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Abstract 

The field of protein-ligand pose prediction has seen significant advances in recent years, with machine learning-based 
methods now being commonly used in lieu of classical docking methods or even to predict all-atom protein-ligand 
complex structures. Most contemporary studies focus on the accuracy and physical plausibility of ligand placement 
to determine pose quality, often neglecting a direct assessment of the interactions observed with the protein. In this 
work, we demonstrate that ignoring protein-ligand interaction fingerprints can lead to overestimation of model per-
formance, most notably in recent protein-ligand cofolding models which often fail to recapitulate key interactions.

Scientific Contribution The interaction analysis used in this study is provided as a python package at https:// github. 
com/ Exsci entia/ plif_ valid ity.

Introduction
Recent advances in AI-based docking hold the potential 
to generate accurate protein-ligand poses at often a frac-
tion of the computational cost of classical docking algo-
rithms. Additionally, cofolding models that can directly 
predict the full protein-ligand complex structure have 
emerged as a promising alternative, circumventing the 
need for docking while providing the capability to model 
conformational changes to the protein.

As these machine learning (ML) methods are typically 
trained on the Protein Data Bank (PDB) [1] with a cutoff 
date of September 30, 2021, or on the PDBBind General 
dataset [2] released in 2020, it has become commonplace 
to benchmark them using the PoseBusters test suite  [3] 
which consists of 308 protein-ligand complexes released 
after 2021 and that are, therefore, outside their training 
data.

It has previously been noted  [3–7] that ML methods 
lack the necessary inductive bias to generate realistic 
poses, even though they can often obtain low root-mean-
squared deviation (RMSD) values from the crystal struc-
ture ground truth. They also tend to perform poorly on 
structures that do not have high similarity to their train-
ing set  [8]. Performing further quality checks on the 
ligand chemistry and the physical plausibility of the pose, 
notably through the PoseBusters benchmark, is therefore 
an important test for ML-based docking tools.

However, from the perspective of computational chem-
ists, a physically plausible pose with low RMSD is a nec-
essary but not sufficient condition for that ligand to be 
of interest. In particular, these conditions ensure that 
the ligand is close to where it should be and adopts a 
sensible pose within the pocket, but for that pose to be 
of biological relevance, it must also create key interac-
tions between the protein and the ligand  [9, 10]. These 
interactions are in fact often used to constrain classical 
docking tools, an option that is not currently available 
in ML docking methods. Such interactions are typically 
classified using protein-ligand interaction fingerprints 
(PLIFs), which identify the protein residue, the interac-
tion type and, optionally, the ligand atom involved in the 
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interaction. Several tools exist to detect PLIFs  [11–14] 
and in this work we use the ProLIF package [15].

In Fig.  1, we show on the left a visualisation of the 
PLIFs detected in the crystal structure of the protein 
target 6M2B with ligand EZO, and on the right the 3D 
poses generated by GOLD (classical docking), DiffDock-
L (ML docking) and RoseTTAFold-AllAtom (ML cofold-
ing). The ground truth complex has hydrogen bonds and 
a halogen bond. In this example, both GOLD and Diff-
Dock-L are able to identify PoseBuster-valid (PB-valid) 
poses with RMSD≤2Å, but whilst DiffDock-L recovers 
75% of the PLIFs from the crystal pose, missing the halo-
gen bond interaction with the Chlorine atom, GOLD is 
able to recover all of them. DiffDock-L also changes the 
conformation of the ligand so that the hydrogen bond-
ing involves a different set of atoms, while GOLD recov-
ers the exact ground truth pose. RoseTTAFold-AllAtom 
meanwhile, which has the more challenging task of also 
reconstructing the protein, finds a pose with a RMSD of 
2.19Å and steric clashes, which also fails to recover any of 
the ground truth crystal interactions.

ML methods do learn indirectly about protein-ligand 
interactions but without an explicit term to this effect 
in the loss function, the training signal is weak, and ML 
docked ligands can often end up with key functional 
groups pointing in the wrong direction. In contrast, clas-
sic docking algorithms are, through the design of their 
scoring functions, inherently interaction-seeking; their 
top scoring poses are those that achieve certain key inter-
actions. In this paper, we aim to motivate PLIF recovery 
as a useful metric for assessing model quality and use 

them to benchmark a number of modern pose prediction 
tools.

Method
Protein‑ligand interaction fingerprint
Interaction fingerprints summarize the three-dimen-
sional interactions present in a molecular complex. In the 
context of small molecule drug discovery, we are primar-
ily interested in interactions that a ligand achieves with 
the protein pocket of interest, for which PLIFs provide 
a vectorized representation. This representation typi-
cally consists of a mapping between protein residues and 
a ligand along with a bitvector that can encode different 
types of interactions, such as hydrophobic, π-stacking, π
-cation, ionic, and hydrogen bonds. PLIFs were calculated 
with the ProLIF package [15] considering only hydrogen 
and halogen bonds (donor and acceptor), π-stacking, 
cation-π and π-cation, and ionic interactions (anionic 
and cationic), excluding the less specific hydrophobic 
interactions and Van der Waals contacts. These are more 
rarely considered by computational chemists as key 
interactions that must be recapitulated as they are non-
directional and therefore highly correlated with RMSD. 
This is because these latter interactions are much more 
promiscuous than the others, and including them would 
result in a weaker signal from polar interactions (as dem-
onstrated in Appendix A Figs. 5 and 6, which show trends 
similar to another analysis of interactions on small mole-
cule-protein complexes from the PDB [16]) despite their 
critical importance in ligand-protein binding. Custom 
distance thresholds were used for hydrogen bonds (3.7Å), 

Fig. 1 Left: Two-dimensional representation of the ligand EZO and its four interactions with the crystal structure 6M2B. Basic residues are shown 
in blue and residues containing a sulfur atom are shown in yellow. Right: Docked poses generated with GOLD, DiffDock-L and RosettaFold-AllAtom 
showing the calculated interactions for each model, with the ground truth ligand in grey
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cation-π (5.5Å) and ionic (5Å) interactions while all other 
parameters are the defaults in ProLIF v2.0.3.

We note that while not all the other PLIF-calculation 
tools previously mentioned require explicit hydrogens 
to be present in the input files [12, 13], they end up add-
ing them if not present, although the optimisation of the 
hydrogen bond network is either not enabled by default, 
or not available.

The interactions detected by PLIF-libraries are very 
sensitive to the protonation state of both the protein and 
the ligand as it can decide whether an interaction gets 
labelled as ionic or hydrogen bond. Whilst the classical 
docking methods can model hydrogens explicitly, their 
scoring functions often infer the potential for interactions 
such as hydrogen bonds from the geometry of the heavy 
atoms alone. Meanwhile, ML methods typically model 
only heavy atoms. In order to treat all methods equally, 
we place explicit hydrogens on the protein structure 
using PDB2PQR [17], as well as on the ligand pose if not 
already present, using RDKit  [18]. We then performed 
a short minimisation of the ligand inside the pocket, 
defined as protein residues within 6Å of the ligand, whilst 
keeping the heavy atoms fixed, using RDKit’s implemen-
tation of the Merck Molecular Force Field (MMFF)  [19, 
20]. This is a consistent way to optimise the hydrogen 
bond network of the docked/cofolded pose and gives 
each method the best possible chance to make interac-
tions from the proposed heavy atom positions.

Classical docking algorithms
Classical molecular docking aims to predict plausible 
ligand poses when binding to a protein target, leveraging 
computational algorithms to accurately simulate molecu-
lar interactions, as pioneered by the development of the 
DOCK [21] and AutoDock [22] algorithms. In this analy-
sis, we use the FRED, HYBRID2 and GOLD algorithms 
which are more modern approaches to classical docking.

FRED and HYBRID2 are docking programs from the 
OEDocking suite  [23] and are rarely included in ML 
docking benchmarks. Both algorithms work by first 
generating an ensemble of conformations which then 
undergo rigid docking into a specified pocket. FRED is 
an unbiased docking program that uses only the struc-
ture of the target protein to position and score mole-
cules, whilst HYBRID2 is a biased docking program that 
also uses the structure of the reference ligand to find the 
optimal docked pose [24]. HYBRID2 is typically used in 
a lead optimisation campaign to dock novel compounds 
that differ minimally from a reference ligand. For the self-
docking task we consider in this work, HYBRID2 has an 
unfair advantage over the other methods and we include 
it here mainly to validate this advantage over FRED.

Finally we include CCDC GOLD  [25]. Unlike the 
OEDocking tools, GOLD generates ligand conformations 
on the fly as it places the ligand in the pocket.

FRED and HYBRID2 both use the ChemGauss4 scor-
ing function  [23] whilst GOLD uses the PLP scoring 
function [26] to identify the optimal pose. In both cases, 
these scoring functions pay close attention to the shape 
and hydrogen bond complementarity of poses within the 
active site. In contrast to ML methods, classical docking 
methods explicitly seek interactions and we hypothesise 
this will lead to improved PLIF recovery and ultimately 
more favourable poses.

For all three classical methods we return 10 poses and 
then select the pose with the top docking score for our 
subsequent analysis.

Additionally, we note that existing benchmarks in the 
literature often perform classical docking with minimal 
processing of the PDB files, overlooking refinement steps 
to address issues like missing loops, alternate confor-
mations, flipped functional groups, and adding explicit 
hydrogen atoms to the ligand and protein structures 
consistently with their titration states. A suitable prepa-
ration of input files ensures that the active site residues 
and the ligand are ready for docking, making the simu-
lations more accurate and predictive of ground-truth 
interactions. Since we are using OpenEye docking tools 
in this work, we performed structure preparation using 
the Spruce CLI from OpenEye   [27]. We note however, 
that other structure preparation tools do exist such as 
Reduce [28], the CSD API from CCDC [29] and the Pro-
tein Preparation Wizard from Schrödinger [30].

ML docking algorithms
The application of ML to accelerate molecular docking 
and find more accurate binding poses has received a lot 
of interest in recent years [31–33].

In this work, we consider DiffDock-L  [34], the lat-
est version of DiffDock which uses confidence boot-
strapping to improve significantly on previous versions. 
DiffDock-L is a state-of-the-art ML docking model that 
uses a diffusion model over the non-Euclidean manifold 
parameterizing the ligand degrees of freedom in order 
to generate plausible orientations and conformations. 
DiffDock-L uses its confidence model to assign a score to 
each sampled pose and so, as with the classical methods, 
we sample 10 poses for each ligand and use the highest-
confidence pose for our subsequent analysis.

It is worth highlighting that the confidence model 
underpinning DiffDock-L is a GNN classifier trained to 
identify poses with RMSD≤ 2Å and, whilst this will indi-
rectly capture some information about interactions, it 
does not explicitly rank poses based on PLIFs in the same 
way as classical scorers.
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Protein‑ligand cofolding
Several structure prediction models have recently incor-
porated the description of more general biomolecular 
assemblies beyond simple protein polypeptide chains, 
including the capability of cofolding a protein and small 
molecule simultaneously and predict all corresponding 
atomic coordinates  [35–40]. We test three such mod-
els, Umol [36], RoseTTAFold All-Atom (RFAA) [38] and 
Chai-1  [37]. Unlike the docking methods described in 
previous sections, Umol, RFAA and Chai-1 will return a 
protein different to that in the crystal structure and the 
protein structure is also an output of the model.

Cofolding is a complex problem and, whilst there has 
been much progress recently, it is still a relatively nas-
cent field. As a result, it is not uncommon for the output 
structures to have issues such as steric clashes, overabun-
dance of cis-peptide bonds or gaps in the protein, or to 
fail to preserve the chemistry of the input ligand (e.g., 
flipped stereochemistry). By default, Umol performs 
postprocessing in a attempt to fix this whereby it gener-
ates conformers of the input ligand and then returns the 
conformer with the best Kabsch alignment against the 
predicted atom positions. This approach guarantees the 
chemistry of the output ligand matches the chemistry of 
the input ligand. Finally, Umol then places hydrogens and 
uses OpenMM  [41] to optimise the protein-ligand sys-
tem and it is this optimised complex that we use in our 
subsequent analysis.

In contrast, RFAA does no such postprocessing out 
of the box. Consequently, we often find that the out-
put ligand either has invalid stereochemistry or it has 
valid stereochemistry (making it PB-valid) but this ste-
reochemistry is different to that of the input ligand. 
To ensure we are assessing the correct ligand, and for 
consistency with Umol, we add a similar postprocess-
ing pipeline to RFAA, but with minimization in the 
YASARA2 forcefield [42], which we found to be more tol-
erant than OpenMM to unphysical structures.

For our comparisons with Chai-1, we use as is the data-
set of predicted PoseBuster structures provided by the 
authors in Section 6.2 of [37].

Data and metrics
The original PoseBusters test suite identified 308 high-
quality protein-ligand complexes released after 2021 and 
therefore outside the training data of most ML meth-
ods  [3]. We excluded 37 data points due to limitations 
in compute time for cofolding involving large targets, 
and 10 due to either structure preparation or forcefield 
failures. A further 7 targets were found to have no rel-
evant interactions in the crystal pose (corresponding to 
the 2.7% of crystal structures with 0 interactions seen 

in Appendix A Fig. 8), which arises when the ligand and 
pocket residues exclusively have hydrophobic interac-
tions which we do not calculate, or the interactions in the 
complex are slightly outside of the distance and angles 
thresholds used to generate PLIFs. Altogether, this leaves 
254 PoseBuster complexes for our analysis. Detailed 
information on compute resources used for this bench-
mark are given in Appendix B.

We run each of the methods on the PoseBusters dataset 
and record the following properties

• RMSD to crystal pose
• PoseBuster validity
• PLIFs of the predicted pose

The central contribution of this paper is the introduction 
of a PLIF recovery rate metric. This metric measures the 
fraction of interactions in the crystal pose that are suc-
cessfully replicated in the docked or cofolded pose, as 
measured by PLIFs generated by ProLIF (see Sect.  Pro-
tein-ligand interaction fingerprint), and captures how 
well each method can account for protein-ligand interac-
tions. Concretely,

where Ci,r and  Pi,r correspond to the counts for inter-
action type i and residue r in the crystal structure and 
docked/cofolded pose respectively. To be concrete, 
if we consider i = H-bond interactions with residue 
r = TYR123 and find that the crystal structure has 3 such 
interactions whilst the docked/cofolded pose has just 1 
such interaction then we contribute min (3, 1) = 1 to the 
sum in the numerator. Since the numbering and chain 
used for residues may differ between the crystal struc-
ture and docked/cofolded pose, we perform a system-
atic sequence alignment of the relevant chains to correct 
these differences.

Results
We now turn to the evaluation of interaction recovery in 
predicted ligand poses with classical docking, ML dock-
ing and protein-ligand cofolding on the PoseBusters 
dataset.

PoseBusters benchmark
Figure 2 shows the overall results of the six methods on 
the PoseBusters benchmark set. As in the original Pose-
Busters paper [3], we show performance according to dif-
ferent metrics. The striped region shows the percentage 
of poses with RMSD≤2Å, whilst the coarse crosschecked 
region shows the percentage of poses that are also 

PLIF Recovery =

∑
i,r min(Ci,r ,Pi,r)

∑
i,r Ci,r
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physically plausible and successfully pass the PoseBuster 
validity checks. Our new additions are the fine cross-
checked and solid regions which show the percentage of 
poses that are additionally “PLIF-valid” and succeed in 
also recovering at least 50% and 100% of the interactions 
present in the crystal pose respectively.

Figure  2 shows that GOLD performs best across all 
metrics and does substantially better than the ML meth-
ods, even on the RMSD criteria alone. This is because 
we perform structure preparation on the protein before 
docking as described in Sect.  Classical docking algo-
rithms. This is more typical of how traditional docking 
tools are used in a drug discovery campaign, while clas-
sical methods are often used somewhat naively when 
benchmarking ML algorithms [43].

Turning our attention to the full set of results, it is clear 
that the three traditional docking algorithms outperform 
all ML algorithms across every metric, except on RMSD 
only, where Chai-1 achieves comparable recovery to clas-
sical docking. GOLD achieves the best overall results 
and finds more poses successfully recovering at least 50% 
of the crystal interactions than the remaining three ML 
methods are able to produce falling within 2Å RMSD. As 
expected, HYBRID2 outperforms FRED due to its abil-
ity to use prior knowledge from the crystal ligand pose. 
Interestingly though, despite being the only method to 
have this prior advantage, HYBRID2 is still outperformed 
by GOLD.

With the exception of Chai-1, we find that other 
cofolding methods achieve substantially worse interac-
tion recovery than DiffDock-L. Umol achieves a higher 
fraction of ligands placed within 2Å RMSD than RFAA 
though it should be noted that, unlike RFAA, Umol 

receives pocket residues as input. However, Fig. 2 shows 
that the vast majority of poses predicted by RFAA 
and Umol are physically implausible and missing key 
interactions.

Whilst the analysis in the main text of this paper con-
siders only the top-scoring docked pose, we explore the 
effect of including more poses from the docking methods 
in Appendix C.

Interaction recovery rates
Whilst the previous section focused on the number of 
poses that successfully recovered either 50% or 100% of 
the PLIFs in the crystal pose, here we look at the distri-
bution of PLIF recovery rates across all PoseBuster data 
points.

In Fig. 3 we show a histogram of PLIF recovery rates for 
every method. We use normalized histograms to high-
light the impact on this distribution of the RMSD and 
PoseBuster validity criteria. Further comparisons of PLIF 
recovery against RMSD are shown in Appendix D.

We see a noticeable difference in skew between the 
histograms for the classical methods and the histograms 
for the ML methods, confirming that classical meth-
ods are much more successful at recovering the crystal 
interactions.

Under the premise that protein-ligand interactions 
are what we are actually interested in, we can ask the 
question whether either the RMSD≤ 2Å filter or the 
RMSD≤ 2Å and PB-valid filter are sufficient to leave 
only poses that make key interactions. If so, we would 
see a large change in the skew of the histogram as we 
apply these filters as poses with low PLIF recovery 
would get filtered out. We observe a noticeable change 

Fig. 2 The ratio of predicted protein-ligand complex structures for each model passing checks on ligand positioning (RMSD≤2Å), physicality 
(PoseBuster-valid) and interaction recovery (PLIF-valid)
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to all distributions when applying the RMSD filter, 
which removes ligands placed too far from the ground 
truth pose for any interactions to be recovered. In the 
case of GOLD, the PLIF recovery rate is relatively unaf-
fected by the PB-valid filter. The change in skew is more 
noticeable in HYBRID2, FRED and ML-based methods, 
though the latter have a sample size after filtering too 
small to be conclusive. It is however clear that many 
poses with few recovered PLIFs remain after these fil-
ters, confirming that interaction recovery can provide a 
useful orthogonal metric to PoseBuster validity. Further 
analysis of the correlation between RMSD and PLIF 
recovery is shown in Appendix D.

Recovery of different interaction types
Up until this point in our analysis we have not distin-
guished between different types of protein-ligand inter-
actions. In Fig. 4 we show a breakdown by model of the 
predictions for different types of interactions. The solid 
region shows the recall for each type of interaction whilst 
the striped region shows the ratio of detected PLIFs in 
the proposed pose relative to the PLIFs in the crystal 
pose.

Looking at the solid regions, we see that the classi-
cal methods produce poses that are better at recover-
ing every type of interaction being considered with the 
exception of cationic interactions where DiffDock out-
performs FRED. We hypothesise that this is because 

Fig. 3 Recovery of protein-ligand interaction fingerprint for each model. The distribution of PLIF recovery among poses that pass the RMSD 
and PoseBuster test are shown in dashed and dotted lines

Fig. 4 Ratio to the ground truth of calculated and correctly recovered (recall) interactions shown separately for each interaction types
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classical methods have scoring functions that explicitly 
seek interactions.

Hydrogen bonds are the most important kind of inter-
actions to consider [44] and, as shown in Fig. 4, they are 
the most prevalent in our dataset, so it is worth empha-
sising the difference in recall observed across models in 
this case. It was previously noted that ligands produced 
by ML generative methods do not make as many hydro-
gen bonds as found in reference datasets [6]. Our results 
here confirm that this is also true for the simpler task of 
ML docking where the reference ligand is given and the 
model is simply tasked with finding the optimal pose. 
Again, the reason that ML methods consistently recover 
fewer hydrogen bonds than classical methods is likely 
because the scoring functions driving classical methods 
are carefully optimised to prioritise hydrogen bonds.

Turning to the striped bars, we can also observe that 
ML methods generally produce much fewer hydrogen 
bonds and π-stacking interactions, which are the most 
frequent interactions in ligand-protein docking as shown 
at the bottom of Fig.  4. The outliers in calculated cati-
onic interactions for RosettaFold-AllAtom and Umol are 
due to a completely different orientation of the docking 
pose with respect to the crystal ligand, often replacing 
cation-π interactions found in the crystal structure with 
cationic interactions as seen in the Appendix E Fig. 12.

Discussion
In this paper, we have considered interaction fingerprints 
in protein bound small molecules. It has become com-
monplace to consider both ligand RMSD and PoseBuster 
validity as a proxy for model accuracy. These metrics 
however do not fully capture the recapitulation of key 
interactions. We studied how accurately different pro-
tein-ligand pose prediction tools, notably classical dock-
ing, ML docking and protein-ligand structure prediction 
models, can recover ground truth interactions. PLIF 
recovery provides a useful metric, orthogonal to those 
used in existing benchmarks, which can further assess 
validity of predicted poses and is particularly valuable 
in drug discovery applications. Further assessments, e.g. 
based on recovery of electrostatic complementarity  [45] 
or weighted combinations of different interaction types, 
including hydrophobic ones, could provide interesting 
avenues for future studies.

We showed that classical docking algorithms tend to 
substantially outperform ML-based methods in gener-
ating physically plausible poses, and recover relevant 
interactions with much higher success rate. This result 
highlights the fact that classical docking benchmarks 
are rarely run competitively in the literature. In contrast, 
cofolding models, where the coordinates of all atoms of 
the protein and ligand are jointly predicted, while often 

placing the ligand in the right location, rarely gener-
ate physically plausible poses that recover meaningful 
interactions with the target protein  [46]. Protein-ligand 
structure prediction is a harder task than docking, and 
also claims a much wider set of use cases, such as being 
able to adapt the conformation of the protein to accom-
modate different ligands or accurately model cryptic 
pockets, where the druggable pocket is absent in the 
apo structure and becomes exposed through interaction 
with the ligand  [47–49]. However our results here sug-
gest that in order for this emerging technique to be suc-
cessful, considerably more attention is needed to ensure 
the predicted poses form key interactions. This could be 
achieved by incorporating an explicit PLIF or pharma-
cophore-sensitive loss to the training of ML models. We 
note that it is possible to infer all interactions, including 
hydrogen bonds, from the geometry of the heavy atoms 
only and so we see potential to introduce geometric 
terms to the loss functions of ML methods to encourage 
this. Another simpler option would be to use a weighted 
RMSD or lDDT-PLI [50] that assigns a higher contribu-
tion to atoms matching specific pharmacophoric fea-
tures (e.g. hydrogen bond donors and acceptors, charged 
atoms, and π-rings).

The code used in this study is made available online 
at https:// github. com/ Exsci entia/ plif_ valid ity, along with 
all prepared protein structures at  https:// doi. org/ 10. 
5281/ zenodo. 13843 798.

Interactions analysis
Figure 5 shows a boxplot of the count for different inter-
action types across crystal structures from the Pose-
Busters dataset. Note that hydrophobic and van der 
Waals interactions are presented on a different axis as 
they were on average 10 times more prevalent than the 
other more specific interactions that were ultimately cho-
sen for the PLIF recovery metric. Given that some struc-
tures are known to have a low interaction count when 
excluding hydrophobic and van der Waals contacts, an 
alternative recovery score including the latter interac-
tions with a lower weighting could broaden the applica-
bility of the metric to more complexes.

In Fig. 6 we show an alternative representation to the 
interaction count seen in Fig.  5 using the fraction of 
ligand atoms involved in each interaction rather than the 
interaction count. Hydrophobic and van der Waals con-
tacts are still predominant compared to the other inter-
actions used in the proposed recovery metric.

In Fig.  7 we show how the hydrophobic interactions 
and van der Waals contacts vary between methods. 

https://github.com/Exscientia/plif_validity
https://doi.org/10.5281/zenodo.13843798
https://doi.org/10.5281/zenodo.13843798
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Umol tends to make less of these interactions as some 
of the residues are pointing away from the ligand, as 
seen in Fig. 12. This effect gets amplified when ring-sys-
tems are involved as they can provide multiple atoms 
to participate in these interactions. For RosettaFold-
AllAtom, the extreme values are due to the ligand 
clashing with residues, vastly amplifying the number of 
van der Waals contacts and, to a lesser extent, the num-
ber of hydrophobic interactions.

Fig. 5 Boxplot of the counts for each interaction type for crystal 
structures. Individual dots on the plot represent individual crystal 
structures

Fig. 6 Fraction of atoms involved in each interaction. π − π 
stacking and π − cation involve 6 atoms on the ligand, and H-Bond 
donor and Halogen-Bond involve 2 so their fractions are higher 
(given a similar occurrence) compared to all other interactions 
that only involve a single atom

Fig. 7 Difference in the counts for Hydrophobic (A) and van 
der Waals (B) interactions between the predicted complexes 
and the crystal structure

Fig. 8 Fraction of crystal structures having a specific total 
interactions count. Hydrophobic and van der Waals contacts are 
excluded from the total
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In Fig.  8 we show the fraction of crystal structures in 
the PoseBusters dataset as a function of the total count 
of interactions. We see that around 20 percent of crystal 
structures have two or less interactions, meaning that our 
proposed PLIF recovery metric may not be a good fit for 
all complexes, especially ones governed by hydrophobic 
interactions as we do not account for those in the metric 
presented here.

Compute requirements
Each individual GOLD, HYBRID2 and FRED docking 
was run on a single CPU. Details of the compute used 
for the ML tools is given in Table 1. We do not provide 
details of running times, as these were not logged and 
differ substantially across methods based on e.g. protein 
sequence length.

The PLIF calculations can be performed locally. On 
an M1 MacBook Pro (MK183B/A) laptop, it takes 8-9  s 
to optimize the hydrogen bond network and generate 
the fingerprint for a single complex, then approximately 

140ms to calculate the recovery rate given fingerprints 
for a crystal and docked complex.

Effect of number of docking poses on PLIF recovery
In Fig.  9 we examine how including more of the top-
ranked docking poses affects our PLIF recovery metric. 
We see that GOLD has the highest PLIF recovery regard-
less of the number of poses kept, but the gap narrows 
significantly as we include more poses from HYBRID2. 
FRED and DiffDock-L also demonstrate an improved 
PLIF recovery but the gap to GOLD remains relatively 
constant.

In Fig. 10 we explore on what percentage of targets the 
best pose by docking score is also the best pose by PLIF 
recovery and again we find that GOLD performs best.

We cannot show Umol or RFAA in this analysis since 
these methods only generate a single pose.
 

Correlation betweeen PLIF recovery and RMSD
In Fig.  11, we show a scatter plot of the PLIF recovery 
rate against the RMSD.

Examples of limitations
Figure  12 shows some limitations encountered during 
the analysis, either from the docking/cofolding meth-
ods (panels A, B and C) or due to the requirement for 
explicit hydrogen atoms to calculate PLIFs (panel D). 
Panels A and B illustrate, respectively, some of the 

Table 1 Instances used for inference on ML methods

Method Instance

DiffDock-L g5.8xlarge

RosettaFold-AllAtom m6i.8xlarge 
(MSA) & 
g5.xlarge (struc-
ture prediction)

Umol m6i.8xlarge 
(MSA) & 
g5.xlarge (struc-
ture prediction)

Fig. 9 Mean across targets of the best PLIF recovery from keeping N poses for each target
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anionic and cationic outliers seen in Fig. 4 for Gold and 
RosettaFold-AllAtom that can result from an incor-
rect posing of the ligand and/or folding of residues in 

the binding site. Panel C shows a reasonable pose for 
the ligand generated by Umol, but key residues are fac-
ing the opposite direction resulting in no interactions 

Fig. 10 Percentage of best docking poses that achieve the best PLIF recovery

Fig. 11 PLIF recovery rate and RMSD, highlighting data points which are PoseBuster-valid. Note that we use a modified definition of PB-validity 
that excludes ligand RMSD. The red line indicates a ligand RMSD of 2Å
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detected. This illustrates the additional difficulty that 
cofolding methods have to overcome in this study as a 
correct positioning of the ligand is necessary but not 
sufficient for recovering ground truth interactions. 
Panel D focuses on limitations in our current method-
ology, as PLIFs require explicit hydrogens to be present 
to evaluate hydrogen bonds, yet in some cases such as 
carboxylic acids, which oxygen atom gets protonated 
may result in different interactions being detected as 
seen in the bottom left. In the center of this same panel, 
we can see a secondary amine with a hydrogen ori-
ented in opposite directions, facing towards a histidine 
for the crystal structure, or towards a glutamate for 
the HYBRID2 pose, resulting in different interactions 
detected despite the proximity of the nitrogen atom 
between both conformations. This showcases that our 
protonation and hydrogen-bond optimisation workflow 
can still be improved, or highlights the need for a PLIF 
methodology that only accounts for heavy atom posi-
tioning for the detection of interactions.
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