this list of operations by the cross-
product. Define a scalarization(U) operation that operates 
on a pool of vector features U . This operation maps a set of 
vectors and vectors pairs to a set of scalar features: 
scalarization(U) =

[

concat
a∈U

�a�2, concat
a,b∈U

�a,b�, concat
a,b∈U

�a × b�2

].

The input scalar features and the extracted scalar features 
are then concatenated and passed to an MLP layer. The 
output layer produces a pool of gating coefficients for the 
vector features ( Gs ) and for the scalar ones ( Gv ). Each gate 

Fig. 8  These panels show the main differences between PW-based electron density on a uniform grid and LCAO-based electron density 
on the standard grid. The two grid layouts produce different distributions of distances between atoms and probe points. In addition, PW data use 
pseudopotentials, while LCAO data include full core orbitals with all electrons. This difference leads to distinct distributions of electron density 
amplitudes
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coefficient is multiplied by a corresponding vector from the 
pool of vector features and a scalar from the pool of scalar 
features. These linear combinations form the output scalar 
and vector features. All together:

By A[i] , we denote the i-th element of the list A . The 
described approach is the generalized form of the 
gates that are used in invDeepDFT and eqvDeepDFT 
(see Fig.  4). The general definitions given above can be 
extended for other scalarization operations and additional 
input vectors. However, our specific implementation 
of scalarization does not use repeated results from 
associative binary operations and does not use two vector 
products: �Av1 × v1� , �Bv2 × v2� . Thus, the input features 
in concatenation and MLP do not repeat.

The fourth modification targets the global structure 
of the neural network. Atom-atom interactions are 
calculated inside the list of sequential blocks that we 
denote as branch #0. This branch is based on the Sch-
Net or PaiNN models. For invDeepDFT and eqvDeep-
DFT, the atom-probe interactions are calculated within 
the second list of blocks, which we denote as a branch 
#1. To use two different RBF expansions, we add an 
additional branch #2 to LAGNet (see Fig. 5).

Both invDeepDFT and eqvDeepDFT do not send 
the initial atom embeddings to the probe point, so 
information is exchanged between the atoms at least 
one time before passing to the nodes. However, in 
earlier studies [19], the electron density is directly 
predicted by atom embeddings. In order to use the 
initial atom embedding, we add an additional message-
passing layer. Thus, the initialization of the scalar 
and vector features 2 was replaced by the additional 
message and update layers. We also add additional 
scalarization of the vector features and pass the norm of 
the vector values into the readout function (see Fig. 5).

Neural network parametrization and implementation. 
In our study, all models (invDeepDFT, eqvDeepDFT, 
LAGNet) are parametrized by the pair of hyperparam-
eters (F,  D): F is the number of scalar and vector fea-
tures, and D is the depth of G-GNN. We implement all 

U = [v1, v2, Av1, Bv2]

scalarization(U)

=
[

concat
a∈U

�a�2, concat
a,b∈U

�a,b�, concat
a,b∈U

�a × b�2

]

S =
[

s1, s2, scalarization(U)]

[Gs,Gv] = MLP

(

S
)

s1 ⇐ s1 +

∑

i∈[1,...,|Gs|]

Gs[i] ◦ Ss[i]

v1 ⇐ v1 +

∑

i∈[1,...,|Gs|]

Gv[i] ◦ Uv[i]

three models in the independent codebase. In G-GNNs, 
a graph is usually represented by a list of its edges. This 
approach is beneficial for large sparse graphs, but not in 
the case of electron density prediction. A large distance 
between the atom and the farthest probe point enforces 
setting of a big cutoff value. Therefore, most atom-atom 
and atom-probe pairs are included in the graph. That 
makes geometric graph similar to a dense graph with a 
small percentage of omitted edges. For this reason, we 
implement models with an adjacency matrix and dense 
tensors (usual PyTorch tensors). Edges outside the cut-
off distance are implemented via zero mask in the mes-
sage aggregation inside the message block. Part of the 
source code is available in the supplementary material. 
The full project code will be available soon as an open 
source solution under the MIT open license.

Here are examples of real model performance dur-
ing training and inference. LAGNet (D=4, F=128) fully 
converges in 26 h when trained on 2,809 conformations 
using a single NVIDIA A100 GPU, and in 170  h when 
trained on 12,145 conformations. For inference, evaluat-
ing the integral with SG-0 requires 140 ms for a molecule 
with 104 atoms (382 electrons). Generating a cube file 
on a dense uniform grid (margin = 2 Å, spacing = 0.1 Å) 
takes 6.5 s. This is significantly faster than a classical DFT 
calculation. Figure  A3 in the Appendix includes addi-
tional measurements of computational performance.

Metrics
Denote M = {(�ri,wi) | i ∈ [0 . . . |M|]} as an integration 
grid with |M| pairs of point coordinates �r and point 
weights w. The key metric to measure the model 
performance is the normalized mean absolute error 
(NMAE). We define exact NMAE via integrals and 
approximate this integral with the standard grid using 
weight coefficients. Following the approach of [26, 27], we 
define the average and maximal NMAE for the dataset D . 
We report the standard deviation, median, and minimal 
value of NMAE as well. In this study, the mean squared 
error (MSE), the mean absolute error (MAE), and the 
mean absolute percentage error (MAPE) are defined in 
the standard way, without integration over the grid.

NMAED(ρ, ρ̂) =

∫

|ρ(�r)− ρ̂(�r)|d�r
∫

|ρ(�r)|d�r

≈

∑

i∈G wi|ρ(�ri)− ρ̂(�ri)|
∑

i∈G wi|ρ(�r)i|
,

avg-NMAED(ρ, ρ̂) =
1

|B|

∑

ρ∈D

NMAED(ρ, ρ̂),

max-NMAED(ρ, ρ̂) = max
ρ∈D

NMAED(ρ, ρ̂),
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Results
General observations
In Fig.  8, we show the major differences between the 
QM9 dataset from [26, 27] and the ∇2DFT dataset. The 
QM9 dataset includes only atoms from the first and sec-
ond periods (H, C, N, O, F), while ∇2DFT also includes 
atoms from the third (S, Cl) and fourth (Br) periods. For 
the original DeepDFT study, the dataset was generated 
with the VASP software, which utilizes the PW basis and 
pseudopotentials. The electron density was stored on 
the uniform grid with a margin of 2 Å from the bound-
ary atoms, and the grid step was close to 0.1 Å. In this 
study, we train the neural networks on the electron den-
sity, stored on the SG of the first level (pyscf/Turbomole 
implementation, no pruning, default parameters).

The crucial difference of ∇2DFT from QM9(VASP) 
is the presence of the core orbitals and the significant 
impact of the symmetric atom-centered electron density 
on the data. To highlight the difference in the order of 
values, we use the logarithm with base 10. As shown 
in Fig.  8, the logarithm of the electron density for the 
QM9(VASP) dataset is close to the normal distribution. 
At the same time, the logarithm of electron density values 
for ∇2DFT remains strongly skewed.

Figure 8 also shows the difference in maximal electron 
density values for PW-based and LCAO-based data. To 
measure this difference, we use polynomial regression. 
We find the closest probe point to each atom and build 
a regression model between the atom number and the 
electron density amplitude at the probe point. For ∇2

DFT data, the best model is ρnear_atom(zi) = 0.6344z3 , 
p < 1e−6 , R2

= 0.998 . For QM9(VASP) data, the best 
model is ρnear_atom(zi) = 0.248z , p < 1e−6 , R2

= 0.44 . 
Thus, for LCAO-based data, the electron density near 
the atom is proportional to the cube of atom number. 
For PW-based data, the electron density near each 
atom exhibits large local variation but never exceeds an 
absolute value of 8. This does not imply a fundamental 

physical law, but is related to a specific subset of chemical 
space in the data and computation methods.

The type of grid affects the distribution of the atom-
probe distances. The uniform grid arrangements depend 
on the size of the molecule and the minimal bounding 
box around it. The SG-0 arrangement depends on the 
atom positions. The SG always includes probe points at 
a specific distance from each atom. These features cause 
specific bars in the histogram related to core orbitals 
(see Fig. 8, bottom row), and the linear arrangements of 
points in scatter plots (see Fig.  8, top row). That allows 
us to conclude that the LCAO-based ground truth data 
differ significantly from the PW-based one.

The core orbitals
The presence of core orbitals is a prominent feature 
of the LCAO. It introduces a notable impact on the 
amplitude of the symmetric part of the atom-centered 
electron density. In this study, we introduce an approach 
to reduce the core orbital amplitudes and suppress the 
atom-centered symmetric part of the electron density.

To estimate the impact of high amplitudes on mod-
els, we trained eqvDeepDFT (D=5, F=128) models with 
and without the core supression model. Figure 9 shows a 
major problem with the target data. If core suppression is 
not applied, the initial loss value is very high and training 
does not converge to MSE=0.1 and NMAE(%)=200% for 
more than 10,000 epochs. However, these values of the 
metrics are reached at the 2 epoch for the same models 
after the application of the core suppression model.

In addition, we studied the influence of the period of 
elements on the training. For this, we created three splits 
of the dataset: with elements of 1–2 period (H, C, N, O, 
F), 1–3 period (the same and S, Cl) and 1–4 period (the 
same and S, Cl, Br). Figure 9 shows the training dynamics 
for these splits. The loss value is reduced, when the 
models are trained only on the elements of 1–2 period. 
However, without core suppression, the presence of Cl 

Fig. 9  This panel shows why core suppression is needed to successfully train neural networks on LCAO-based data containing 
third- and fourth-period atoms. The plots display the MSE loss on the training set and the average NMAE on the validation set. Including core 
orbitals in the data produces very large target values, which slows down and destabilizes neural network convergence. The training metrics are 
shown for eqvDeepDFT. Results for invDeepDFT and LAGNet are similar, but omitted for brevity.



Page 13 of 24Ushenin et al. Journal of Cheminformatics           (2025) 17:65 	

and S in the dataset negatively affects the convergence 
of neural network training. The presence of Br leads 
to a plateau with enormously high values of the loss 
function on the validation split. The application of the 
core suppression model allows us to effectively avoid 
any obstacle related to the element period, the element 
number, and the amplitude of the core orbitals (see the 
right of the Fig. 9).

Ablation study of LAGNet
To achieve a better NMAE in ∇2 DFT, we introduce the 
LAGNet model. The model is derived from eqvDeepDFT 
with four modifications. To verify the role of the 
proposed changes, we used the partial ablation of the 
LAGNet model (D = 2, F = 32). The ablated models 
were trained on a single conformation per molecule. The 
neural network tests were performed on the scaffold test 
split. These experiments show the major differences in 
the NMAE metric.

The ablation includes several changes which simplify 
LAGNet. Each simplification disables a single modifica-
tion from the Methods section 2.4. The first ablation uses 
only the branch # 0 and # 1. The branch # 1 uses the Bessel 
RBF expansion with a 20 Bohr cutoff. The second abla-
tion experiment is to use of fcut function in the Update 
block like in the original eqvDeepDFT model. This func-
tion is used in the message block as in the original eqv-
DeepDFT. The third ablation uses the same message and 
update operations in the # 1 and # 2 branches of LAGNet 
as in the eqvDeepDFT. In the fourth ablation, the embed-
ding message is not sent to the # 1 and # 2 branches. In 
the last case, the messages are exchanged at least once 

between atoms before being sent to the probe points. 
The results of the ablations are presented in Fig. 10 and 
Table A2  (in the Appendix). The absence of each modi-
fication from the proposed model reduces performance.

Advantages of SG‑0 for training
The main reason to use SG in LCAO is to reduce the 
computation time while maintaining good precision for 
the results (see 2.2). Our experiments show that SG also 
improves the solution of the electron density prediction 
task. The representation of the electron density with a 
standard grid requires a sufficiently smaller number of 
points than in the case of a uniform grid. For a moder-
ate-size drug-like molecule from ∇2DFT, a uniform grid 
with spacing 0.1 Å and margin 2 Å from the boundary 
atoms includes about 43 times more points than the level 
zero standard grid (see Fig.  11). For a molecule from 
the scaffold test split, the number of probe points is on 
average 1,543,929±308,857 for the uniform grid, and 
35,346±4,093 for the SG-0.

The benefits for memory usage are slightly smaller, but 
also significant. The standard grid requires five floating-
point values to store one data point: 3 coordinates 
( �r = (x, y, z) ), weight (w), and the electron density value 
( ρ(�r) ). Any points in the orthogonal uniform grid are 
defined by its index in the array ( i, j, k ∈ N ), the position 
of the origin point of the grid ( (xo, yo, zo) ∈ R

3 ), and the 
size of the bounding box ( (Sx, Sy, Sz) ∈ R

3 ). The positions 
of the grid points are recalculated from the index and the 
size of the bounding box as (x, y, z) = ( SxNx

i,
Sy
Ny
j, Sz

Nz
k) . 

Therefore, the representation of the electron density on 

Fig. 10  Ablation study for LAGNet. LAGNet (D=2, F=32) was trained on single conformation per molecule. NMAE(%) was computed 
on the conformation test split

Fig. 11  Number of points and size of data for SG-0, SG-1, and the uniform grid. Values are computed for the scaffold test split. The vertical white 
marks show means. X-axes are logarithmic.
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the uniform grid requires one floating-point value for 
each point and six additional values that define the 
bounding-box geometry. We measure the required 
storage capacity for molecules from the scaffold test split 
of the ∇2DFT dataset with the float32 datatype for the 
electron density representation. The representation with 
SG-0 requires about 8 times less space (691±79 Kb, ≈0.67 
Mb) than the representation with the uniform grid 
(6031±1206 Kb, ≈5.8 Mb). Figure  11 shows the 
distribution of sample sizes in the scaffold test split.

Model evaluation with other grids
SG-0 allows numerical methods to compute integrals 
over space with good precision. However, many down-
stream tasks require a uniform grid. For example, calcu-
lations of the Bader partial charges and visualization of 
the molecular electrostatic field. In this study, we check 
the performance of LAGNet (D = 4, F = 128) on the test 
dataset. We also expect that NMAE is sensitive to the 
integration region. Regions with a larger padding from 
the molecule may provide a larger (worse) NMAE. To 
verify this hypothesis and avoid unexpected effects of the 
grid generation, we sampled 20,000 random points from 
the various bounding boxes with padding of 0 Bohr (0 Å), 
3.78 Bohr (2 Å), 7.55 Bohr (4 Å) from boundary atoms.

Our experiments confirm a good performance of the 
electron density prediction on the uniform grid if the 
model was trained on the SG-0. The maximum distance 
between the atom and the probe point in the uniform 
grid with a margin of 2 Å is 3.4641 Å. However, in the 
case of SG-0 this value is 5 Å. Therefore, the region of 
space covered by the uniform grid is contained in the 
region of space covered by SG-0. As shown in Fig.  12, 
NMAE(%) for the prediction of electron density in the 
uniform grid is higher than in SG-0. However, the error 
increases for prediction on the SG-1 and higher grid lev-
els (see Fig. 12).

We calculated NMAE at random points inside the 
bounding box around the molecules. Figure  12 shows 
that the best NMAE is obtained for the zero padding 
bounding box. The increase in padding reduces the 
NMAE and the performance of the evaluated model. 
This result explains the behavior of neural network pre-
diction on different grids. If the test grid is contained 
inside the training grid, then the NMAE metric is low. 
NMAE metric is high for test cases where evaluated 
region is larger than region during training. This also 
means that the neural network does not generalize for 
points outside the region of the training grid.

NMAE is an integral-based metric with normali-
zation of values. It is sensitive to the noise contained 
in the outputs of the neural network and accumulates 
errors for a large region of integration. The electron 
density values for the probe points, which are far from 
the molecule’s atoms, are small but nonzero. The region 
of integration between 5Å and 15Å has a large volume, 
causing a negative impact on the values of NMAE. 
Thus, NMAE for the region with a large padding of a 
molecule is higher compared to the results for regions 
with tighter restrictions.

Generalization to new conformations and molecules
The most important property of any neural network in 
quantum chemistry is its ability to generalize to novel 
conformations and molecules that the neural network 
did not observe during training. To test the generaliza-
tion abilities, we evaluate invDeepDFT (D=6, F=128), 
eqvDeepDFT (D=6, F=128), and LAGNet (D=4, F=128) 
models on the test splits. The models were trained ether 
with single or multiple conformations per molecule on 
the tiny train split of ∇2DFT. The ∇2DFT dataset includes 
an advanced test split system to analyze the ability of 
neural networks to generalize. It contains conformation, 
structure, and scaffold test splits. The first split consists 

Fig. 12  This figure presents the performance of the best-trained model (LAGNet, D=4, F=128), which was trained on the SG-1 grid using 
multiple conformations per molecule. The left panel compares accuracy (NMAE%) on three grid types: SG-0, SG-1, and a uniform grid. The 
center panel shows performance on randomly sampled point clouds inside each molecule’s bounding box, with increasing padding distances 
from the outermost atoms. The right panel is a schematic illustrating the sizes of these padded regions and their overlap. Boxplot colors match 
the corresponding regions in the schematic. Model error increases as the evaluation region grows (larger padding). A LAGNet model trained 
on SG-0 performs well on the uniform grid but shows reduced accuracy when evaluated on SG-1
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of the novel conformations, the second contains novel 
molecules with observed structural elements, and the last 
contains novel scaffolds.

Figure  13 shows the performance of invDeepDFT, 
eqvDeepDFT, and LAGNet. The distributions of the 
values of the NMAE metric are similar for training splits 
and the conformation test split. The distributions of the 
NMAE metric for the scaffold test split and the structure 
test split are also close to each other. This means that 
the neural network generalizes to unobserved molecular 
conformations and experiences issues with generalization 
to unobserved molecules. However, unobserved scaffolds 
do not cause additional degradation of the performance 
metric. These results highlight the difference between the 
generalization of neural networks that train on electron 
density prediction tasks and the other tasks. A recent 
study with the ∇2 DFT dataset [32] reports that almost 
any model for energy and force field prediction performs 
worse for the scaffold test split than for the structure test 
split.

Figure  13 also presents a comparison of models that 
were trained in a single conformation per molecule, and 
multiple conformations per molecule. The performance 
of the model on the scaffold and the structures test splits 
differs notably. Any model that was trained in the mul-
tiple conformations scenario performs better in terms 
of average, median, and maximal NMAE (see Table A1). 
The benefits of training in multiple conformations are 

especially notable for max-NMAE. Across test splits, 
these metrics were reduced by 2–10 times for invDeep-
DFT, 2–20 times for eqvDeepDFT, and 1.5 times for 
LAGNet, compared to the single-conformation scenario. 
In general, training with multiple conformations per mol-
ecule reduces the heavy right tail in NMAE distributions.

In Fig.  13, there is a gap between the lowest NMAE 
value and zero (0.25%). The same phenomenon can be 
observed in the original DeepDFT paper [27], where the 
gap of and 0.1 % is shown. The study [9] reports a lower 
bound of point-wise prediction quality 10−4el./ Å 3 . In our 
experiments, the NMAE gap is lowered with the increase 
of the number of model parameters and with the usage of 
multiple conformations per molecule.

Cross‑dataset model evaluation
To assess LAGNet ability to generalize beyond its train-
ing distribution, we evaluated the best-performing 
checkpoint (LAGNet, F=128, D=4), which was trained 
exclusively on the nabla2DFT dataset, on two exter-
nal benchmarks: Hutchinson’s dataset [48] and QMugs 
[33]. Trained models are not applicable to full datasets, 
because Hutchinson’s dataset includes charged mole-
cules, and QMugs includes P and I. We filter such mol-
ecules and evaluate LAGNet on obtained subsets aiming 
to check LAGNet generalization on bigger molecules, 
molecules from various sources, and other approaches to 
the conformation space generation.

Fig. 13  Generalization performance on new conformations and unseen molecules. Results are shown for invDeepDFT (D=6, F=128), eqvDeepDFT 
(D=6, F=128), and LAGNet (D=4, F=128). Model accuracy is measured by NMAE(%). Two training splits were used: one with a single conformation 
per molecule and one with multiple conformations per molecule. Generalization is evaluated on three progressively harder test splits: 
the conformation split holds out new conformations of molecules seen during training; the structure split holds out entirely new molecules; 
and the scaffold split holds out molecules with unseen scaffolds
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Hutchinson dataset comprises three subcollections: 
Astex Diverse Set, OmegaPDB, and OmegaCSD. The first 
one includes experimental crystallography data. The sec-
ond and third subcollections are derived from the Pro-
tein Data Bank. Molecular geometry for OmegaPDB and 
OmegaCSD are generated from SMILES using OpenBa-
bel and subsequent DFT optimization. In addition, we 
add some molecules with bigger number of heavy atoms 
and more electrons from the QMugs dataset. The QMugs 
is derived from the ChEMBL database. We randomly 
selected 100 large, drug-like molecules (48–52 heavy 
atoms each) from QMugs with three conformations per 
molecule (300 total conformations).

From each subcollection, we retained only neutral, P- 
and I-free molecules. Reference electron densities for all 
selected conformations were computed at the wB97X-
D/def2-SVP level of theory without any modification of 
molecule geometry presented in datasets. Table A3 in the 
Appendix contains basic statistics of evaluation subsets.

Figure  14 reports normalized mean absolute error 
(NMAE(%)) for each molecule. Performance of the model 
is slightly worse on Hutchison dataset and QMugs, than 
on test subsets of nablaDFT. That is related to the data-
set shift, which is a widespread issue in generalization of 
deep learning models and observed in many general tasks 
in cross-dataset model evaluation [59]. However, for 92% 
of molecules, NMAE(%) is below 1%. We suppose that it 
shows a good generalization ability of our model in more 
diverse chemical and conformation spaces. We found 
no systematic correlation between NMAE and molecu-
lar size (either number of electrons or number of heavy 
atoms).

We perform additional experiments to detect possible 
correlation between properties of molecular system and 

NMAE(%). The results (Appendix, Figs. A1, A2) confirm 
that LAGNet’s inference error is independent of common 
molecular descriptors: total atom count, heavy-atom 
count, heteroatom count, ring count, rotatable bond 
count, hydrogen bond donors/acceptors, and number of 
chiral centers.

Related works
Electron density is a function that maps a point from 
a 3D space to the estimated number of electrons at 
this point: ρ(�r) : R3

→ R . The total number of elec-
trons in the space is calculated with an integral: 
∫

ρ(�r) d�r = 1
2

∑

j∈[1,M(i)] zj = Ne . Abstract electron den-
sity is not a differentiable function. It includes a cusp in 
atom positions and requires an infinite number of basis 
functions for decomposition. That makes the func-
tional space of the abstract electron density not properly 
defined, dependable from theory, and generally intrac-
table in computational machines with finite memory in 
finite time. All machine learning methods that predict 
the electron density are based on their definition from 
specific numerical methods. The linear combination of 
atomic orbitals uses the sum of symmetric Gaussians 
and spherical harmonics to form molecular orbitals ψi(�r) 
from atomic orbitals φi(�r) : ψ(�r) = Cφ(�r) . The matrix C 
forms the electron density matrix D = CTC and defines 
the electron density at a point ρ(�r) = ψ(�r)TDψ(�r).

There are several major branches of studies for den-
sity prediction with machine learning techniques. The 
first branch employs Gaussian processes and Gaussian 
approximation. This branch of study is developed in the 
following works: [13–16, 16]. The second branch employs 
neural networks. Descriptors-based approaches are his-
torically the first methods to predict electron density. This 

Fig. 14  Cross-dataset evaluation of LAGNet’s electron-density predictions. Top row: Distribution of normalized mean absolute error (NMAE(%)) 
for three test sets - nabla2DFT (structures and scaffolds test splits)), the Hutchinson dataset (combined Astex, OmegaPDB, and OmegaCSD subsets), 
and a QMugs subset of 100 large molecules (three conformers each). Boxplots show median, interquartile range, and outliers. Black line marks 
mean of the distribution. Bottom row: Plot of NMAE(%) mean and standart deviation versus heavy-atom count and total electron count across all 
evaluated molecules. Error remains consistently low ( ≤ 1% for 92% of samples) and shows no systematic increase with molecular size
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approach calculates molecular fingerprints and descriptors 
around probe points, then unifies features, and makes pre-
dictions of density value pointwise. These approaches were 
used in [17–20]. Despite the simplicity of these methods, 
they can reach 1–5% of NMAE for molecules that include 
H, C, N, and O. The second approach is to use CNN and 
U-Net architectures [21, 22]. The third approach uses the 
Fourier neural operator [23, 24]. The fourth approach 
employs the construction of basis functions around 
atoms and represents density as the sum of these bases 
[25] (AM2D), [42] (AM3D), [21] (InfGCN), [24] (SCDP), 
etc. Other approaches implicitly build such bases, using 
a one-directional message passing from atoms to probe 
points [26, 27]. The state-of-the-art approach usually com-
bines two methods together. For example, [24] unifies the 
Fourier neural operator and explicit basis around atoms. 
An additional approach to electron density prediction is 
related to the full Hamiltonian (Fock matrix in self-consist-
ency field iteration) and the prediction of overlap matrices 
[28, 29]. Using these two matrices and the basis-set, it is 
possible to calculate the electron density. Usually, Hamil-
tonian-focused studies do not report metrics on the elec-
tron density, but some do this: [29, 30].

Across all presented studies, we see significant biases in 
recent studies: datasets with small and simple molecules, 
PW-based computation of density with pseudopotentials, 
and use of the uniform grid. The most popular dataset for 
density prediction is QM9. This dataset includes only four 
heavy atoms (C, N, O, and F). There are more complex 
datasets for studies: ∇2DFT [32], QMugs [33], SPICE [34], 
Frag20 [35], OrbNet Denali [36] datasets. These recent 
datasets include molecules with up to 100 heavy atoms 
and elements of 3–4 period (P, S, Cl, Se, Br, I, Ca, Mg). As 
we show in the results, atoms from the 3rd and 4th peri-
ods may cause issues during the training. An exhaustive 
review of the datasets is presented in [32]. ∇2DFT, QH9, 
QMugs include information that allows a user to compute 
the electron density without recomputing the whole data. 
We chose ∇2DFT for the study because it includes a rich 
split system and allows us to analyze the behavior of the 
models on out-of-distribution data in detail.

In modern quantum chemistry, there are two main 
branches of numerical methods and numerical soft-
ware for the simulation of quantum chemical systems. 
One branch uses a Gaussian plane-wave basis (PW). 
This approach is implemented in VASP [37], Quantum 
Espresso [38], GPAW [39], and cp2k [40]. The other 
branch uses a local combination of atomic orbitals 
(LCAO). There are psi4 [43], pyscf [44], Turbomole [45], 
Gaussian [46], and other software packages based on 
LCAO. Most studies focus on PW-based data [21, 23, 24, 
26, 27], only several studies use LCAO as ground truth 
data [25, 42]. The PW method requires a pseudopotential 

basis. Such an approach avoids issues with huge elec-
tron density values in core orbitals. The LCAO compu-
tation assumes core orbitals with full amplitudes. Due to 
the difference in numerical methods, model training for 
LCAO-based ground truth data is a more challenging 
task than training on PW-based data.

Uniform meshes are necessary for PW-basis computa-
tion and are mandatory for VASP software. VASP allows 
researchers to compute materials and molecules, making 
this software favorable in a wide range of possible down-
stream applications. Uniform grids are needed in studies 
that employ CNN (U-Net) architectures [21, 22] and Fou-
rier neural operators [21, 23, 24]. Visualization of density 
isosurface is performed with algorithm of marching cubes 
in most packages. This method also requires a uniform 
grid. All of these together shift research attention to the 
uniform grid. This study is focused on LCAO-based data. 
LCAO computation employs the standard grid to com-
pute spatial integrals with a smaller number of points than 
is necessary with the uniform grid to the same precision. 
For this reason, we analyze the benefits and drawbacks of 
using the standard grid with neural networks.

Discussion
This study has several practical implications for the predic-
tion of the electron density with deep learning. The most 
recently proposed approaches for the prediction of elec-
tron density have been evaluated on small molecules such 
as those from the QM9 database. These molecules are 
limited to nine heavy atoms and do not cover the space of 
drug-like substances. The diversity of atoms in QM9 is lim-
ited by the second period. There are several datasets with 
bigger molecules ( ∇2DFT, QMugs, SPICE, Frag20, OrbNet 
Denali). The biggest challenge to train on larger molecules 
and drug-like substances is the size of the molecules. Big 
molecules require significantly larger number of probing 
points for representation of electron density. In this study, 
we propose using the standard grid instead of the uniform 
grid for a discrete representation of the electron density. 
This allows the user to reduce the storage space of the 
training data and to reduce data transfer overhead.

Most studies on electron density prediction use data 
generated by the PW method as ground truth data. PW 
do not consider all electrons and replace the core elec-
tron with pseudopotentials. However, about half of all 
available open-source and proprietary software uses 
the LCAO method (Gaussian, ORCA, Turbomole, psi4, 
pyscf, etc.). LCAO method usually uses an all-electron 
computation setup that leads to a huge amplitude of core 
orbitals in the generated electron density. In this study, 
we show that normalization of core orbitals is necessary 
for effective training of neural network. We propose a 
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core orbital suppression model that is a specific approach 
for data normalization.

Current G-GNN for 3D molecular data processing can 
be roughly divided into Cartesian tensor G-GNNs and 
spherical tensor G-GNNs [52]. Cartesian tensor G-GNNs 
require fewer operations and are simpler to implement 
but may underperform compared to spherical tensor 
G-GNNs. We introduce a novel architecture, LAGNet, 
based on the Cartesian tensor G-GNN DeepDFT. The 
key modification is in the Message and Update blocks. 
The original DeepDFT update block can only scale vector 
features and cannot change their orientation. To improve 
the expressive power of the network, we remove these 
restrictions by rearranging the connections between the 
Message and Update block. We draw inspiration from the 
spherical tensor G-GNN’s tensor product with trainable 
weights and augment the DeepDFT architecture with a 
set of scalarization operations, pools of vectors, scalars, 
and gating coefficients (see Fig.  4). Additionally, we use 
different RBF expansions for different probing points and 
discard the softcut function from the message block.

There are two main approaches for electronic structure 
analysis. The first approach uses information about each 
molecular orbital and typically requires prediction of 
the Hamiltonian. The second approach operates directly 
on the full electron density without requiring individual 
orbitals. Any method in this second category can be 
applied to electron density predicted by invDeepDFT, 
eqvDeepDFT, or LAGNet.

In this study, we do not evaluate LAGNet’s perfor-
mance on downstream tasks, but we outline several 
potential applications. Study [9] shows that partial atomic 
charges (Bader’s charges from superposed atomic den-
sities) can be obtained from neural-network-predicted 
electron density rather than traditional numerical meth-
ods. LAGNet can likewise compute these partial charges 
directly.

Using LAGNet’s predicted electron density on a uni-
form grid, one can generate high-quality visualizations 
with chosen isosurfaces, as illustrated in the graphical 
abstract. Molecular electrostatic potentials (MEP) can 
also be calculated from the predicted density using SG-0 
and the uniform grid. Other common analyses such as 
quantum theory of atoms in molecules (QTAIM) and 

non-covalent interaction analysis (NCI) may also be fea-
sible with LAGNet outputs, but with limitations. Some 
analysis related to QTAIM requires knowledge of elec-
tron density matrix and all orbitals.

Computed electron density has proven useful as input 
for machine learning models in drug discovery, including 
predictions of protein-ligand binding affinity [8], host-
guest interactions [10], virtual screening outcomes [11], 
and molecular classification [12]. We suppose some of 
these models can be combined with LAGNet, but these 
require further studies.

Limitations
The performance of DeepDFT, LAGNet, and similar 
graph models is inherently tied to the quality and scope 
of the training data. These models cannot generalize on 
data with atoms that are not presented during the train-
ing. ∇2DFT datasets does not contain elements such as 
boron (B), phosphorus (P), selenium (Se) and iodine (I). 
In addition, ∇2DFT does not cover radicals or charged 
molecules. However, some biological research requires 
anions, cations, and organic molecules with B, P, Se, I. 
LAGNet checkpoints trained in this study cannot handle 
these data.

In this study, LAGNet was trained on only a small sub-
set of the entire Nabla2DFT dataset. We suppose that 
expanding the training dataset and significantly increas-
ing the training time (up to 10,000 GPU hours) could lead 
to substantial improvements in model performance.

Future Work. We plan to release a series of enhanced 
LAGNet models trained on larger datasets, including the 
full ∇2DFT dataset, which comprises about 15,000,000 
conformations and 2,000,000 molecules. Future iterations 
may also include models specifically trained on anions 
and cations to better capture a wider range of chemical 
properties and systems.

Appendix A Extended Data
See Tables 1, 2, 3

See Figs. 15, 16, 17, 18, 19
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Table 1  Ability of model to generalize on conformations and unseen molecules

invDeepDFT (D=6, F=128), eqvDeepDFT (D=6, F=128), LAGNet (D=4, F=128). NMAE(%) metric

model single/multiple 
conformation
in train data

split mean std min 50% max

test data splits (conformations, structures, scaffolds)

invDeepDFT multiple conformations 0.98 0.16 0.67 0.95 2.71

invDeepDFT multiple structures 1.18 0.26 0.73 1.13 8.31

invDeepDFT multiple scaffolds 1.20 0.23 0.72 1.17 3.78

invDeepDFT single conformations 1.03 0.23 0.65 0.98 3.53

invDeepDFT single structures 1.40 0.31 0.70 1.35 10.09

invDeepDFT single scaffolds 1.44 0.32 0.77 1.38 13.34

eqvDeepDFT multiple conformations 0.77 0.09 0.58 0.75 2.17

eqvDeepDFT multiple structures 0.90 0.13 0.59 0.88 3.07

eqvDeepDFT multiple scaffolds 0.92 0.13 0.60 0.90 3.43

eqvDeepDFT single conformations 1.18 0.90 0.79 1.13 47.47

eqvDeepDFT single structures 1.34 0.25 0.79 1.30 10.33

eqvDeepDFT single scaffolds 1.34 0.23 0.80 1.31 4.72

LAGNet multiple conformations 0.35 0.08 0.25 0.33 1.62

LAGNet multiple structures 0.46 0.11 0.27 0.44 2.20

LAGNet multiple scaffolds 0.46 0.11 0.25 0.44 2.24

LAGNet single conformations 0.56 0.14 0.36 0.53 2.39

LAGNet single structures 0.73 0.15 0.38 0.71 2.85

LAGNet single scaffolds 0.74 0.15 0.43 0.72 2.78

train data splits (single/multiple conformations per molecule)

invDeepDFT multiple multiple 0.97 0.15 0.67 0.95 2.23

invDeepDFT multiple single 0.97 0.15 0.67 0.94 1.81

invDeepDFT single multiple 1.06 0.23 0.63 1.00 3.79

invDeepDFT single single 0.98 0.18 0.63 0.94 2.29

eqvDeepDFT multiple multiple 0.77 0.08 0.58 0.76 1.53

eqvDeepDFT multiple single 0.76 0.08 0.60 0.74 1.21

eqvDeepDFT single multiple 1.18 0.21 0.78 1.14 7.59

eqvDeepDFT single single 1.08 0.12 0.78 1.06 1.60

LAGNet multiple multiple 0.35 0.06 0.25 0.34 1.26

LAGNet multiple single 0.35 0.07 0.26 0.33 0.84

LAGNet single multiple 0.58 0.14 0.34 0.55 2.43

LAGNet single single 0.52 0.09 0.36 0.50 1.03
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Table 2  Ablation study of the extended DeepDFT

LAGNet (D=2, F=32) were trained on single conformation per molecule. NMAE(%) was computed on the conformation test split. Any modification reduces model 
performance

Ablation target mean std min 50% max

LAGNet (basic) 0.48 0.12 0.32 0.46 2.17

Branch #0 and #1, without #2 0.83 0.14 0.64 0.80 3.22

Softcut is turned on 0.58 0.13 0.39 0.55 2.90

Update-Message like in eqvDeepDFT 0.62 0.13 0.46 0.59 2.39

No messages from atom embedding 0.62 0.15 0.44 0.59 5.25

Table 3  Basic statistics for data in the cross-dataset experiment

We exclude charged molecules and molecules with P,I from Hutchison dataset. We add 100 molecules from Qmugs that bigger in number of heavy atoms than 
molecules from Hutchison dataset and nabla2DFT

full dataset evaluation subset

Dataset Subset molecules conformers molecules conformers comment

Hutchison dataset Astex 79 759 49 463

OmagePDB 468 4,663 412 1,248

OmegaCSD 161 4,378 142 4,238

QMugs QMugs 665,911 1,992,984 100 300 48-52
heavy
atoms

Fig. 15  LAGNet (D=4, F=128) performance on inference for structure and scaffold test sets, part 1. There are no statistically significant effect 
of molecule structure on average values of the target metric
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Fig. 16  LAGNet (D=4, F=128) performance on inference for structure and scaffold test sets, part 2. There are no statistically significant effect 
of molecule structure on average values of the target metric

Fig. 17  LAGNet (D=4, F=128) performance on inference for Hutchison dataset (Astex subset) and Qmugs subsets. Performance are measured 
with SG-0
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